Files
clang-p2996/llvm/utils/TableGen/GlobalISelEmitter.cpp
Daniel Sanders 4f3eb249cf [globalisel][tablegen] Fix patterns involving multiple ComplexPatterns.
Summary:
Temporaries are now allocated to operands instead of predicates and this
allocation is used to correctly pair up the rendered operands with the
matched operands.

Previously, ComplexPatterns were allocated temporaries independently in the
Src Pattern and Dst Pattern, leading to mismatches. Additionally, the Dst
Pattern failed to account for the allocated index and therefore always used
temporary 0, 1, ... when it should have used base+0, base+1, ...

Thanks to Aditya Nandakumar for noticing the bug.

Depends on D30539

Reviewers: ab, t.p.northover, qcolombet, rovka, aditya_nandakumar

Reviewed By: rovka

Subscribers: igorb, dberris, kristof.beyls, llvm-commits

Differential Revision: https://reviews.llvm.org/D31054

llvm-svn: 299538
2017-04-05 13:14:03 +00:00

1610 lines
56 KiB
C++

//===- GlobalISelEmitter.cpp - Generate an instruction selector -----------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This tablegen backend emits code for use by the GlobalISel instruction
/// selector. See include/llvm/CodeGen/TargetGlobalISel.td.
///
/// This file analyzes the patterns recognized by the SelectionDAGISel tablegen
/// backend, filters out the ones that are unsupported, maps
/// SelectionDAG-specific constructs to their GlobalISel counterpart
/// (when applicable: MVT to LLT; SDNode to generic Instruction).
///
/// Not all patterns are supported: pass the tablegen invocation
/// "-warn-on-skipped-patterns" to emit a warning when a pattern is skipped,
/// as well as why.
///
/// The generated file defines a single method:
/// bool <Target>InstructionSelector::selectImpl(MachineInstr &I) const;
/// intended to be used in InstructionSelector::select as the first-step
/// selector for the patterns that don't require complex C++.
///
/// FIXME: We'll probably want to eventually define a base
/// "TargetGenInstructionSelector" class.
///
//===----------------------------------------------------------------------===//
#include "CodeGenDAGPatterns.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineValueType.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/Record.h"
#include "llvm/TableGen/TableGenBackend.h"
#include <string>
#include <numeric>
using namespace llvm;
#define DEBUG_TYPE "gisel-emitter"
STATISTIC(NumPatternTotal, "Total number of patterns");
STATISTIC(NumPatternImported, "Number of patterns imported from SelectionDAG");
STATISTIC(NumPatternImportsSkipped, "Number of SelectionDAG imports skipped");
STATISTIC(NumPatternEmitted, "Number of patterns emitted");
cl::OptionCategory GlobalISelEmitterCat("Options for -gen-global-isel");
static cl::opt<bool> WarnOnSkippedPatterns(
"warn-on-skipped-patterns",
cl::desc("Explain why a pattern was skipped for inclusion "
"in the GlobalISel selector"),
cl::init(false), cl::cat(GlobalISelEmitterCat));
namespace {
//===- Helper functions ---------------------------------------------------===//
/// This class stands in for LLT wherever we want to tablegen-erate an
/// equivalent at compiler run-time.
class LLTCodeGen {
private:
LLT Ty;
public:
LLTCodeGen(const LLT &Ty) : Ty(Ty) {}
void emitCxxConstructorCall(raw_ostream &OS) const {
if (Ty.isScalar()) {
OS << "LLT::scalar(" << Ty.getSizeInBits() << ")";
return;
}
if (Ty.isVector()) {
OS << "LLT::vector(" << Ty.getNumElements() << ", " << Ty.getSizeInBits()
<< ")";
return;
}
llvm_unreachable("Unhandled LLT");
}
const LLT &get() const { return Ty; }
};
class InstructionMatcher;
class OperandPlaceholder {
private:
enum PlaceholderKind {
OP_MatchReference,
OP_Temporary,
} Kind;
struct MatchReferenceData {
InstructionMatcher *InsnMatcher;
StringRef InsnVarName;
StringRef SymbolicName;
};
struct TemporaryData {
unsigned OpIdx;
};
union {
struct MatchReferenceData MatchReference;
struct TemporaryData Temporary;
};
OperandPlaceholder(PlaceholderKind Kind) : Kind(Kind) {}
public:
~OperandPlaceholder() {}
static OperandPlaceholder
CreateMatchReference(InstructionMatcher *InsnMatcher,
StringRef InsnVarName, StringRef SymbolicName) {
OperandPlaceholder Result(OP_MatchReference);
Result.MatchReference.InsnMatcher = InsnMatcher;
Result.MatchReference.InsnVarName = InsnVarName;
Result.MatchReference.SymbolicName = SymbolicName;
return Result;
}
static OperandPlaceholder CreateTemporary(unsigned OpIdx) {
OperandPlaceholder Result(OP_Temporary);
Result.Temporary.OpIdx = OpIdx;
return Result;
}
void emitCxxValueExpr(raw_ostream &OS) const;
};
/// Convert an MVT to an equivalent LLT if possible, or the invalid LLT() for
/// MVTs that don't map cleanly to an LLT (e.g., iPTR, *any, ...).
static Optional<LLTCodeGen> MVTToLLT(MVT::SimpleValueType SVT) {
MVT VT(SVT);
if (VT.isVector() && VT.getVectorNumElements() != 1)
return LLTCodeGen(LLT::vector(VT.getVectorNumElements(), VT.getScalarSizeInBits()));
if (VT.isInteger() || VT.isFloatingPoint())
return LLTCodeGen(LLT::scalar(VT.getSizeInBits()));
return None;
}
static bool isTrivialOperatorNode(const TreePatternNode *N) {
return !N->isLeaf() && !N->hasAnyPredicate() && !N->getTransformFn();
}
//===- Matchers -----------------------------------------------------------===//
class OperandMatcher;
class MatchAction;
/// Generates code to check that a match rule matches.
class RuleMatcher {
/// A list of matchers that all need to succeed for the current rule to match.
