Files
clang-p2996/clang/lib/InstallAPI/Visitor.cpp
Oliver Hunt 1b8ab2f089 [clang] Implement pointer authentication for C++ virtual functions, v-tables, and VTTs (#94056)
Virtual function pointer entries in v-tables are signed with address
discrimination in addition to declaration-based discrimination, where an
integer discriminator the string hash (see
`ptrauth_string_discriminator`) of the mangled name of the overridden
method. This notably provides diversity based on the full signature of
the overridden method, including the method name and parameter types.
This patch introduces ItaniumVTableContext logic to find the original
declaration of the overridden method.
On AArch64, these pointers are signed using the `IA` key (the
process-independent code key.)

V-table pointers can be signed with either no discrimination, or a
similar scheme using address and decl-based discrimination. In this
case, the integer discriminator is the string hash of the mangled
v-table identifier of the class that originally introduced the vtable
pointer.
On AArch64, these pointers are signed using the `DA` key (the
process-independent data key.)

Not using discrimination allows attackers to simply copy valid v-table
pointers from one object to another. However, using a uniform
discriminator of 0 does have positive performance and code-size
implications on AArch64, and diversity for the most important v-table
access pattern (virtual dispatch) is already better assured by the
signing schemas used on the virtual functions. It is also known that
some code in practice copies objects containing v-tables with `memcpy`,
and while this is not permitted formally, it is something that may be
invasive to eliminate.

This is controlled by:
```
  -fptrauth-vtable-pointer-type-discrimination
  -fptrauth-vtable-pointer-address-discrimination
```

In addition, this provides fine-grained controls in the
ptrauth_vtable_pointer attribute, which allows overriding the default
ptrauth schema for vtable pointers on a given class hierarchy, e.g.:
```
  [[clang::ptrauth_vtable_pointer(no_authentication, no_address_discrimination, 
                                  no_extra_discrimination)]]
  [[clang::ptrauth_vtable_pointer(default_key, default_address_discrimination,
                                  custom_discrimination, 0xf00d)]]
```

The override is then mangled as a parametrized vendor extension:
```
"__vtptrauth" I
 <key>
 <addressDiscriminated>
 <extraDiscriminator>
E
```

To support this attribute, this patch adds a small extension to the
attribute-emitter tablegen backend.

Note that there are known areas where signing is either missing
altogether or can be strengthened. Some will be addressed in later
changes (e.g., member function pointers, some RTTI).
`dynamic_cast` in particular is handled by emitting an artificial
v-table pointer load (in a way that always authenticates it) before the
runtime call itself, as the runtime doesn't have enough information
today to properly authenticate it. Instead, the runtime is currently
expected to strip the v-table pointer.

---------

Co-authored-by: John McCall <rjmccall@apple.com>
Co-authored-by: Ahmed Bougacha <ahmed@bougacha.org>
2024-06-26 18:35:10 -07:00

729 lines
24 KiB
C++

//===- Visitor.cpp ---------------------------------------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "clang/InstallAPI/Visitor.h"
#include "clang/AST/Availability.h"
#include "clang/AST/ParentMapContext.h"
#include "clang/AST/VTableBuilder.h"
#include "clang/Basic/Linkage.h"
#include "clang/InstallAPI/DylibVerifier.h"
#include "clang/InstallAPI/FrontendRecords.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Mangler.h"
using namespace llvm;
using namespace llvm::MachO;
namespace {
enum class CXXLinkage {
ExternalLinkage,
LinkOnceODRLinkage,
WeakODRLinkage,
PrivateLinkage,
};
}
namespace clang::installapi {
// Exported NamedDecl needs to have external linkage and
// default visibility from LinkageComputer.
