Much to my surprise, '-disable-llvm-optzns' which I thought was the magical flag I wanted to get at the raw LLVM IR coming out of Clang deosn't do that. It still runs some passes over the IR. I don't want that, I really want the *raw* IR coming out of Clang and I strongly suspect everyone else using it is in the same camp. There is actually a flag that does what I want that I didn't know about called '-disable-llvm-passes'. I suspect many others don't know about it either. It both does what I want and is much simpler. This removes the confusing version and makes that spelling of the flag an alias for '-disable-llvm-passes'. I've also moved everything in Clang to use the 'passes' spelling as it seems both more accurate (*all* LLVM passes are disabled, not just optimizations) and much easier to remember and spell correctly. This is part of simplifying how Clang drives LLVM to make it cleaner to wire up to the new pass manager. Differential Revision: https://reviews.llvm.org/D28047 llvm-svn: 290392
394 lines
7.2 KiB
C++
394 lines
7.2 KiB
C++
// RUN: %clang_cc1 %s -I%S -triple=x86_64-apple-darwin10 -emit-llvm -o %t
|
|
// RUN: %clang_cc1 %s -I%S -triple=x86_64-apple-darwin10 -O2 -disable-llvm-passes -emit-llvm -o %t.opt
|
|
// RUN: FileCheck --check-prefix=CHECK-TEST1 %s < %t
|
|
// RUN: FileCheck --check-prefix=CHECK-TEST2 %s < %t
|
|
// RUN: FileCheck --check-prefix=CHECK-TEST5 %s < %t
|
|
// RUN: FileCheck --check-prefix=CHECK-TEST8 %s < %t.opt
|
|
// RUN: FileCheck --check-prefix=CHECK-TEST9 %s < %t.opt
|
|
// RUN: FileCheck --check-prefix=CHECK-TEST10 %s < %t.opt
|
|
// RUN: FileCheck --check-prefix=CHECK-TEST11 %s < %t.opt
|
|
// RUN: FileCheck --check-prefix=CHECK-TEST12 %s < %t.opt
|
|
// RUN: FileCheck --check-prefix=CHECK-TEST13 %s < %t.opt
|
|
// RUN: FileCheck --check-prefix=CHECK-TEST14 %s < %t.opt
|
|
// RUN: FileCheck --check-prefix=CHECK-TEST15 %s < %t.opt
|
|
// RUN: FileCheck --check-prefix=CHECK-TEST16 %s < %t.opt
|
|
|
|
#include <typeinfo>
|
|
|
|
// CHECK-TEST1: @_ZTVN5Test11AE = external unnamed_addr constant
|
|
namespace Test1 {
|
|
|
|
struct A {
|
|
A();
|
|
virtual void f();
|
|
virtual ~A() { }
|
|
};
|
|
|
|
A::A() { }
|
|
|
|
void f(A* a) {
|
|
a->f();
|
|
};
|
|
|
|
// CHECK-LABEL: define void @_ZN5Test11gEv
|
|
// CHECK: call void @_ZN5Test11A1fEv
|
|
void g() {
|
|
A a;
|
|
f(&a);
|
|
}
|
|
|
|
}
|
|
|
|
// Test2::A's key function (f) is defined in this translation unit, but when
|
|
// we're doing codegen for the typeid(A) call, we don't know that yet.
|
|
// This tests mainly that the typeinfo and typename constants have their linkage
|
|
// updated correctly.
|
|
|
|
// CHECK-TEST2: @_ZTSN5Test21AE = constant
|
|
// CHECK-TEST2: @_ZTIN5Test21AE = constant
|
|
// CHECK-TEST2: @_ZTVN5Test21AE = unnamed_addr constant
|
|
namespace Test2 {
|
|
struct A {
|
|
virtual void f();
|
|
};
|
|
|
|
const std::type_info &g() {
|
|
return typeid(A);
|
|
};
|
|
|
|
void A::f() { }
|
|
}
|
|
|
|
// Test that we don't assert on this test.
|
|
namespace Test3 {
|
|
|
|
struct A {
|
|
virtual void f();
|
|
virtual ~A() { }
|
|
};
|
|
|
|
struct B : A {
|
|
B();
|
|
virtual void f();
|
|
};
|
|
|
|
B::B() { }
|
|
|
|
void g(A* a) {
|
|
a->f();
|
|
};
|
|
|
|
}
|
|
|
|
// PR9114, test that we don't try to instantiate RefPtr<Node>.