/// FIXME: This currently supports a single match position but could be
/// extended to support multiple positions to support div/rem fusion or
/// load-multiple instructions.
std::vector<std::unique_ptr<InstructionMatcher>> Matchers;
/// A list of actions that need to be taken when all predicates in this rule
/// have succeeded.
std::vector<std::unique_ptr<MatchAction>> Actions;
/// A map of instruction matchers to the local variables created by
/// emitCxxCaptureStmts().
std::map<const InstructionMatcher *, std::string> InsnVariableNames;
/// ID for the next instruction variable defined with defineInsnVar()
unsigned NextInsnVarID;
public:
RuleMatcher()
: Matchers(), Actions(), InsnVariableNames(), NextInsnVarID(0) {}
RuleMatcher(RuleMatcher &&Other) = default;
RuleMatcher &operator=(RuleMatcher &&Other) = default;
InstructionMatcher &addInstructionMatcher();
template <class Kind, class... Args> Kind &addAction(Args &&... args);
std::string defineInsnVar(raw_ostream &OS, const InstructionMatcher &Matcher,
StringRef Value);
StringRef getInsnVarName(const InstructionMatcher &InsnMatcher) const;
void emitCxxCapturedInsnList(raw_ostream &OS);
void emitCxxCaptureStmts(raw_ostream &OS, StringRef Expr);
void emit(raw_ostream &OS);
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const RuleMatcher &B) const;
/// Report the maximum number of temporary operands needed by the rule
/// matcher.
unsigned countTemporaryOperands() const;
};
template <class PredicateTy> class PredicateListMatcher {
private:
typedef std::vector<std::unique_ptr<PredicateTy>> PredicateVec;
PredicateVec Predicates;
public:
/// Construct a new operand predicate and add it to the matcher.
template <class Kind, class... Args>
Kind &addPredicate(Args&&... args) {
Predicates.emplace_back(
llvm::make_unique<Kind>(std::forward<Args>(args)...));
return *static_cast<Kind *>(Predicates.back().get());
}
typename PredicateVec::const_iterator predicates_begin() const { return Predicates.begin(); }
typename PredicateVec::const_iterator predicates_end() const { return Predicates.end(); }
iterator_range<typename PredicateVec::const_iterator> predicates() const {
return make_range(predicates_begin(), predicates_end());
}
typename PredicateVec::size_type predicates_size() const { return Predicates.size(); }
/// Emit a C++ expression that tests whether all the predicates are met.
template <class... Args>
void emitCxxPredicateListExpr(raw_ostream &OS, Args &&... args) const {
if (Predicates.empty()) {
OS << "true";
return;
}
StringRef Separator = "";
for (const auto &Predicate : predicates()) {
OS << Separator << "(";
Predicate->emitCxxPredicateExpr(OS, std::forward<Args>(args)...);
OS << ")";
Separator = " &&\n";
}
}
};
/// Generates code to check a predicate of an operand.
///
/// Typical predicates include:
/// * Operand is a particular register.
/// * Operand is assigned a particular register bank.
/// * Operand is an MBB.
class OperandPredicateMatcher {
public:
/// This enum is used for RTTI and also defines the priority that is given to
/// the predicate when generating the matcher code. Kinds with higher priority
/// must be tested first.
///
/// The relative priority of OPM_LLT, OPM_RegBank, and OPM_MBB do not matter
/// but OPM_Int must have priority over OPM_RegBank since constant integers
/// are represented by a virtual register defined by a G_CONSTANT instruction.
enum PredicateKind {
OPM_ComplexPattern,
OPM_Instruction,
OPM_Int,
OPM_LLT,
OPM_RegBank,
OPM_MBB,
};
protected:
PredicateKind Kind;
public:
OperandPredicateMatcher(PredicateKind Kind) : Kind(Kind) {}
virtual ~OperandPredicateMatcher() {}
PredicateKind getKind() const { return Kind; }
/// Return the OperandMatcher for the specified operand or nullptr if there
/// isn't one by that name in this operand predicate matcher.
///
/// InstructionOperandMatcher is the only subclass that can return non-null
/// for this.
virtual Optional<const OperandMatcher *>
getOptionalOperand(StringRef SymbolicName) const {
assert(!SymbolicName.empty() && "Cannot lookup unnamed operand");
return None;
}
/// Emit C++ statements to capture instructions into local variables.
///
/// Only InstructionOperandMatcher needs to do anything for this method.
virtual void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule,
StringRef Expr) const {}
/// Emit a C++ expression that checks the predicate for the given operand.
virtual void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const = 0;
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
virtual bool isHigherPriorityThan(const OperandPredicateMatcher &B) const {
return Kind < B.Kind;
};
/// Report the maximum number of temporary operands needed by the predicate
/// matcher.
virtual unsigned countTemporaryOperands() const { return 0; }
};
/// Generates code to check that an operand is a particular LLT.
class LLTOperandMatcher : public OperandPredicateMatcher {
protected:
LLTCodeGen Ty;
public:
LLTOperandMatcher(const LLTCodeGen &Ty)
: OperandPredicateMatcher(OPM_LLT), Ty(Ty) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_LLT;
}
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const override {
OS << "MRI.getType(" << OperandExpr << ".getReg()) == (";
Ty.emitCxxConstructorCall(OS);
OS << ")";
}
};
/// Generates code to check that an operand is a particular target constant.
class ComplexPatternOperandMatcher : public OperandPredicateMatcher {
protected:
const OperandMatcher &Operand;
const Record &TheDef;
unsigned getNumOperands() const {
return TheDef.getValueAsDag("Operands")->getNumArgs();
}
unsigned getAllocatedTemporariesBaseID() const;
public:
ComplexPatternOperandMatcher(const OperandMatcher &Operand,
const Record &TheDef)
: OperandPredicateMatcher(OPM_ComplexPattern), Operand(Operand),
TheDef(TheDef) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_ComplexPattern;
}
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const override {
OS << TheDef.getValueAsString("MatcherFn") << "(" << OperandExpr;
for (unsigned I = 0; I < getNumOperands(); ++I) {
OS << ", ";
OperandPlaceholder::CreateTemporary(getAllocatedTemporariesBaseID() + I)
.emitCxxValueExpr(OS);
}
OS << ")";
}
unsigned countTemporaryOperands() const override {
return getNumOperands();
}
};
/// Generates code to check that an operand is in a particular register bank.
class RegisterBankOperandMatcher : public OperandPredicateMatcher {
protected:
const CodeGenRegisterClass &RC;
public:
RegisterBankOperandMatcher(const CodeGenRegisterClass &RC)
: OperandPredicateMatcher(OPM_RegBank), RC(RC) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_RegBank;
}
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const override {
OS << "(&RBI.getRegBankFromRegClass(" << RC.getQualifiedName()
<< "RegClass) == RBI.getRegBank(" << OperandExpr
<< ".getReg(), MRI, TRI))";
}
};
/// Generates code to check that an operand is a basic block.