static bool isExported(const NamedDecl *D) {
auto LV = D->getLinkageAndVisibility();
return isExternallyVisible(LV.getLinkage()) &&
(LV.getVisibility() == DefaultVisibility);
}
static bool isInlined(const FunctionDecl *D) {
bool HasInlineAttribute = false;
bool NoCXXAttr =
(!D->getASTContext().getLangOpts().CPlusPlus &&
!D->getASTContext().getTargetInfo().getCXXABI().isMicrosoft() &&
!D->hasAttr<DLLExportAttr>());
// Check all redeclarations to find an inline attribute or keyword.
for (const auto *RD : D->redecls()) {
if (!RD->isInlined())
continue;
HasInlineAttribute = true;
if (!(NoCXXAttr || RD->hasAttr<GNUInlineAttr>()))
continue;
if (RD->doesThisDeclarationHaveABody() &&
RD->isInlineDefinitionExternallyVisible())
return false;
}
if (!HasInlineAttribute)
return false;
return true;
}
static SymbolFlags getFlags(bool WeakDef, bool ThreadLocal = false) {
SymbolFlags Result = SymbolFlags::None;
if (WeakDef)
Result |= SymbolFlags::WeakDefined;
if (ThreadLocal)
Result |= SymbolFlags::ThreadLocalValue;
return Result;
}
void InstallAPIVisitor::HandleTranslationUnit(ASTContext &ASTCtx) {
if (ASTCtx.getDiagnostics().hasErrorOccurred())
return;
auto *D = ASTCtx.getTranslationUnitDecl();
TraverseDecl(D);
}
std::string InstallAPIVisitor::getMangledName(const NamedDecl *D) const {
SmallString<256> Name;
if (MC->shouldMangleDeclName(D)) {
raw_svector_ostream NStream(Name);
MC->mangleName(D, NStream);
} else
Name += D->getNameAsString();
return getBackendMangledName(Name);
}
std::string InstallAPIVisitor::getBackendMangledName(Twine Name) const {
SmallString<256> FinalName;
Mangler::getNameWithPrefix(FinalName, Name, DataLayout(Layout));
return std::string(FinalName);
}
std::optional<HeaderType>
InstallAPIVisitor::getAccessForDecl(const NamedDecl *D) const {
SourceLocation Loc = D->getLocation();
if (Loc.isInvalid())
return std::nullopt;
// If the loc refers to a macro expansion, InstallAPI needs to first get the
// file location of the expansion.
auto FileLoc = SrcMgr.getFileLoc(Loc);
FileID ID = SrcMgr.getFileID(FileLoc);
if (ID.isInvalid())
return std::nullopt;
const FileEntry *FE = SrcMgr.getFileEntryForID(ID);
if (!FE)
return std::nullopt;
auto Header = Ctx.findAndRecordFile(FE, PP);
if (!Header.has_value())
return std::nullopt;
HeaderType Access = Header.value();
assert(Access != HeaderType::Unknown && "unexpected access level for global");
return Access;
}
/// Check if the interface itself or any of its super classes have an
/// exception attribute. InstallAPI needs to export an additional symbol
/// ("OBJC_EHTYPE_$CLASS_NAME") if any of the classes have the exception
/// attribute.
static bool hasObjCExceptionAttribute(const ObjCInterfaceDecl *D) {
for (; D != nullptr; D = D->getSuperClass())
if (D->hasAttr<ObjCExceptionAttr>())
return true;
return false;
}
void InstallAPIVisitor::recordObjCInstanceVariables(
const ASTContext &ASTCtx, ObjCContainerRecord *Record, StringRef SuperClass,
const llvm::iterator_range<
DeclContext::specific_decl_iterator<ObjCIvarDecl>>
Ivars) {
RecordLinkage Linkage = RecordLinkage::Exported;
const RecordLinkage ContainerLinkage = Record->getLinkage();
// If fragile, set to unknown.
if (ASTCtx.getLangOpts().ObjCRuntime.isFragile())
Linkage = RecordLinkage::Unknown;
// Linkage should be inherited from container.
