306 lines
13 KiB
C++
306 lines
13 KiB
C++
//===- LivenessAnalysis.cpp - Liveness analysis ---------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/IR/SymbolTable.h"
|
|
#include <cassert>
|
|
#include <mlir/Analysis/DataFlow/LivenessAnalysis.h>
|
|
|
|
#include <llvm/Support/Debug.h>
|
|
#include <mlir/Analysis/DataFlow/SparseAnalysis.h>
|
|
#include <mlir/Analysis/DataFlow/Utils.h>
|
|
#include <mlir/Analysis/DataFlowFramework.h>
|
|
#include <mlir/IR/Operation.h>
|
|
#include <mlir/IR/Value.h>
|
|
#include <mlir/Interfaces/CallInterfaces.h>
|
|
#include <mlir/Interfaces/SideEffectInterfaces.h>
|
|
#include <mlir/Support/LLVM.h>
|
|
|
|
#define DEBUG_TYPE "liveness-analysis"
|
|
#define DBGS() (llvm::dbgs() << '[' << DEBUG_TYPE << "] ")
|
|
#define LDBG(X) LLVM_DEBUG(DBGS() << X << "\n")
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::dataflow;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Liveness
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void Liveness::print(raw_ostream &os) const {
|
|
os << (isLive ? "live" : "not live");
|
|
}
|
|
|
|
ChangeResult Liveness::markLive() {
|
|
bool wasLive = isLive;
|
|
isLive = true;
|
|
return wasLive ? ChangeResult::NoChange : ChangeResult::Change;
|
|
}
|
|
|
|
ChangeResult Liveness::meet(const AbstractSparseLattice &other) {
|
|
const auto *otherLiveness = reinterpret_cast<const Liveness *>(&other);
|
|
return otherLiveness->isLive ? markLive() : ChangeResult::NoChange;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// LivenessAnalysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// For every value, liveness analysis determines whether or not it is "live".
|
|
///
|
|
/// A value is considered "live" iff it:
|
|
/// (1) has memory effects OR
|
|
/// (2) is returned by a public function OR
|
|
/// (3) is used to compute a value of type (1) or (2) OR
|
|
/// (4) is returned by a return-like op whose parent isn't a callable
|
|
/// nor a RegionBranchOpInterface (e.g.: linalg.yield, gpu.yield,...)
|
|
/// These ops have their own semantics, so we conservatively mark the
|
|
/// the yield value as live.
|
|
/// It is also to be noted that a value could be of multiple types (1/2/3) at
|
|
/// the same time.
|
|
///
|
|
/// A value "has memory effects" iff it:
|
|
/// (1.a) is an operand of an op with memory effects OR
|
|
/// (1.b) is a non-forwarded branch operand and its branch op could take the
|
|
/// control to a block that has an op with memory effects OR
|
|
/// (1.c) is a non-forwarded branch operand and its branch op could result
|
|
/// in different live result OR
|
|
/// (1.d) is a non-forwarded call operand.
|
|
///
|
|
/// A value `A` is said to be "used to compute" value `B` iff `B` cannot be
|
|
/// computed in the absence of `A`. Thus, in this implementation, we say that
|
|
/// value `A` is used to compute value `B` iff:
|
|
/// (3.a) `B` is a result of an op with operand `A` OR
|
|
/// (3.b) `A` is used to compute some value `C` and `C` is used to compute
|
|
/// `B`.
|
|
|
|
LogicalResult
|
|
LivenessAnalysis::visitOperation(Operation *op, ArrayRef<Liveness *> operands,
|
|
ArrayRef<const Liveness *> results) {
|
|
LLVM_DEBUG(DBGS() << "[visitOperation] Enter: ";
|
|
op->print(llvm::dbgs(), OpPrintingFlags().skipRegions());
|
|
llvm::dbgs() << "\n");
|
|
// This marks values of type (1.a) and (4) liveness as "live".
|
|
if (!isMemoryEffectFree(op) || op->hasTrait<OpTrait::ReturnLike>()) {
|
|
LDBG("[visitOperation] Operation has memory effects or is "
|
|
"return-like, marking operands live");
|
|
for (auto *operand : operands) {
|
|
LDBG(" [visitOperation] Marking operand live: "
|
|
<< operand << " (" << operand->isLive << ")");
|
|
propagateIfChanged(operand, operand->markLive());
|
|
}
|
|
}
|
|
|
|
// This marks values of type (3) liveness as "live".
|
|
bool foundLiveResult = false;
|
|
for (const Liveness *r : results) {
|
|
if (r->isLive && !foundLiveResult) {
|
|
LDBG("[visitOperation] Found live result, "
|
|
"meeting all operands with result: "
|
|
<< r);
|
|
// It is assumed that each operand is used to compute each result of an
|
|
// op. Thus, if at least one result is live, each operand is live.