class MBBOperandMatcher : public OperandPredicateMatcher {
public:
MBBOperandMatcher() : OperandPredicateMatcher(OPM_MBB) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_MBB;
}
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const override {
OS << OperandExpr << ".isMBB()";
}
};
/// Generates code to check that an operand is a particular int.
class IntOperandMatcher : public OperandPredicateMatcher {
protected:
int64_t Value;
public:
IntOperandMatcher(int64_t Value)
: OperandPredicateMatcher(OPM_Int), Value(Value) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_Int;
}
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const override {
OS << "isOperandImmEqual(" << OperandExpr << ", " << Value << ", MRI)";
}
};
/// Generates code to check that a set of predicates match for a particular
/// operand.
class OperandMatcher : public PredicateListMatcher<OperandPredicateMatcher> {
protected:
InstructionMatcher &Insn;
unsigned OpIdx;
std::string SymbolicName;
/// The index of the first temporary variable allocated to this operand. The
/// number of allocated temporaries can be found with
/// countTemporaryOperands().
unsigned AllocatedTemporariesBaseID;
public:
OperandMatcher(InstructionMatcher &Insn, unsigned OpIdx,
const std::string &SymbolicName,
unsigned AllocatedTemporariesBaseID)
: Insn(Insn), OpIdx(OpIdx), SymbolicName(SymbolicName),
AllocatedTemporariesBaseID(AllocatedTemporariesBaseID) {}
bool hasSymbolicName() const { return !SymbolicName.empty(); }
const StringRef getSymbolicName() const { return SymbolicName; }
void setSymbolicName(StringRef Name) {
assert(SymbolicName.empty() && "Operand already has a symbolic name");
SymbolicName = Name;
}
unsigned getOperandIndex() const { return OpIdx; }
std::string getOperandExpr(StringRef InsnVarName) const {
return (InsnVarName + ".getOperand(" + llvm::to_string(OpIdx) + ")").str();
}
Optional<const OperandMatcher *>
getOptionalOperand(StringRef DesiredSymbolicName) const {
assert(!DesiredSymbolicName.empty() && "Cannot lookup unnamed operand");
if (DesiredSymbolicName == SymbolicName)
return this;
for (const auto &OP : predicates()) {
const auto &MaybeOperand = OP->getOptionalOperand(DesiredSymbolicName);
if (MaybeOperand.hasValue())
return MaybeOperand.getValue();
}
return None;
}
InstructionMatcher &getInstructionMatcher() const { return Insn; }
/// Emit C++ statements to capture instructions into local variables.
void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const {
for (const auto &Predicate : predicates())
Predicate->emitCxxCaptureStmts(OS, Rule, OperandExpr);
}
/// Emit a C++ expression that tests whether the instruction named in
/// InsnVarName matches all the predicate and all the operands.
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef InsnVarName) const {
OS << "(/* ";
if (SymbolicName.empty())
OS << "Operand " << OpIdx;
else
OS << SymbolicName;
OS << " */ ";
emitCxxPredicateListExpr(OS, Rule, getOperandExpr(InsnVarName));
OS << ")";
}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const OperandMatcher &B) const {
// Operand matchers involving more predicates have higher priority.
if (predicates_size() > B.predicates_size())
return true;
if (predicates_size() < B.predicates_size())
return false;
// This assumes that predicates are added in a consistent order.
for (const auto &Predicate : zip(predicates(), B.predicates())) {
if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
return true;
if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
return false;
}
return false;
};
/// Report the maximum number of temporary operands needed by the operand
/// matcher.
unsigned countTemporaryOperands() const {
return std::accumulate(
predicates().begin(), predicates().end(), 0,
[](unsigned A,
const std::unique_ptr<OperandPredicateMatcher> &Predicate) {
return A + Predicate->countTemporaryOperands();
});
}
unsigned getAllocatedTemporariesBaseID() const {
return AllocatedTemporariesBaseID;
}
};
unsigned ComplexPatternOperandMatcher::getAllocatedTemporariesBaseID() const {
return Operand.getAllocatedTemporariesBaseID();
}
/// Generates code to check a predicate on an instruction.
///
/// Typical predicates include:
/// * The opcode of the instruction is a particular value.
/// * The nsw/nuw flag is/isn't set.
class InstructionPredicateMatcher {
protected:
/// This enum is used for RTTI and also defines the priority that is given to
/// the predicate when generating the matcher code. Kinds with higher priority
/// must be tested first.
enum PredicateKind {
IPM_Opcode,
};
PredicateKind Kind;
public:
InstructionPredicateMatcher(PredicateKind Kind) : Kind(Kind) {}
virtual ~InstructionPredicateMatcher() {}
PredicateKind getKind() const { return Kind; }
/// Emit a C++ expression that tests whether the instruction named in
/// InsnVarName matches the predicate.
virtual void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef InsnVarName) const = 0;
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
virtual bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const {
return Kind < B.Kind;
};
/// Report the maximum number of temporary operands needed by the predicate
/// matcher.
virtual unsigned countTemporaryOperands() const { return 0; }
};
/// Generates code to check the opcode of an instruction.
class InstructionOpcodeMatcher : public InstructionPredicateMatcher {
protected:
const CodeGenInstruction *I;
public:
InstructionOpcodeMatcher(const CodeGenInstruction *I)
: InstructionPredicateMatcher(IPM_Opcode), I(I) {}
static bool classof(const InstructionPredicateMatcher *P) {
return P->getKind() == IPM_Opcode;
}
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef InsnVarName) const override {
OS << InsnVarName << ".getOpcode() == " << I->Namespace
<< "::" << I->TheDef->getName();
}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const InstructionPredicateMatcher &B) const override {
if (InstructionPredicateMatcher::isHigherPriorityThan(B))
return true;
if (B.InstructionPredicateMatcher::isHigherPriorityThan(*this))
return false;
// Prioritize opcodes for cosmetic reasons in the generated source. Although
// this is cosmetic at the moment, we may want to drive a similar ordering
// using instruction frequency information to improve compile time.
if (const InstructionOpcodeMatcher *BO =
dyn_cast<InstructionOpcodeMatcher>(&B))
return I->TheDef->getName() < BO->I->TheDef->getName();
return false;
};
};
/// Generates code to check that a set of predicates and operands match for a
/// particular instruction.
///
/// Typical predicates include:
/// * Has a specific opcode.