|
|
namespace Test4 {
|
|
|
|
template <class T> struct RefPtr {
|
|
T* p;
|
|
~RefPtr() {
|
|
p->deref();
|
|
}
|
|
};
|
|
|
|
struct A {
|
|
virtual ~A();
|
|
};
|
|
|
|
struct Node;
|
|
|
|
struct B : A {
|
|
virtual void deref();
|
|
RefPtr<Node> m;
|
|
};
|
|
|
|
void f() {
|
|
RefPtr<B> b;
|
|
}
|
|
|
|
}
|
|
|
|
// PR9130, test that we emit a definition of A::f.
|
|
// CHECK-TEST5-LABEL: define linkonce_odr void @_ZN5Test51A1fEv
|
|
namespace Test5 {
|
|
|
|
struct A {
|
|
virtual void f() { }
|
|
};
|
|
|
|
struct B : A {
|
|
virtual ~B();
|
|
};
|
|
|
|
B::~B() { }
|
|
|
|
}
|
|
|
|
// Check that we don't assert on this test.
|
|
namespace Test6 {
|
|
|
|
struct A {
|
|
virtual ~A();
|
|
int a;
|
|
};
|
|
|
|
struct B {
|
|
virtual ~B();
|
|
int b;
|
|
};
|
|
|
|
struct C : A, B {
|
|
C();
|
|
};
|
|
|
|
struct D : C {
|
|
virtual void f();
|
|
D();
|
|
};
|
|
|
|
D::D() { }
|
|
|
|
}
|
|
|
|
namespace Test7 {
|
|
|
|
struct c1 {};
|
|
struct c10 : c1{
|
|
virtual void foo ();
|
|
};
|
|
struct c11 : c10, c1{
|
|
virtual void f6 ();
|
|
};
|
|
struct c28 : virtual c11{
|
|
void f6 ();
|
|
};
|
|
}
|
|
|
|
namespace Test8 {
|
|
// CHECK-TEST8: @_ZTVN5Test81YE = available_externally unnamed_addr constant
|
|
// vtable for X is not generated because there are no stores here
|
|
struct X {
|
|
X();
|
|
virtual void foo();
|
|
};
|
|
struct Y : X {
|
|
void foo();
|
|
};
|
|
|
|
void g(X* p) { p->foo(); }
|
|
void f() {
|
|
Y y;
|
|
g(&y);
|
|
X x;
|
|
g(&x);
|
|
}
|
|
|
|
} // Test8
|
|
|
|
namespace Test9 {
|
|
// All virtual functions are outline, so we can assume that it will
|
|
// be generated in translation unit where foo is defined.
|
|
// CHECK-TEST9-DAG: @_ZTVN5Test91AE = available_externally unnamed_addr constant
|
|
// CHECK-TEST9-DAG: @_ZTVN5Test91BE = available_externally unnamed_addr constant
|
|
struct A {
|
|
virtual void foo();
|
|
virtual void bar();
|
|
};
|
|
void A::bar() {}
|
|
|
|
struct B : A {
|
|
void foo();
|
|
};
|
|
|
|
void g() {
|
|
A a;
|
|
a.foo();
|
|
B b;
|
|
b.foo();
|
|
}
|
|
|
|
} // Test9
|
|
|
|
namespace Test10 {
|
|
|
|
// because A's key function is defined here, vtable is generated in this TU
|
|
// CHECK-TEST10-DAG: @_ZTVN6Test101AE = unnamed_addr constant
|
|
struct A {
|
|
virtual void foo();
|
|
virtual void bar();
|
|
};
|
|
void A::foo() {}
|
|
|
|
// Because key function is inline we will generate vtable as linkonce_odr.
|
|
// CHECK-TEST10-DAG: @_ZTVN6Test101DE = linkonce_odr unnamed_addr constant
|
|
struct D : A {
|
|
void bar();
|
|
};
|
|
inline void D::bar() {}
|
|
|
|
// Because B has outline all virtual functions, we can refer to them.
|
|
// CHECK-TEST10-DAG: @_ZTVN6Test101BE = available_externally unnamed_addr constant
|
|
struct B : A {
|
|
void foo();
|
|
void bar();
|
|
};
|
|
|
|
// C's key function (car) is outline, but C has inline virtual function so we
|
|
// can't guarantee that we will be able to refer to bar from name
|
|
// so (at the moment) we can't emit vtable available_externally.