else if (ContainerLinkage != RecordLinkage::Unknown)
Linkage = ContainerLinkage;
for (const auto *IV : Ivars) {
auto Access = getAccessForDecl(IV);
if (!Access)
continue;
StringRef Name = IV->getName();
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(IV);
auto AC = IV->getCanonicalAccessControl();
auto [ObjCIVR, FA] =
Ctx.Slice->addObjCIVar(Record, Name, Linkage, Avail, IV, *Access, AC);
Ctx.Verifier->verify(ObjCIVR, FA, SuperClass);
}
}
bool InstallAPIVisitor::VisitObjCInterfaceDecl(const ObjCInterfaceDecl *D) {
// Skip forward declaration for classes (@class)
if (!D->isThisDeclarationADefinition())
return true;
// Skip over declarations that access could not be collected for.
auto Access = getAccessForDecl(D);
if (!Access)
return true;
StringRef Name = D->getObjCRuntimeNameAsString();
const RecordLinkage Linkage =
isExported(D) ? RecordLinkage::Exported : RecordLinkage::Internal;
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(D);
const bool IsEHType =
(!D->getASTContext().getLangOpts().ObjCRuntime.isFragile() &&
hasObjCExceptionAttribute(D));
auto [Class, FA] =
Ctx.Slice->addObjCInterface(Name, Linkage, Avail, D, *Access, IsEHType);
Ctx.Verifier->verify(Class, FA);
// Get base class.
StringRef SuperClassName;
if (const auto *SuperClass = D->getSuperClass())
SuperClassName = SuperClass->getObjCRuntimeNameAsString();
recordObjCInstanceVariables(D->getASTContext(), Class, Class->getName(),
D->ivars());
return true;
}
bool InstallAPIVisitor::VisitObjCCategoryDecl(const ObjCCategoryDecl *D) {
StringRef CategoryName = D->getName();
// Skip over declarations that access could not be collected for.
auto Access = getAccessForDecl(D);
if (!Access)
return true;
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(D);
const ObjCInterfaceDecl *InterfaceD = D->getClassInterface();
const StringRef InterfaceName = InterfaceD->getName();
ObjCCategoryRecord *CategoryRecord =
Ctx.Slice->addObjCCategory(InterfaceName, CategoryName, Avail, D, *Access)
.first;
recordObjCInstanceVariables(D->getASTContext(), CategoryRecord, InterfaceName,
D->ivars());
return true;
}
bool InstallAPIVisitor::VisitVarDecl(const VarDecl *D) {
// Skip function parameters.
if (isa<ParmVarDecl>(D))
return true;
// Skip variables in records. They are handled separately for C++.
if (D->getDeclContext()->isRecord())
return true;
// Skip anything inside functions or methods.
if (!D->isDefinedOutsideFunctionOrMethod())
return true;
// If this is a template but not specialization or instantiation, skip.
if (D->getASTContext().getTemplateOrSpecializationInfo(D) &&
D->getTemplateSpecializationKind() == TSK_Undeclared)
return true;
// Skip over declarations that access could not collected for.
auto Access = getAccessForDecl(D);
if (!Access)
return true;
const RecordLinkage Linkage =
isExported(D) ? RecordLinkage::Exported : RecordLinkage::Internal;
const bool WeakDef = D->hasAttr<WeakAttr>();
const bool ThreadLocal = D->getTLSKind() != VarDecl::TLS_None;
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(D);
auto [GR, FA] = Ctx.Slice->addGlobal(getMangledName(D), Linkage,
GlobalRecord::Kind::Variable, Avail, D,
*Access, getFlags(WeakDef, ThreadLocal));
Ctx.Verifier->verify(GR, FA);
return true;
}
bool InstallAPIVisitor::VisitFunctionDecl(const FunctionDecl *D) {
if (const CXXMethodDecl *M = dyn_cast<CXXMethodDecl>(D)) {
// Skip member function in class templates.
if (M->getParent()->getDescribedClassTemplate() != nullptr)
return true;
// Skip methods in CXX RecordDecls.