/// * Has an nsw/nuw flag or doesn't.
class InstructionMatcher
: public PredicateListMatcher<InstructionPredicateMatcher> {
protected:
typedef std::vector<std::unique_ptr<OperandMatcher>> OperandVec;
/// The operands to match. All rendered operands must be present even if the
/// condition is always true.
OperandVec Operands;
public:
/// Add an operand to the matcher.
OperandMatcher &addOperand(unsigned OpIdx, const std::string &SymbolicName,
unsigned AllocatedTemporariesBaseID) {
Operands.emplace_back(new OperandMatcher(*this, OpIdx, SymbolicName,
AllocatedTemporariesBaseID));
return *Operands.back();
}
OperandMatcher &getOperand(unsigned OpIdx) {
auto I = std::find_if(Operands.begin(), Operands.end(),
[&OpIdx](const std::unique_ptr<OperandMatcher> &X) {
return X->getOperandIndex() == OpIdx;
});
if (I != Operands.end())
return **I;
llvm_unreachable("Failed to lookup operand");
}
Optional<const OperandMatcher *>
getOptionalOperand(StringRef SymbolicName) const {
assert(!SymbolicName.empty() && "Cannot lookup unnamed operand");
for (const auto &Operand : Operands) {
const auto &OM = Operand->getOptionalOperand(SymbolicName);
if (OM.hasValue())
return OM.getValue();
}
return None;
}
const OperandMatcher &getOperand(StringRef SymbolicName) const {
Optional<const OperandMatcher *>OM = getOptionalOperand(SymbolicName);
if (OM.hasValue())
return *OM.getValue();
llvm_unreachable("Failed to lookup operand");
}
unsigned getNumOperands() const { return Operands.size(); }
OperandVec::iterator operands_begin() { return Operands.begin(); }
OperandVec::iterator operands_end() { return Operands.end(); }
iterator_range<OperandVec::iterator> operands() {
return make_range(operands_begin(), operands_end());
}
OperandVec::const_iterator operands_begin() const { return Operands.begin(); }
OperandVec::const_iterator operands_end() const { return Operands.end(); }
iterator_range<OperandVec::const_iterator> operands() const {
return make_range(operands_begin(), operands_end());
}
/// Emit C++ statements to check the shape of the match and capture
/// instructions into local variables.
void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule, StringRef Expr) {
OS << "if (" << Expr << ".getNumOperands() < " << getNumOperands() << ")\n"
<< " return false;\n";
for (const auto &Operand : Operands) {
Operand->emitCxxCaptureStmts(OS, Rule, Operand->getOperandExpr(Expr));
}
}
/// Emit a C++ expression that tests whether the instruction named in
/// InsnVarName matches all the predicates and all the operands.
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef InsnVarName) const {
emitCxxPredicateListExpr(OS, Rule, InsnVarName);
for (const auto &Operand : Operands) {
OS << " &&\n(";
Operand->emitCxxPredicateExpr(OS, Rule, InsnVarName);
OS << ")";
}
}
/// Compare the priority of this object and B.
///
/// Returns true if this object is more important than B.
bool isHigherPriorityThan(const InstructionMatcher &B) const {
// Instruction matchers involving more operands have higher priority.
if (Operands.size() > B.Operands.size())
return true;
if (Operands.size() < B.Operands.size())
return false;
for (const auto &Predicate : zip(predicates(), B.predicates())) {
if (std::get<0>(Predicate)->isHigherPriorityThan(*std::get<1>(Predicate)))
return true;
if (std::get<1>(Predicate)->isHigherPriorityThan(*std::get<0>(Predicate)))
return false;
}
for (const auto &Operand : zip(Operands, B.Operands)) {
if (std::get<0>(Operand)->isHigherPriorityThan(*std::get<1>(Operand)))
return true;
if (std::get<1>(Operand)->isHigherPriorityThan(*std::get<0>(Operand)))
return false;
}
return false;
};
/// Report the maximum number of temporary operands needed by the instruction
/// matcher.
unsigned countTemporaryOperands() const {
return std::accumulate(predicates().begin(), predicates().end(), 0,
[](unsigned A,
const std::unique_ptr<InstructionPredicateMatcher>
&Predicate) {
return A + Predicate->countTemporaryOperands();
}) +
std::accumulate(
Operands.begin(), Operands.end(), 0,
[](unsigned A, const std::unique_ptr<OperandMatcher> &Operand) {
return A + Operand->countTemporaryOperands();
});
}
};
/// Generates code to check that the operand is a register defined by an
/// instruction that matches the given instruction matcher.
///
/// For example, the pattern:
/// (set $dst, (G_MUL (G_ADD $src1, $src2), $src3))
/// would use an InstructionOperandMatcher for operand 1 of the G_MUL to match
/// the:
/// (G_ADD $src1, $src2)
/// subpattern.
class InstructionOperandMatcher : public OperandPredicateMatcher {
protected:
std::unique_ptr<InstructionMatcher> InsnMatcher;
public:
InstructionOperandMatcher()
: OperandPredicateMatcher(OPM_Instruction),
InsnMatcher(new InstructionMatcher()) {}
static bool classof(const OperandPredicateMatcher *P) {
return P->getKind() == OPM_Instruction;
}
InstructionMatcher &getInsnMatcher() const { return *InsnMatcher; }
Optional<const OperandMatcher *>
getOptionalOperand(StringRef SymbolicName) const override {
assert(!SymbolicName.empty() && "Cannot lookup unnamed operand");
return InsnMatcher->getOptionalOperand(SymbolicName);
}
void emitCxxCaptureStmts(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const override {
OS << "if (!" << OperandExpr + ".isReg())\n"
<< " return false;\n";
std::string InsnVarName = Rule.defineInsnVar(
OS, *InsnMatcher,
("*MRI.getVRegDef(" + OperandExpr + ".getReg())").str());
InsnMatcher->emitCxxCaptureStmts(OS, Rule, InsnVarName);
}
void emitCxxPredicateExpr(raw_ostream &OS, RuleMatcher &Rule,
StringRef OperandExpr) const override {
OperandExpr = Rule.getInsnVarName(*InsnMatcher);
OS << "(";
InsnMatcher->emitCxxPredicateExpr(OS, Rule, OperandExpr);
OS << ")\n";
}
};
//===- Actions ------------------------------------------------------------===//
void OperandPlaceholder::emitCxxValueExpr(raw_ostream &OS) const {
switch (Kind) {
case OP_MatchReference:
OS << MatchReference.InsnMatcher->getOperand(MatchReference.SymbolicName)
.getOperandExpr(MatchReference.InsnVarName);
break;
case OP_Temporary:
OS << "TempOp" << Temporary.OpIdx;
break;
}
}
class OperandRenderer {
public:
enum RendererKind { OR_Copy, OR_Register, OR_ComplexPattern };
protected:
RendererKind Kind;
public:
OperandRenderer(RendererKind Kind) : Kind(Kind) {}
virtual ~OperandRenderer() {}
RendererKind getKind() const { return Kind; }
virtual void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const = 0;
};
/// A CopyRenderer emits code to copy a single operand from an existing
/// instruction to the one being built.
class CopyRenderer : public OperandRenderer {
protected:
/// The matcher for the instruction that this operand is copied from.