|
|
for (Liveness *operand : operands) {
|
|
LDBG(" [visitOperation] Meeting operand: " << operand
|
|
<< " with result: " << r);
|
|
meet(operand, *r);
|
|
}
|
|
foundLiveResult = true;
|
|
}
|
|
LDBG("[visitOperation] Adding dependency for result: " << r << " after op: "
|
|
<< *op);
|
|
addDependency(const_cast<Liveness *>(r), getProgramPointAfter(op));
|
|
}
|
|
return success();
|
|
}
|
|
|
|
void LivenessAnalysis::visitBranchOperand(OpOperand &operand) {
|
|
LDBG("Visiting branch operand: " << operand.get()
|
|
<< " in op: " << *operand.getOwner());
|
|
// We know (at the moment) and assume (for the future) that `operand` is a
|
|
// non-forwarded branch operand of a `RegionBranchOpInterface`,
|
|
// `BranchOpInterface`, `RegionBranchTerminatorOpInterface` or return-like op.
|
|
Operation *op = operand.getOwner();
|
|
assert((isa<RegionBranchOpInterface>(op) || isa<BranchOpInterface>(op) ||
|
|
isa<RegionBranchTerminatorOpInterface>(op)) &&
|
|
"expected the op to be `RegionBranchOpInterface`, "
|
|
"`BranchOpInterface` or `RegionBranchTerminatorOpInterface`");
|
|
|
|
// The lattices of the non-forwarded branch operands don't get updated like
|
|
// the forwarded branch operands or the non-branch operands. Thus they need
|
|
// to be handled separately. This is where we handle them.
|
|
|
|
// This marks values of type (1.b/1.c) liveness as "live". A non-forwarded
|
|
// branch operand will be live if a block where its op could take the control
|
|
// has an op with memory effects or could result in different results.
|
|
// Populating such blocks in `blocks`.
|
|
bool mayLive = false;
|
|
SmallVector<Block *, 4> blocks;
|
|
if (isa<RegionBranchOpInterface>(op)) {
|
|
if (op->getNumResults() != 0) {
|
|
// This mark value of type 1.c liveness as may live, because the region
|
|
// branch operation has a return value, and the non-forwarded operand can
|
|
// determine the region to jump to, it can thereby control the result of
|
|
// the region branch operation.
|
|
// Therefore, if the result value is live, we conservatively consider the
|
|
// non-forwarded operand of the region branch operation with result may
|
|
// live and record all result.
|
|
for (Value result : op->getResults()) {
|
|
if (getLatticeElement(result)->isLive) {
|
|
mayLive = true;
|
|
LDBG("[visitBranchOperand] Non-forwarded branch "
|
|
"operand may be live due to live result: "
|
|
<< result);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// When the op is a `RegionBranchOpInterface`, like an `scf.for` or an
|
|
// `scf.index_switch` op, its branch operand controls the flow into this
|
|
// op's regions.
|
|
for (Region ®ion : op->getRegions()) {
|
|
for (Block &block : region)
|
|
blocks.push_back(&block);
|
|
}
|
|
}
|
|
} else if (isa<BranchOpInterface>(op)) {
|
|
// We cannot track all successor blocks of the branch operation(More
|
|
// specifically, it's the successor's successor). Additionally, different
|
|
// blocks might also lead to the different block argument described in 1.c.
|
|
// Therefore, we conservatively consider the non-forwarded operand of the
|
|
// branch operation may live.
|
|
mayLive = true;
|
|
LDBG("[visitBranchOperand] Non-forwarded branch operand may "
|
|
"be live due to branch op interface");
|
|
} else {
|
|
Operation *parentOp = op->getParentOp();
|
|
assert(isa<RegionBranchOpInterface>(parentOp) &&
|
|
"expected parent op to implement `RegionBranchOpInterface`");
|
|
if (parentOp->getNumResults() != 0) {
|
|
// This mark value of type 1.c liveness as may live, because the region
|
|
// branch operation has a return value, and the non-forwarded operand can
|
|
// determine the region to jump to, it can thereby control the result of
|
|
// the region branch operation.
|
|
// Therefore, if the result value is live, we conservatively consider the
|
|
// non-forwarded operand of the region branch operation with result may
|
|
// live and record all result.
|
|
for (Value result : parentOp->getResults()) {
|
|
if (getLatticeElement(result)->isLive) {
|
|
mayLive = true;
|
|
LDBG("[visitBranchOperand] Non-forwarded branch "
|
|
"operand may be live due to parent live result: "
|
|
<< result);
|
|
break;
|
|
}
|
|
}
|
|
} else {
|
|
// When the op is a `RegionBranchTerminatorOpInterface`, like an
|
|
// `scf.condition` op or return-like, like an `scf.yield` op, its branch
|
|
// operand controls the flow into this op's parent's (which is a
|
|
// `RegionBranchOpInterface`'s) regions.