for (const DynTypedNode &P : D->getASTContext().getParents(*M)) {
if (P.get<CXXRecordDecl>())
return true;
}
// Skip CXX ConstructorDecls and DestructorDecls.
if (isa<CXXConstructorDecl>(M) || isa<CXXDestructorDecl>(M))
return true;
}
// Skip templated functions.
switch (D->getTemplatedKind()) {
case FunctionDecl::TK_NonTemplate:
case FunctionDecl::TK_DependentNonTemplate:
break;
case FunctionDecl::TK_MemberSpecialization:
case FunctionDecl::TK_FunctionTemplateSpecialization:
if (auto *TempInfo = D->getTemplateSpecializationInfo()) {
if (!TempInfo->isExplicitInstantiationOrSpecialization())
return true;
}
break;
case FunctionDecl::TK_FunctionTemplate:
case FunctionDecl::TK_DependentFunctionTemplateSpecialization:
return true;
}
auto Access = getAccessForDecl(D);
if (!Access)
return true;
auto Name = getMangledName(D);
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(D);
const bool ExplicitInstantiation = D->getTemplateSpecializationKind() ==
TSK_ExplicitInstantiationDeclaration;
const bool WeakDef = ExplicitInstantiation || D->hasAttr<WeakAttr>();
const bool Inlined = isInlined(D);
const RecordLinkage Linkage = (Inlined || !isExported(D))
? RecordLinkage::Internal
: RecordLinkage::Exported;
auto [GR, FA] =
Ctx.Slice->addGlobal(Name, Linkage, GlobalRecord::Kind::Function, Avail,
D, *Access, getFlags(WeakDef), Inlined);
Ctx.Verifier->verify(GR, FA);
return true;
}
static bool hasVTable(const CXXRecordDecl *D) {
// Check if vtable symbols should be emitted, only dynamic classes need
// vtables.
if (!D->hasDefinition() || !D->isDynamicClass())
return false;
assert(D->isExternallyVisible() && "Should be externally visible");
assert(D->isCompleteDefinition() && "Only works on complete definitions");
const CXXMethodDecl *KeyFunctionD =
D->getASTContext().getCurrentKeyFunction(D);
// If this class has a key function, then there is a vtable, possibly internal
// though.
if (KeyFunctionD) {
switch (KeyFunctionD->getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
case TSK_ImplicitInstantiation:
case TSK_ExplicitInstantiationDefinition:
return true;
case TSK_ExplicitInstantiationDeclaration:
llvm_unreachable(
"Unexpected TemplateSpecializationKind for key function");
}
} else if (D->isAbstract()) {
// If the class is abstract and it doesn't have a key function, it is a
// 'pure' virtual class. It doesn't need a vtable.
return false;
}
switch (D->getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
case TSK_ImplicitInstantiation:
return false;
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
return true;
}
llvm_unreachable("Invalid TemplateSpecializationKind!");
}
static CXXLinkage getVTableLinkage(const CXXRecordDecl *D) {
assert((D->hasDefinition() && D->isDynamicClass()) && "Record has no vtable");
assert(D->isExternallyVisible() && "Record should be externally visible");
if (D->getVisibility() == HiddenVisibility)
return CXXLinkage::PrivateLinkage;
const CXXMethodDecl *KeyFunctionD =
D->getASTContext().getCurrentKeyFunction(D);
if (KeyFunctionD) {
// If this class has a key function, use that to determine the
// linkage of the vtable.