/// This provides the facility for looking up an a operand by it's name so
/// that it can be used as a source for the instruction being built.
const InstructionMatcher &Matched;
/// The name of the operand.
const StringRef SymbolicName;
public:
CopyRenderer(const InstructionMatcher &Matched, StringRef SymbolicName)
: OperandRenderer(OR_Copy), Matched(Matched), SymbolicName(SymbolicName) {
}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Copy;
}
const StringRef getSymbolicName() const { return SymbolicName; }
void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override {
const OperandMatcher &Operand = Matched.getOperand(SymbolicName);
StringRef InsnVarName =
Rule.getInsnVarName(Operand.getInstructionMatcher());
std::string OperandExpr = Operand.getOperandExpr(InsnVarName);
OS << " MIB.add(" << OperandExpr << "/*" << SymbolicName << "*/);\n";
}
};
/// Adds a specific physical register to the instruction being built.
/// This is typically useful for WZR/XZR on AArch64.
class AddRegisterRenderer : public OperandRenderer {
protected:
const Record *RegisterDef;
public:
AddRegisterRenderer(const Record *RegisterDef)
: OperandRenderer(OR_Register), RegisterDef(RegisterDef) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_Register;
}
void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override {
OS << " MIB.addReg(" << RegisterDef->getValueAsString("Namespace")
<< "::" << RegisterDef->getName() << ");\n";
}
};
class RenderComplexPatternOperand : public OperandRenderer {
private:
const Record &TheDef;
std::vector<OperandPlaceholder> Sources;
unsigned getNumOperands() const {
return TheDef.getValueAsDag("Operands")->getNumArgs();
}
public:
RenderComplexPatternOperand(const Record &TheDef,
const ArrayRef<OperandPlaceholder> Sources)
: OperandRenderer(OR_ComplexPattern), TheDef(TheDef), Sources(Sources) {}
static bool classof(const OperandRenderer *R) {
return R->getKind() == OR_ComplexPattern;
}
void emitCxxRenderStmts(raw_ostream &OS, RuleMatcher &Rule) const override {
assert(Sources.size() == getNumOperands() && "Inconsistent number of operands");
for (const auto &Source : Sources) {
OS << "MIB.add(";
Source.emitCxxValueExpr(OS);
OS << ");\n";
}
}
};
/// An action taken when all Matcher predicates succeeded for a parent rule.
///
/// Typical actions include:
/// * Changing the opcode of an instruction.
/// * Adding an operand to an instruction.
class MatchAction {
public:
virtual ~MatchAction() {}
/// Emit the C++ statements to implement the action.
///
/// \param RecycleVarName If given, it's an instruction to recycle. The
/// requirements on the instruction vary from action to
/// action.
virtual void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
StringRef RecycleVarName) const = 0;
};
/// Generates a comment describing the matched rule being acted upon.
class DebugCommentAction : public MatchAction {
private:
const PatternToMatch &P;
public:
DebugCommentAction(const PatternToMatch &P) : P(P) {}
void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
StringRef RecycleVarName) const override {
OS << "// " << *P.getSrcPattern() << " => " << *P.getDstPattern() << "\n";
}
};
/// Generates code to build an instruction or mutate an existing instruction
/// into the desired instruction when this is possible.
class BuildMIAction : public MatchAction {
private:
const CodeGenInstruction *I;
const InstructionMatcher &Matched;
std::vector<std::unique_ptr<OperandRenderer>> OperandRenderers;
/// True if the instruction can be built solely by mutating the opcode.
bool canMutate() const {
for (const auto &Renderer : enumerate(OperandRenderers)) {
if (const auto *Copy = dyn_cast<CopyRenderer>(&*Renderer.value())) {
if (Matched.getOperand(Copy->getSymbolicName()).getOperandIndex() !=
Renderer.index())
return false;
} else
return false;
}
return true;
}
public:
BuildMIAction(const CodeGenInstruction *I, const InstructionMatcher &Matched)
: I(I), Matched(Matched) {}
template <class Kind, class... Args>
Kind &addRenderer(Args&&... args) {
OperandRenderers.emplace_back(
llvm::make_unique<Kind>(std::forward<Args>(args)...));
return *static_cast<Kind *>(OperandRenderers.back().get());
}
void emitCxxActionStmts(raw_ostream &OS, RuleMatcher &Rule,
StringRef RecycleVarName) const override {
if (canMutate()) {
OS << " " << RecycleVarName << ".setDesc(TII.get(" << I->Namespace
<< "::" << I->TheDef->getName() << "));\n";
if (!I->ImplicitDefs.empty() || !I->ImplicitUses.empty()) {
OS << " auto MIB = MachineInstrBuilder(MF, &" << RecycleVarName
<< ");\n";
for (auto Def : I->ImplicitDefs) {
auto Namespace = Def->getValueAsString("Namespace");
OS << " MIB.addDef(" << Namespace << "::" << Def->getName()
<< ", RegState::Implicit);\n";
}
for (auto Use : I->ImplicitUses) {
auto Namespace = Use->getValueAsString("Namespace");
OS << " MIB.addUse(" << Namespace << "::" << Use->getName()
<< ", RegState::Implicit);\n";
}
}
OS << " MachineInstr &NewI = " << RecycleVarName << ";\n";
return;
}
// TODO: Simple permutation looks like it could be almost as common as
// mutation due to commutative operations.
