Files
clang-p2996/mlir/lib/Dialect/MemRef/Transforms/RuntimeOpVerification.cpp
Matthias Springer fd161cf56f [mlir][memref] Remove runtime verification for memref.reinterpret_cast (#132547)
The runtime verification code used to verify that the result of a
`memref.reinterpret_cast` is in-bounds with respect to the source
memref. This is incorrect: `memref.reinterpret_cast` allows users to
construct almost arbitrary memref descriptors and there is no
correctness expectation.

This op is supposed to be used when the user "knows what they are
doing." Similarly, the static verifier of `memref.reinterpret_cast` does
not verify in-bounds semantics either.
2025-05-06 09:40:28 +02:00

374 lines
16 KiB
C++

//===- RuntimeOpVerification.cpp - Op Verification ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/MemRef/Transforms/RuntimeOpVerification.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/Arith/Utils/Utils.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlow.h"
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/MemRef/Utils/MemRefUtils.h"
#include "mlir/Dialect/Utils/IndexingUtils.h"
#include "mlir/Interfaces/RuntimeVerifiableOpInterface.h"
using namespace mlir;
namespace mlir {
namespace memref {
namespace {
/// Generate a runtime check for lb <= value < ub.
Value generateInBoundsCheck(OpBuilder &builder, Location loc, Value value,
Value lb, Value ub) {
Value inBounds1 = builder.createOrFold<arith::CmpIOp>(
loc, arith::CmpIPredicate::sge, value, lb);
Value inBounds2 = builder.createOrFold<arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, value, ub);
Value inBounds =
builder.createOrFold<arith::AndIOp>(loc, inBounds1, inBounds2);
return inBounds;
}
struct AssumeAlignmentOpInterface
: public RuntimeVerifiableOpInterface::ExternalModel<
AssumeAlignmentOpInterface, AssumeAlignmentOp> {
void generateRuntimeVerification(Operation *op, OpBuilder &builder,
Location loc) const {
auto assumeOp = cast<AssumeAlignmentOp>(op);
Value ptr = builder.create<ExtractAlignedPointerAsIndexOp>(
loc, assumeOp.getMemref());
Value rest = builder.create<arith::RemUIOp>(
loc, ptr,
builder.create<arith::ConstantIndexOp>(loc, assumeOp.getAlignment()));
Value isAligned = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, rest,
builder.create<arith::ConstantIndexOp>(loc, 0));
builder.create<cf::AssertOp>(
loc, isAligned,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "memref is not aligned to " +
std::to_string(assumeOp.getAlignment())));
}
};
struct CastOpInterface
: public RuntimeVerifiableOpInterface::ExternalModel<CastOpInterface,
CastOp> {
void generateRuntimeVerification(Operation *op, OpBuilder &builder,
Location loc) const {
auto castOp = cast<CastOp>(op);
auto srcType = cast<BaseMemRefType>(castOp.getSource().getType());
// Nothing to check if the result is an unranked memref.
auto resultType = dyn_cast<MemRefType>(castOp.getType());
if (!resultType)
return;
if (isa<UnrankedMemRefType>(srcType)) {
// Check rank.
Value srcRank = builder.create<RankOp>(loc, castOp.getSource());
Value resultRank =
builder.create<arith::ConstantIndexOp>(loc, resultType.getRank());
Value isSameRank = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, srcRank, resultRank);
builder.create<cf::AssertOp>(
loc, isSameRank,
RuntimeVerifiableOpInterface::generateErrorMessage(op,
"rank mismatch"));
}
// Get source offset and strides. We do not have an op to get offsets and
// strides from unranked memrefs, so cast the source to a type with fully
// dynamic layout, from which we can then extract the offset and strides.
// (Rank was already verified.)
int64_t dynamicOffset = ShapedType::kDynamic;
SmallVector<int64_t> dynamicShape(resultType.getRank(),
ShapedType::kDynamic);
auto stridedLayout = StridedLayoutAttr::get(builder.getContext(),
dynamicOffset, dynamicShape);
auto dynStridesType =
MemRefType::get(dynamicShape, resultType.getElementType(),
stridedLayout, resultType.getMemorySpace());
Value helperCast =
builder.create<CastOp>(loc, dynStridesType, castOp.getSource());
auto metadataOp = builder.create<ExtractStridedMetadataOp>(loc, helperCast);
// Check dimension sizes.
for (const auto &it : llvm::enumerate(resultType.getShape())) {
// Static dim size -> static/dynamic dim size does not need verification.
if (auto rankedSrcType = dyn_cast<MemRefType>(srcType))
if (!rankedSrcType.isDynamicDim(it.index()))
continue;
// Static/dynamic dim size -> dynamic dim size does not need verification.
if (resultType.isDynamicDim(it.index()))
continue;
Value srcDimSz =
builder.create<DimOp>(loc, castOp.getSource(), it.index());
Value resultDimSz =
builder.create<arith::ConstantIndexOp>(loc, it.value());
Value isSameSz = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, srcDimSz, resultDimSz);
builder.create<cf::AssertOp>(
loc, isSameSz,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "size mismatch of dim " + std::to_string(it.index())));
}
// Get result offset and strides.
int64_t resultOffset;
SmallVector<int64_t> resultStrides;
if (failed(resultType.getStridesAndOffset(resultStrides, resultOffset)))
return;
// Check offset.
if (resultOffset != ShapedType::kDynamic) {
// Static/dynamic offset -> dynamic offset does not need verification.