switch (KeyFunctionD->getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
if (isInlined(KeyFunctionD))
return CXXLinkage::LinkOnceODRLinkage;
return CXXLinkage::ExternalLinkage;
case TSK_ImplicitInstantiation:
llvm_unreachable("No external vtable for implicit instantiations");
case TSK_ExplicitInstantiationDefinition:
return CXXLinkage::WeakODRLinkage;
case TSK_ExplicitInstantiationDeclaration:
llvm_unreachable(
"Unexpected TemplateSpecializationKind for key function");
}
}
switch (D->getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
case TSK_ImplicitInstantiation:
return CXXLinkage::LinkOnceODRLinkage;
case TSK_ExplicitInstantiationDeclaration:
case TSK_ExplicitInstantiationDefinition:
return CXXLinkage::WeakODRLinkage;
}
llvm_unreachable("Invalid TemplateSpecializationKind!");
}
static bool isRTTIWeakDef(const CXXRecordDecl *D) {
if (D->hasAttr<WeakAttr>())
return true;
if (D->isAbstract() && D->getASTContext().getCurrentKeyFunction(D) == nullptr)
return true;
if (D->isDynamicClass())
return getVTableLinkage(D) != CXXLinkage::ExternalLinkage;
return false;
}
static bool hasRTTI(const CXXRecordDecl *D) {
if (!D->getASTContext().getLangOpts().RTTI)
return false;
if (!D->hasDefinition())
return false;
if (!D->isDynamicClass())
return false;
// Don't emit weak-def RTTI information. InstallAPI cannot reliably determine
// if the final binary will have those weak defined RTTI symbols. This depends
// on the optimization level and if the class has been instantiated and used.
//
// Luckily, the Apple static linker doesn't need those weak defined RTTI
// symbols for linking. They are only needed by the runtime linker. That means
// they can be safely dropped.
if (isRTTIWeakDef(D))
return false;
return true;
}
std::string
InstallAPIVisitor::getMangledCXXRTTIName(const CXXRecordDecl *D) const {
SmallString<256> Name;
raw_svector_ostream NameStream(Name);
MC->mangleCXXRTTIName(QualType(D->getTypeForDecl(), 0), NameStream);
return getBackendMangledName(Name);
}
std::string InstallAPIVisitor::getMangledCXXRTTI(const CXXRecordDecl *D) const {
SmallString<256> Name;
raw_svector_ostream NameStream(Name);
MC->mangleCXXRTTI(QualType(D->getTypeForDecl(), 0), NameStream);
return getBackendMangledName(Name);
}
std::string
InstallAPIVisitor::getMangledCXXVTableName(const CXXRecordDecl *D) const {
SmallString<256> Name;
raw_svector_ostream NameStream(Name);
MC->mangleCXXVTable(D, NameStream);
return getBackendMangledName(Name);
}
std::string InstallAPIVisitor::getMangledCXXThunk(
const GlobalDecl &D, const ThunkInfo &Thunk, bool ElideOverrideInfo) const {
SmallString<256> Name;
raw_svector_ostream NameStream(Name);
const auto *Method = cast<CXXMethodDecl>(D.getDecl());
if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(Method))
MC->mangleCXXDtorThunk(Dtor, D.getDtorType(), Thunk, ElideOverrideInfo,
NameStream);
else
MC->mangleThunk(Method, Thunk, ElideOverrideInfo, NameStream);
return getBackendMangledName(Name);
}
std::string InstallAPIVisitor::getMangledCtorDtor(const CXXMethodDecl *D,
int Type) const {
SmallString<256> Name;
raw_svector_ostream NameStream(Name);
GlobalDecl GD;
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(D))
GD = GlobalDecl(Ctor, CXXCtorType(Type));
else {
const auto *Dtor = cast<CXXDestructorDecl>(D);
GD = GlobalDecl(Dtor, CXXDtorType(Type));
}
MC->mangleName(GD, NameStream);
return getBackendMangledName(Name);
}
void InstallAPIVisitor::emitVTableSymbols(const CXXRecordDecl *D,
const AvailabilityInfo &Avail,
const HeaderType Access,
bool EmittedVTable) {
if (hasVTable(D)) {
EmittedVTable = true;