OS << "MachineInstrBuilder MIB = BuildMI(*I.getParent(), I, "
"I.getDebugLoc(), TII.get("
<< I->Namespace << "::" << I->TheDef->getName() << "));\n";
for (const auto &Renderer : OperandRenderers)
Renderer->emitCxxRenderStmts(OS, Rule);
OS << " for (const auto *FromMI : ";
Rule.emitCxxCapturedInsnList(OS);
OS << ")\n";
OS << " for (const auto &MMO : FromMI->memoperands())\n";
OS << " MIB.addMemOperand(MMO);\n";
OS << " " << RecycleVarName << ".eraseFromParent();\n";
OS << " MachineInstr &NewI = *MIB;\n";
}
};
InstructionMatcher &RuleMatcher::addInstructionMatcher() {
Matchers.emplace_back(new InstructionMatcher());
return *Matchers.back();
}
template <class Kind, class... Args>
Kind &RuleMatcher::addAction(Args &&... args) {
Actions.emplace_back(llvm::make_unique<Kind>(std::forward<Args>(args)...));
return *static_cast<Kind *>(Actions.back().get());
}
std::string RuleMatcher::defineInsnVar(raw_ostream &OS,
const InstructionMatcher &Matcher,
StringRef Value) {
std::string InsnVarName = "MI" + llvm::to_string(NextInsnVarID++);
OS << "MachineInstr &" << InsnVarName << " = " << Value << ";\n";
InsnVariableNames[&Matcher] = InsnVarName;
return InsnVarName;
}
StringRef RuleMatcher::getInsnVarName(const InstructionMatcher &InsnMatcher) const {
const auto &I = InsnVariableNames.find(&InsnMatcher);
if (I != InsnVariableNames.end())
return I->second;
llvm_unreachable("Matched Insn was not captured in a local variable");
}
/// Emit a C++ initializer_list containing references to every matched instruction.
void RuleMatcher::emitCxxCapturedInsnList(raw_ostream &OS) {
SmallVector<StringRef, 2> Names;
for (const auto &Pair : InsnVariableNames)
Names.push_back(Pair.second);
std::sort(Names.begin(), Names.end());
OS << "{";
for (const auto &Name : Names)
OS << "&" << Name << ", ";
OS << "}";
}
/// Emit C++ statements to check the shape of the match and capture
/// instructions into local variables.
void RuleMatcher::emitCxxCaptureStmts(raw_ostream &OS, StringRef Expr) {
assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
std::string InsnVarName = defineInsnVar(OS, *Matchers.front(), Expr);
Matchers.front()->emitCxxCaptureStmts(OS, *this, InsnVarName);
}
void RuleMatcher::emit(raw_ostream &OS) {
if (Matchers.empty())
llvm_unreachable("Unexpected empty matcher!");
// The representation supports rules that require multiple roots such as:
// %ptr(p0) = ...
// %elt0(s32) = G_LOAD %ptr
// %1(p0) = G_ADD %ptr, 4
// %elt1(s32) = G_LOAD p0 %1
// which could be usefully folded into:
// %ptr(p0) = ...
// %elt0(s32), %elt1(s32) = TGT_LOAD_PAIR %ptr
// on some targets but we don't need to make use of that yet.
assert(Matchers.size() == 1 && "Cannot handle multi-root matchers yet");
OS << "if ([&]() {\n";
emitCxxCaptureStmts(OS, "I");
OS << " if (";
Matchers.front()->emitCxxPredicateExpr(OS, *this,
getInsnVarName(*Matchers.front()));
OS << ") {\n";
// We must also check if it's safe to fold the matched instructions.
if (InsnVariableNames.size() >= 2) {
for (const auto &Pair : InsnVariableNames) {
// Skip the root node since it isn't moving anywhere. Everything else is
// sinking to meet it.
if (Pair.first == Matchers.front().get())
continue;
// Reject the difficult cases until we have a more accurate check.
OS << " if (!isObviouslySafeToFold(" << Pair.second
<< ")) return false;\n";
// FIXME: Emit checks to determine it's _actually_ safe to fold and/or
// account for unsafe cases.
//
// Example:
// MI1--> %0 = ...
// %1 = ... %0
// MI0--> %2 = ... %0
// It's not safe to erase MI1. We currently handle this by not
// erasing %0 (even when it's dead).
//
// Example:
// MI1--> %0 = load volatile @a
// %1 = load volatile @a
// MI0--> %2 = ... %0
// It's not safe to sink %0's def past %1. We currently handle
// this by rejecting all loads.
//
// Example:
// MI1--> %0 = load @a
// %1 = store @a
// MI0--> %2 = ... %0
// It's not safe to sink %0's def past %1. We currently handle
// this by rejecting all loads.
//
// Example:
// G_CONDBR %cond, @BB1
// BB0:
// MI1--> %0 = load @a
// G_BR @BB1
// BB1:
// MI0--> %2 = ... %0
// It's not always safe to sink %0 across control flow. In this
// case it may introduce a memory fault. We currentl handle this
// by rejecting all loads.
}
}
for (const auto &MA : Actions) {
MA->emitCxxActionStmts(OS, *this, "I");
}
OS << " constrainSelectedInstRegOperands(NewI, TII, TRI, RBI);\n";
OS << " return true;\n";
OS << " }\n";
OS << " return false;\n";
OS << " }()) { return true; }\n\n";
}
bool RuleMatcher::isHigherPriorityThan(const RuleMatcher &B) const {
// Rules involving more match roots have higher priority.
if (Matchers.size() > B.Matchers.size())
return true;
if (Matchers.size() < B.Matchers.size())
return false;
for (const auto &Matcher : zip(Matchers, B.Matchers)) {
if (std::get<0>(Matcher)->isHigherPriorityThan(*std::get<1>(Matcher)))
return true;
if (std::get<1>(Matcher)->isHigherPriorityThan(*std::get<0>(Matcher)))
return false;
}
return false;
}
unsigned RuleMatcher::countTemporaryOperands() const {
return std::accumulate(
Matchers.begin(), Matchers.end(), 0,
[](unsigned A, const std::unique_ptr<InstructionMatcher> &Matcher) {
return A + Matcher->countTemporaryOperands();
});
}
//===- GlobalISelEmitter class --------------------------------------------===//
class GlobalISelEmitter {
public:
explicit GlobalISelEmitter(RecordKeeper &RK);
void run(raw_ostream &OS);
private:
const RecordKeeper &RK;
const CodeGenDAGPatterns CGP;
const CodeGenTarget &Target;
/// Keep track of the equivalence between SDNodes and Instruction.
/// This is defined using 'GINodeEquiv' in the target description.
DenseMap<Record *, const CodeGenInstruction *> NodeEquivs;
/// Keep track of the equivalence between ComplexPattern's and
/// GIComplexOperandMatcher. Map entries are specified by subclassing
/// GIComplexPatternEquiv.