Value srcOffset = metadataOp.getResult(1);
Value resultOffsetVal =
builder.create<arith::ConstantIndexOp>(loc, resultOffset);
Value isSameOffset = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, srcOffset, resultOffsetVal);
builder.create<cf::AssertOp>(
loc, isSameOffset,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "offset mismatch"));
}
// Check strides.
for (const auto &it : llvm::enumerate(resultStrides)) {
// Static/dynamic stride -> dynamic stride does not need verification.
if (it.value() == ShapedType::kDynamic)
continue;
Value srcStride =
metadataOp.getResult(2 + resultType.getRank() + it.index());
Value resultStrideVal =
builder.create<arith::ConstantIndexOp>(loc, it.value());
Value isSameStride = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, srcStride, resultStrideVal);
builder.create<cf::AssertOp>(
loc, isSameStride,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "stride mismatch of dim " + std::to_string(it.index())));
}
}
};
struct CopyOpInterface
: public RuntimeVerifiableOpInterface::ExternalModel<CopyOpInterface,
CopyOp> {
void generateRuntimeVerification(Operation *op, OpBuilder &builder,
Location loc) const {
auto copyOp = cast<CopyOp>(op);
BaseMemRefType sourceType = copyOp.getSource().getType();
BaseMemRefType targetType = copyOp.getTarget().getType();
auto rankedSourceType = dyn_cast<MemRefType>(sourceType);
auto rankedTargetType = dyn_cast<MemRefType>(targetType);
// TODO: Verification for unranked memrefs is not supported yet.
if (!rankedSourceType || !rankedTargetType)
return;
assert(sourceType.getRank() == targetType.getRank() && "rank mismatch");
for (int64_t i = 0, e = sourceType.getRank(); i < e; ++i) {
// Fully static dimensions in both source and target operand are already
// verified by the op verifier.
if (!rankedSourceType.isDynamicDim(i) &&
!rankedTargetType.isDynamicDim(i))
continue;
auto getDimSize = [&](Value memRef, MemRefType type,
int64_t dim) -> Value {
return type.isDynamicDim(dim)
? builder.create<DimOp>(loc, memRef, dim).getResult()
: builder
.create<arith::ConstantIndexOp>(loc,
type.getDimSize(dim))
.getResult();
};
Value sourceDim = getDimSize(copyOp.getSource(), rankedSourceType, i);
Value targetDim = getDimSize(copyOp.getTarget(), rankedTargetType, i);
Value sameDimSize = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, sourceDim, targetDim);
builder.create<cf::AssertOp>(
loc, sameDimSize,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "size of " + std::to_string(i) +
"-th source/target dim does not match"));
}
}
};
struct DimOpInterface
: public RuntimeVerifiableOpInterface::ExternalModel<DimOpInterface,
DimOp> {
void generateRuntimeVerification(Operation *op, OpBuilder &builder,
Location loc) const {
auto dimOp = cast<DimOp>(op);
Value rank = builder.create<RankOp>(loc, dimOp.getSource());
Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
builder.create<cf::AssertOp>(
loc, generateInBoundsCheck(builder, loc, dimOp.getIndex(), zero, rank),
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "index is out of bounds"));
}
};
/// Verifies that the indices on load/store ops are in-bounds of the memref's
/// index space: 0 <= index#i < dim#i
template <typename LoadStoreOp>
struct LoadStoreOpInterface
: public RuntimeVerifiableOpInterface::ExternalModel<
LoadStoreOpInterface<LoadStoreOp>, LoadStoreOp> {
void generateRuntimeVerification(Operation *op, OpBuilder &builder,
Location loc) const {
auto loadStoreOp = cast<LoadStoreOp>(op);
auto memref = loadStoreOp.getMemref();
auto rank = memref.getType().getRank();
if (rank == 0) {
return;
}
auto indices = loadStoreOp.getIndices();
auto zero = builder.create<arith::ConstantIndexOp>(loc, 0);
Value assertCond;
for (auto i : llvm::seq<int64_t>(0, rank)) {
Value dimOp = builder.createOrFold<memref::DimOp>(loc, memref, i);
Value inBounds =
generateInBoundsCheck(builder, loc, indices[i], zero, dimOp);
assertCond =
i > 0 ? builder.createOrFold<arith::AndIOp>(loc, assertCond, inBounds)
: inBounds;
}
builder.create<cf::AssertOp>(
loc, assertCond,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "out-of-bounds access"));
}
};
struct SubViewOpInterface
: public RuntimeVerifiableOpInterface::ExternalModel<SubViewOpInterface,
SubViewOp> {
void generateRuntimeVerification(Operation *op, OpBuilder &builder,
Location loc) const {
auto subView = cast<SubViewOp>(op);
MemRefType sourceType = subView.getSource().getType();
// For each dimension, assert that:
// 0 <= offset < dim_size
// 0 <= offset + (size - 1) * stride < dim_size
Value zero = builder.create<arith::ConstantIndexOp>(loc, 0);
Value one = builder.create<arith::ConstantIndexOp>(loc, 1);
auto metadataOp =
builder.create<ExtractStridedMetadataOp>(loc, subView.getSource());
for (int64_t i = 0, e = sourceType.getRank(); i < e; ++i) {
Value offset = getValueOrCreateConstantIndexOp(
builder, loc, subView.getMixedOffsets()[i]);
Value size = getValueOrCreateConstantIndexOp(builder, loc,
subView.getMixedSizes()[i]);
Value stride = getValueOrCreateConstantIndexOp(
builder, loc, subView.getMixedStrides()[i]);
// Verify that offset is in-bounds.