const CXXLinkage VTableLinkage = getVTableLinkage(D);
if (VTableLinkage == CXXLinkage::ExternalLinkage ||
VTableLinkage == CXXLinkage::WeakODRLinkage) {
const std::string Name = getMangledCXXVTableName(D);
const bool WeakDef = VTableLinkage == CXXLinkage::WeakODRLinkage;
auto [GR, FA] = Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
GlobalRecord::Kind::Variable, Avail,
D, Access, getFlags(WeakDef));
Ctx.Verifier->verify(GR, FA);
if (!D->getDescribedClassTemplate() && !D->isInvalidDecl()) {
VTableContextBase *VTable = D->getASTContext().getVTableContext();
auto AddThunk = [&](GlobalDecl GD) {
const ItaniumVTableContext::ThunkInfoVectorTy *Thunks =
VTable->getThunkInfo(GD);
if (!Thunks)
return;
for (const auto &Thunk : *Thunks) {
const std::string Name =
getMangledCXXThunk(GD, Thunk, /*ElideOverrideInfo=*/true);
auto [GR, FA] = Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
GlobalRecord::Kind::Function,
Avail, GD.getDecl(), Access);
Ctx.Verifier->verify(GR, FA);
}
};
for (const auto *Method : D->methods()) {
if (isa<CXXConstructorDecl>(Method) || !Method->isVirtual())
continue;
if (auto Dtor = dyn_cast<CXXDestructorDecl>(Method)) {
// Skip default destructor.
if (Dtor->isDefaulted())
continue;
AddThunk({Dtor, Dtor_Deleting});
AddThunk({Dtor, Dtor_Complete});
} else
AddThunk(Method);
}
}
}
}
if (!EmittedVTable)
return;
if (hasRTTI(D)) {
std::string Name = getMangledCXXRTTI(D);
auto [GR, FA] =
Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
GlobalRecord::Kind::Variable, Avail, D, Access);
Ctx.Verifier->verify(GR, FA);
Name = getMangledCXXRTTIName(D);
auto [NamedGR, NamedFA] =
Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
GlobalRecord::Kind::Variable, Avail, D, Access);
Ctx.Verifier->verify(NamedGR, NamedFA);
}
for (const auto &It : D->bases()) {
const CXXRecordDecl *Base =
cast<CXXRecordDecl>(It.getType()->castAs<RecordType>()->getDecl());
const auto BaseAccess = getAccessForDecl(Base);
if (!BaseAccess)
continue;
const AvailabilityInfo BaseAvail = AvailabilityInfo::createFromDecl(Base);
emitVTableSymbols(Base, BaseAvail, *BaseAccess, /*EmittedVTable=*/true);
}
}
bool InstallAPIVisitor::VisitCXXRecordDecl(const CXXRecordDecl *D) {
if (!D->isCompleteDefinition())
return true;
// Skip templated classes.
if (D->getDescribedClassTemplate() != nullptr)
return true;
// Skip partial templated classes too.
if (isa<ClassTemplatePartialSpecializationDecl>(D))
return true;
auto Access = getAccessForDecl(D);
if (!Access)
return true;
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(D);
// Check whether to emit the vtable/rtti symbols.
if (isExported(D))
emitVTableSymbols(D, Avail, *Access);
TemplateSpecializationKind ClassSK = TSK_Undeclared;
bool KeepInlineAsWeak = false;
if (auto *Templ = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
ClassSK = Templ->getTemplateSpecializationKind();
if (ClassSK == TSK_ExplicitInstantiationDeclaration)
KeepInlineAsWeak = true;
}
// Record the class methods.
for (const auto *M : D->methods()) {
// Inlined methods are usually not emitted, except when it comes from a
// specialized template.
bool WeakDef = false;
if (isInlined(M)) {
if (!KeepInlineAsWeak)
continue;
WeakDef = true;
}
if (!isExported(M))
continue;
switch (M->getTemplateSpecializationKind()) {
case TSK_Undeclared:
case TSK_ExplicitSpecialization:
break;
case TSK_ImplicitInstantiation:
continue;
case TSK_ExplicitInstantiationDeclaration:
if (ClassSK == TSK_ExplicitInstantiationDeclaration)
WeakDef = true;
break;
case TSK_ExplicitInstantiationDefinition:
WeakDef = true;
break;
}
if (!M->isUserProvided())
continue;
// Methods that are deleted are not exported.