DenseMap<const Record *, const Record *> ComplexPatternEquivs;
void gatherNodeEquivs();
const CodeGenInstruction *findNodeEquiv(Record *N) const;
Error importRulePredicates(RuleMatcher &M, ArrayRef<Init *> Predicates) const;
Expected<InstructionMatcher &>
createAndImportSelDAGMatcher(InstructionMatcher &InsnMatcher,
const TreePatternNode *Src) const;
Error importChildMatcher(InstructionMatcher &InsnMatcher,
TreePatternNode *SrcChild, unsigned OpIdx,
unsigned &TempOpIdx) const;
Expected<BuildMIAction &> createAndImportInstructionRenderer(
RuleMatcher &M, const TreePatternNode *Dst,
const InstructionMatcher &InsnMatcher) const;
Error importExplicitUseRenderer(BuildMIAction &DstMIBuilder,
TreePatternNode *DstChild,
const InstructionMatcher &InsnMatcher) const;
Error
importImplicitDefRenderers(BuildMIAction &DstMIBuilder,
const std::vector<Record *> &ImplicitDefs) const;
/// Analyze pattern \p P, returning a matcher for it if possible.
/// Otherwise, return an Error explaining why we don't support it.
Expected<RuleMatcher> runOnPattern(const PatternToMatch &P);
};
void GlobalISelEmitter::gatherNodeEquivs() {
assert(NodeEquivs.empty());
for (Record *Equiv : RK.getAllDerivedDefinitions("GINodeEquiv"))
NodeEquivs[Equiv->getValueAsDef("Node")] =
&Target.getInstruction(Equiv->getValueAsDef("I"));
assert(ComplexPatternEquivs.empty());
for (Record *Equiv : RK.getAllDerivedDefinitions("GIComplexPatternEquiv")) {
Record *SelDAGEquiv = Equiv->getValueAsDef("SelDAGEquivalent");
if (!SelDAGEquiv)
continue;
ComplexPatternEquivs[SelDAGEquiv] = Equiv;
}
}
const CodeGenInstruction *GlobalISelEmitter::findNodeEquiv(Record *N) const {
return NodeEquivs.lookup(N);
}
GlobalISelEmitter::GlobalISelEmitter(RecordKeeper &RK)
: RK(RK), CGP(RK), Target(CGP.getTargetInfo()) {}
//===- Emitter ------------------------------------------------------------===//
/// Helper function to let the emitter report skip reason error messages.
static Error failedImport(const Twine &Reason) {
return make_error<StringError>(Reason, inconvertibleErrorCode());
}
Error
GlobalISelEmitter::importRulePredicates(RuleMatcher &M,
ArrayRef<Init *> Predicates) const {
if (!Predicates.empty())
return failedImport("Pattern has a predicate");
return Error::success();
}
Expected<InstructionMatcher &> GlobalISelEmitter::createAndImportSelDAGMatcher(
InstructionMatcher &InsnMatcher, const TreePatternNode *Src) const {
// Start with the defined operands (i.e., the results of the root operator).
if (Src->getExtTypes().size() > 1)
return failedImport("Src pattern has multiple results");
auto SrcGIOrNull = findNodeEquiv(Src->getOperator());
if (!SrcGIOrNull)
return failedImport("Pattern operator lacks an equivalent Instruction");
auto &SrcGI = *SrcGIOrNull;
// The operators look good: match the opcode and mutate it to the new one.
InsnMatcher.addPredicate<InstructionOpcodeMatcher>(&SrcGI);
unsigned OpIdx = 0;
unsigned TempOpIdx = 0;
for (const EEVT::TypeSet &Ty : Src->getExtTypes()) {
auto OpTyOrNone = MVTToLLT(Ty.getConcrete());
if (!OpTyOrNone)
return failedImport(
"Result of Src pattern operator has an unsupported type");
// Results don't have a name unless they are the root node. The caller will
// set the name if appropriate.
OperandMatcher &OM = InsnMatcher.addOperand(OpIdx++, "", TempOpIdx);
OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone);
}
// Match the used operands (i.e. the children of the operator).
for (unsigned i = 0, e = Src->getNumChildren(); i != e; ++i) {
if (auto Error = importChildMatcher(InsnMatcher, Src->getChild(i), OpIdx++,
TempOpIdx))
return std::move(Error);
}
return InsnMatcher;
}
Error GlobalISelEmitter::importChildMatcher(InstructionMatcher &InsnMatcher,
TreePatternNode *SrcChild,
unsigned OpIdx,
unsigned &TempOpIdx) const {
OperandMatcher &OM =
InsnMatcher.addOperand(OpIdx, SrcChild->getName(), TempOpIdx);
if (SrcChild->hasAnyPredicate())
return failedImport("Src pattern child has predicate");
ArrayRef<EEVT::TypeSet> ChildTypes = SrcChild->getExtTypes();
if (ChildTypes.size() != 1)
return failedImport("Src pattern child has multiple results");
// Check MBB's before the type check since they are not a known type.
if (!SrcChild->isLeaf()) {
if (SrcChild->getOperator()->isSubClassOf("SDNode")) {
auto &ChildSDNI = CGP.getSDNodeInfo(SrcChild->getOperator());
if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
OM.addPredicate<MBBOperandMatcher>();
return Error::success();
}
}
}
auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete());
if (!OpTyOrNone)
return failedImport("Src operand has an unsupported type");
OM.addPredicate<LLTOperandMatcher>(*OpTyOrNone);
// Check for nested instructions.
if (!SrcChild->isLeaf()) {
// Map the node to a gMIR instruction.