|
|
for (Region ®ion : parentOp->getRegions()) {
|
|
for (Block &block : region)
|
|
blocks.push_back(&block);
|
|
}
|
|
}
|
|
}
|
|
for (Block *block : blocks) {
|
|
if (mayLive)
|
|
break;
|
|
for (Operation &nestedOp : *block) {
|
|
if (!isMemoryEffectFree(&nestedOp)) {
|
|
mayLive = true;
|
|
LDBG("Non-forwarded branch operand may be "
|
|
"live due to memory effect in block: "
|
|
<< block);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (mayLive) {
|
|
Liveness *operandLiveness = getLatticeElement(operand.get());
|
|
LDBG("Marking branch operand live: " << operand.get());
|
|
propagateIfChanged(operandLiveness, operandLiveness->markLive());
|
|
}
|
|
|
|
// Now that we have checked for memory-effecting ops in the blocks of concern,
|
|
// we will simply visit the op with this non-forwarded operand to potentially
|
|
// mark it "live" due to type (1.a/3) liveness.
|
|
SmallVector<Liveness *, 4> operandLiveness;
|
|
operandLiveness.push_back(getLatticeElement(operand.get()));
|
|
SmallVector<const Liveness *, 4> resultsLiveness;
|
|
for (const Value result : op->getResults())
|
|
resultsLiveness.push_back(getLatticeElement(result));
|
|
LDBG("Visiting operation for non-forwarded branch operand: " << *op);
|
|
(void)visitOperation(op, operandLiveness, resultsLiveness);
|
|
|
|
// We also visit the parent op with the parent's results and this operand if
|
|
// `op` is a `RegionBranchTerminatorOpInterface` because its non-forwarded
|
|
// operand depends on not only its memory effects/results but also on those of
|
|
// its parent's.
|
|
if (!isa<RegionBranchTerminatorOpInterface>(op))
|
|
return;
|
|
Operation *parentOp = op->getParentOp();
|
|
SmallVector<const Liveness *, 4> parentResultsLiveness;
|
|
for (const Value parentResult : parentOp->getResults())
|
|
parentResultsLiveness.push_back(getLatticeElement(parentResult));
|
|
LDBG("Visiting parent operation for non-forwarded branch operand: "
|
|
<< *parentOp);
|
|
(void)visitOperation(parentOp, operandLiveness, parentResultsLiveness);
|
|
}
|
|
|
|
void LivenessAnalysis::visitCallOperand(OpOperand &operand) {
|
|
LDBG("Visiting call operand: " << operand.get()
|
|
<< " in op: " << *operand.getOwner());
|
|
// We know (at the moment) and assume (for the future) that `operand` is a
|
|
// non-forwarded call operand of an op implementing `CallOpInterface`.
|
|
assert(isa<CallOpInterface>(operand.getOwner()) &&
|
|
"expected the op to implement `CallOpInterface`");
|
|
|
|
// The lattices of the non-forwarded call operands don't get updated like the
|
|
// forwarded call operands or the non-call operands. Thus they need to be
|
|
// handled separately. This is where we handle them.
|
|
|
|
// This marks values of type (1.c) liveness as "live". A non-forwarded
|
|
// call operand is live.
|
|
Liveness *operandLiveness = getLatticeElement(operand.get());
|
|
LDBG("Marking call operand live: " << operand.get());
|
|
propagateIfChanged(operandLiveness, operandLiveness->markLive());
|
|
}
|
|
|
|
void LivenessAnalysis::setToExitState(Liveness *lattice) {
|
|
LDBG("setToExitState for lattice: " << lattice);
|
|
if (lattice->isLive) {
|
|
LDBG("Lattice already live, nothing to do");
|
|
return;
|
|
}
|
|
// This marks values of type (2) liveness as "live".
|
|
LDBG("Marking lattice live due to exit state");
|
|
(void)lattice->markLive();
|
|
propagateIfChanged(lattice, ChangeResult::Change);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// RunLivenessAnalysis
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
RunLivenessAnalysis::RunLivenessAnalysis(Operation *op) {
|
|
LDBG("Constructing RunLivenessAnalysis for op: " << op->getName());
|
|
SymbolTableCollection symbolTable;
|
|
|
|
loadBaselineAnalyses(solver);
|
|
solver.load<LivenessAnalysis>(symbolTable);
|
|
LDBG("Initializing and running solver");
|
|
(void)solver.initializeAndRun(op);
|
|
LDBG("Dumping liveness state for op");
|
|
}
|
|
|
|
const Liveness *RunLivenessAnalysis::getLiveness(Value val) {
|
|
return solver.lookupState<Liveness>(val);
|
|
}
|