if (M->isDeleted())
continue;
const auto Access = getAccessForDecl(M);
if (!Access)
return true;
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(M);
if (const auto *Ctor = dyn_cast<CXXConstructorDecl>(M)) {
// Defaulted constructors are not exported.
if (Ctor->isDefaulted())
continue;
std::string Name = getMangledCtorDtor(M, Ctor_Base);
auto [GR, FA] = Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
GlobalRecord::Kind::Function, Avail,
D, *Access, getFlags(WeakDef));
Ctx.Verifier->verify(GR, FA);
if (!D->isAbstract()) {
std::string Name = getMangledCtorDtor(M, Ctor_Complete);
auto [GR, FA] = Ctx.Slice->addGlobal(
Name, RecordLinkage::Exported, GlobalRecord::Kind::Function, Avail,
D, *Access, getFlags(WeakDef));
Ctx.Verifier->verify(GR, FA);
}
continue;
}
if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(M)) {
// Defaulted destructors are not exported.
if (Dtor->isDefaulted())
continue;
std::string Name = getMangledCtorDtor(M, Dtor_Base);
auto [GR, FA] = Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
GlobalRecord::Kind::Function, Avail,
D, *Access, getFlags(WeakDef));
Ctx.Verifier->verify(GR, FA);
Name = getMangledCtorDtor(M, Dtor_Complete);
auto [CompleteGR, CompleteFA] = Ctx.Slice->addGlobal(
Name, RecordLinkage::Exported, GlobalRecord::Kind::Function, Avail, D,
*Access, getFlags(WeakDef));
Ctx.Verifier->verify(CompleteGR, CompleteFA);
if (Dtor->isVirtual()) {
Name = getMangledCtorDtor(M, Dtor_Deleting);
auto [VirtualGR, VirtualFA] = Ctx.Slice->addGlobal(
Name, RecordLinkage::Exported, GlobalRecord::Kind::Function, Avail,
D, *Access, getFlags(WeakDef));
Ctx.Verifier->verify(VirtualGR, VirtualFA);
}
continue;
}
// Though abstract methods can map to exports, this is generally unexpected.
// Except in the case of destructors. Only ignore pure virtuals after
// checking if the member function was a destructor.
if (M->isPureVirtual())
continue;
std::string Name = getMangledName(M);
auto [GR, FA] = Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
GlobalRecord::Kind::Function, Avail, M,
*Access, getFlags(WeakDef));
Ctx.Verifier->verify(GR, FA);
}
if (auto *Templ = dyn_cast<ClassTemplateSpecializationDecl>(D)) {
if (!Templ->isExplicitInstantiationOrSpecialization())
return true;
}
using var_iter = CXXRecordDecl::specific_decl_iterator<VarDecl>;
using var_range = iterator_range<var_iter>;
for (const auto *Var : var_range(D->decls())) {
// Skip const static member variables.
// \code
// struct S {
// static const int x = 0;
// };
// \endcode
if (Var->isStaticDataMember() && Var->hasInit())
continue;
// Skip unexported var decls.
if (!isExported(Var))
continue;
const std::string Name = getMangledName(Var);
const auto Access = getAccessForDecl(Var);
if (!Access)
return true;
const AvailabilityInfo Avail = AvailabilityInfo::createFromDecl(Var);
const bool WeakDef = Var->hasAttr<WeakAttr>() || KeepInlineAsWeak;
auto [GR, FA] = Ctx.Slice->addGlobal(Name, RecordLinkage::Exported,
GlobalRecord::Kind::Variable, Avail, D,
*Access, getFlags(WeakDef));
Ctx.Verifier->verify(GR, FA);
}
return true;
}
} // namespace clang::installapi