|
|
// CHECK-TEST10-DAG: @_ZTVN6Test101CE = external unnamed_addr constant
|
|
struct C : A {
|
|
void bar() {} // defined in body - not key function
|
|
virtual inline void gar(); // inline in body - not key function
|
|
virtual void car();
|
|
};
|
|
|
|
// no key function, vtable will be generated everywhere it will be used
|
|
// CHECK-TEST10-DAG: @_ZTVN6Test101EE = linkonce_odr unnamed_addr constant
|
|
struct E : A {};
|
|
|
|
void g(A& a) {
|
|
a.foo();
|
|
a.bar();
|
|
}
|
|
|
|
void f() {
|
|
A a;
|
|
g(a);
|
|
B b;
|
|
g(b);
|
|
C c;
|
|
g(c);
|
|
D d;
|
|
g(d);
|
|
E e;
|
|
g(e);
|
|
}
|
|
|
|
} // Test10
|
|
|
|
namespace Test11 {
|
|
struct D;
|
|
// Can emit C's vtable available_externally.
|
|
// CHECK-TEST11: @_ZTVN6Test111CE = available_externally unnamed_addr constant
|
|
struct C {
|
|
virtual D& operator=(const D&);
|
|
};
|
|
|
|
// Cannot emit B's vtable available_externally, because we cannot create
|
|
// a reference to the inline virtual B::operator= function.
|
|
// CHECK-TEST11: @_ZTVN6Test111DE = external unnamed_addr constant
|
|
struct D : C {
|
|
virtual void key();
|
|
};
|
|
D f();
|
|
|
|
void g(D& a) {
|
|
C c;
|
|
c = a;
|
|
a.key();
|
|
a.key();
|
|
}
|
|
void g() {
|
|
D d;
|
|
d = f();
|
|
g(d);
|
|
}
|
|
} // Test 11
|
|
|
|
namespace Test12 {
|
|
|
|
// CHECK-TEST12: @_ZTVN6Test121AE = external unnamed_addr constant
|
|
struct A {
|
|
virtual void foo();
|
|
virtual ~A() {}
|
|
};
|
|
// CHECK-TEST12: @_ZTVN6Test121BE = external unnamed_addr constant
|
|
struct B : A {
|
|
void foo();
|
|
};
|
|
|
|
void g() {
|
|
A a;
|
|
a.foo();
|
|
B b;
|
|
b.foo();
|
|
}
|
|
}
|
|
|
|
namespace Test13 {
|
|
|
|
// CHECK-TEST13-DAG: @_ZTVN6Test131AE = available_externally unnamed_addr constant
|
|
// CHECK-TEST13-DAG: @_ZTVN6Test131BE = external unnamed_addr constant
|
|
struct A {
|
|
virtual ~A();
|
|
};
|
|
struct B : A {
|
|
virtual void f();
|
|
void operator delete(void *);
|
|
~B() {}
|
|
};
|
|
|
|
void g() {
|
|
A *b = new B;
|
|
}
|
|
}
|
|
|
|
namespace Test14 {
|
|
|
|
// CHECK-TEST14: @_ZTVN6Test141AE = available_externally unnamed_addr constant
|
|
struct A {
|
|
virtual void f();
|
|
void operator delete(void *);
|
|
~A();
|
|
};
|
|
|
|
void g() {
|
|
A *b = new A;
|
|
delete b;
|
|
}
|
|
}
|
|
|
|
namespace Test15 {
|
|
// In this test D's vtable has two slots for function f(), but uses only one,
|
|
// so the second slot is set to null.
|
|
// CHECK-TEST15: @_ZTVN6Test151DE = available_externally unnamed_addr constant
|
|
struct A { virtual void f() {} };
|
|
struct B : virtual A {};
|
|
struct C : virtual A {};
|
|
struct D : B, C {
|
|
virtual void g();
|
|
void f();
|
|
};
|
|
|
|
void test() {
|
|
D * d = new D;
|
|
d->f();
|
|
}
|
|
}
|
|
|
|
namespace Test16 {
|
|
// S has virtual method that is hidden, because of it we can't
|
|
// generate available_externally vtable for it.
|
|
// CHECK-TEST16-DAG: @_ZTVN6Test161SE = external unnamed_addr constant
|
|
// CHECK-TEST16-DAG: @_ZTVN6Test162S2E = available_externally
|
|
|
|
struct S {
|
|
__attribute__((visibility("hidden"))) virtual void doStuff();
|
|
};
|
|
|
|
struct S2 {
|
|
virtual void doStuff();
|
|
__attribute__((visibility("hidden"))) void unused();
|
|
|
|
};
|
|
|
|
void test() {
|
|
S *s = new S;
|
|
s->doStuff();
|
|
|
|
S2 *s2 = new S2;
|
|
s2->doStuff();
|
|
}
|
|
}
|
|
|