Value dimSize = metadataOp.getSizes()[i];
Value offsetInBounds =
generateInBoundsCheck(builder, loc, offset, zero, dimSize);
builder.create<cf::AssertOp>(
loc, offsetInBounds,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "offset " + std::to_string(i) + " is out-of-bounds"));
// Verify that slice does not run out-of-bounds.
Value sizeMinusOne = builder.create<arith::SubIOp>(loc, size, one);
Value sizeMinusOneTimesStride =
builder.create<arith::MulIOp>(loc, sizeMinusOne, stride);
Value lastPos =
builder.create<arith::AddIOp>(loc, offset, sizeMinusOneTimesStride);
Value lastPosInBounds =
generateInBoundsCheck(builder, loc, lastPos, zero, dimSize);
builder.create<cf::AssertOp>(
loc, lastPosInBounds,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "subview runs out-of-bounds along dimension " +
std::to_string(i)));
}
}
};
struct ExpandShapeOpInterface
: public RuntimeVerifiableOpInterface::ExternalModel<ExpandShapeOpInterface,
ExpandShapeOp> {
void generateRuntimeVerification(Operation *op, OpBuilder &builder,
Location loc) const {
auto expandShapeOp = cast<ExpandShapeOp>(op);
// Verify that the expanded dim sizes are a product of the collapsed dim
// size.
for (const auto &it :
llvm::enumerate(expandShapeOp.getReassociationIndices())) {
Value srcDimSz =
builder.create<DimOp>(loc, expandShapeOp.getSrc(), it.index());
int64_t groupSz = 1;
bool foundDynamicDim = false;
for (int64_t resultDim : it.value()) {
if (expandShapeOp.getResultType().isDynamicDim(resultDim)) {
// Keep this assert here in case the op is extended in the future.
assert(!foundDynamicDim &&
"more than one dynamic dim found in reassoc group");
(void)foundDynamicDim;
foundDynamicDim = true;
continue;
}
groupSz *= expandShapeOp.getResultType().getDimSize(resultDim);
}
Value staticResultDimSz =
builder.create<arith::ConstantIndexOp>(loc, groupSz);
// staticResultDimSz must divide srcDimSz evenly.
Value mod =
builder.create<arith::RemSIOp>(loc, srcDimSz, staticResultDimSz);
Value isModZero = builder.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::eq, mod,
builder.create<arith::ConstantIndexOp>(loc, 0));
builder.create<cf::AssertOp>(
loc, isModZero,
RuntimeVerifiableOpInterface::generateErrorMessage(
op, "static result dims in reassoc group do not "
"divide src dim evenly"));
}
}
};
} // namespace
} // namespace memref
} // namespace mlir
void mlir::memref::registerRuntimeVerifiableOpInterfaceExternalModels(
DialectRegistry &registry) {
registry.addExtension(+[](MLIRContext *ctx, memref::MemRefDialect *dialect) {
AssumeAlignmentOp::attachInterface<AssumeAlignmentOpInterface>(*ctx);
AtomicRMWOp::attachInterface<LoadStoreOpInterface<AtomicRMWOp>>(*ctx);
CastOp::attachInterface<CastOpInterface>(*ctx);
CopyOp::attachInterface<CopyOpInterface>(*ctx);
DimOp::attachInterface<DimOpInterface>(*ctx);
ExpandShapeOp::attachInterface<ExpandShapeOpInterface>(*ctx);
GenericAtomicRMWOp::attachInterface<
LoadStoreOpInterface<GenericAtomicRMWOp>>(*ctx);
LoadOp::attachInterface<LoadStoreOpInterface<LoadOp>>(*ctx);
StoreOp::attachInterface<LoadStoreOpInterface<StoreOp>>(*ctx);
SubViewOp::attachInterface<SubViewOpInterface>(*ctx);
// Note: There is nothing to verify for ReinterpretCastOp.
// Load additional dialects of which ops may get created.
ctx->loadDialect<affine::AffineDialect, arith::ArithDialect,
cf::ControlFlowDialect>();
});
}