InstructionOperandMatcher &InsnOperand =
OM.addPredicate<InstructionOperandMatcher>();
auto InsnMatcherOrError =
createAndImportSelDAGMatcher(InsnOperand.getInsnMatcher(), SrcChild);
if (auto Error = InsnMatcherOrError.takeError())
return Error;
return Error::success();
}
// Check for constant immediates.
if (auto *ChildInt = dyn_cast<IntInit>(SrcChild->getLeafValue())) {
OM.addPredicate<IntOperandMatcher>(ChildInt->getValue());
return Error::success();
}
// Check for def's like register classes or ComplexPattern's.
if (auto *ChildDefInit = dyn_cast<DefInit>(SrcChild->getLeafValue())) {
auto *ChildRec = ChildDefInit->getDef();
// Check for register classes.
if (ChildRec->isSubClassOf("RegisterClass")) {
OM.addPredicate<RegisterBankOperandMatcher>(
Target.getRegisterClass(ChildRec));
return Error::success();
}
// Check for ComplexPattern's.
if (ChildRec->isSubClassOf("ComplexPattern")) {
const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
if (ComplexPattern == ComplexPatternEquivs.end())
return failedImport(
"SelectionDAG ComplexPattern not mapped to GlobalISel");
const auto &Predicate = OM.addPredicate<ComplexPatternOperandMatcher>(
OM, *ComplexPattern->second);
TempOpIdx += Predicate.countTemporaryOperands();
return Error::success();
}
return failedImport(
"Src pattern child def is an unsupported tablegen class");
}
return failedImport("Src pattern child is an unsupported kind");
}
Error GlobalISelEmitter::importExplicitUseRenderer(
BuildMIAction &DstMIBuilder, TreePatternNode *DstChild,
const InstructionMatcher &InsnMatcher) const {
// The only non-leaf child we accept is 'bb': it's an operator because
// BasicBlockSDNode isn't inline, but in MI it's just another operand.
if (!DstChild->isLeaf()) {
if (DstChild->getOperator()->isSubClassOf("SDNode")) {
auto &ChildSDNI = CGP.getSDNodeInfo(DstChild->getOperator());
if (ChildSDNI.getSDClassName() == "BasicBlockSDNode") {
DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher,
DstChild->getName());
return Error::success();
}
}
return failedImport("Dst pattern child isn't a leaf node or an MBB");
}
// Otherwise, we're looking for a bog-standard RegisterClass operand.
if (DstChild->hasAnyPredicate())
return failedImport("Dst pattern child has predicate");
if (auto *ChildDefInit = dyn_cast<DefInit>(DstChild->getLeafValue())) {
auto *ChildRec = ChildDefInit->getDef();
ArrayRef<EEVT::TypeSet> ChildTypes = DstChild->getExtTypes();
if (ChildTypes.size() != 1)
return failedImport("Dst pattern child has multiple results");
auto OpTyOrNone = MVTToLLT(ChildTypes.front().getConcrete());
if (!OpTyOrNone)
return failedImport("Dst operand has an unsupported type");
if (ChildRec->isSubClassOf("Register")) {
DstMIBuilder.addRenderer<AddRegisterRenderer>(ChildRec);
return Error::success();
}
if (ChildRec->isSubClassOf("RegisterClass")) {
DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, DstChild->getName());
return Error::success();
}
if (ChildRec->isSubClassOf("ComplexPattern")) {
const auto &ComplexPattern = ComplexPatternEquivs.find(ChildRec);
if (ComplexPattern == ComplexPatternEquivs.end())
return failedImport(
"SelectionDAG ComplexPattern not mapped to GlobalISel");
SmallVector<OperandPlaceholder, 2> RenderedOperands;
const OperandMatcher &OM = InsnMatcher.getOperand(DstChild->getName());
for (unsigned I = 0; I < OM.countTemporaryOperands(); ++I)
RenderedOperands.push_back(OperandPlaceholder::CreateTemporary(
OM.getAllocatedTemporariesBaseID() + I));
DstMIBuilder.addRenderer<RenderComplexPatternOperand>(
*ComplexPattern->second, RenderedOperands);
return Error::success();
}
return failedImport(
"Dst pattern child def is an unsupported tablegen class");
}
return failedImport("Dst pattern child is an unsupported kind");
}
Expected<BuildMIAction &> GlobalISelEmitter::createAndImportInstructionRenderer(
RuleMatcher &M, const TreePatternNode *Dst,
const InstructionMatcher &InsnMatcher) const {
Record *DstOp = Dst->getOperator();
if (!DstOp->isSubClassOf("Instruction"))
return failedImport("Pattern operator isn't an instruction");
auto &DstI = Target.getInstruction(DstOp);
auto &DstMIBuilder = M.addAction<BuildMIAction>(&DstI, InsnMatcher);
// Render the explicit defs.
for (unsigned I = 0; I < DstI.Operands.NumDefs; ++I) {
const auto &DstIOperand = DstI.Operands[I];
DstMIBuilder.addRenderer<CopyRenderer>(InsnMatcher, DstIOperand.Name);
}
// Render the explicit uses.
for (unsigned i = 0, e = Dst->getNumChildren(); i != e; ++i) {
if (auto Error = importExplicitUseRenderer(DstMIBuilder, Dst->getChild(i),
InsnMatcher))
return std::move(Error);
}
return DstMIBuilder;
}
Error GlobalISelEmitter::importImplicitDefRenderers(
BuildMIAction &DstMIBuilder,
const std::vector<Record *> &ImplicitDefs) const {
if (!ImplicitDefs.empty())
return failedImport("Pattern defines a physical register");
return Error::success();
}
Expected<RuleMatcher> GlobalISelEmitter::runOnPattern(const PatternToMatch &P) {
// Keep track of the matchers and actions to emit.
RuleMatcher M;
M.addAction<DebugCommentAction>(P);
if (auto Error = importRulePredicates(M, P.getPredicates()->getValues()))
return std::move(Error);
// Next, analyze the pattern operators.
TreePatternNode *Src = P.getSrcPattern();
TreePatternNode *Dst = P.getDstPattern();
// If the root of either pattern isn't a simple operator, ignore it.
if (!isTrivialOperatorNode(Dst))
return failedImport("Dst pattern root isn't a trivial operator");
if (!isTrivialOperatorNode(Src))
return failedImport("Src pattern root isn't a trivial operator");
// Start with the defined operands (i.e., the results of the root operator).
Record *DstOp = Dst->getOperator();
if (!DstOp->isSubClassOf("Instruction"))
return failedImport("Pattern operator isn't an instruction");
auto &DstI = Target.getInstruction(DstOp);
if (DstI.Operands.NumDefs != Src->getExtTypes().size())
return failedImport("Src pattern results and dst MI defs are different");
InstructionMatcher &InsnMatcherTemp = M.addInstructionMatcher();
auto InsnMatcherOrError = createAndImportSelDAGMatcher(InsnMatcherTemp, Src);
if (auto Error = InsnMatcherOrError.takeError())
return std::move(Error);
InstructionMatcher &InsnMatcher = InsnMatcherOrError.get();
// The root of the match also has constraints on the register bank so that it
// matches the result instruction.
unsigned OpIdx = 0;
for (const EEVT::TypeSet &Ty : Src->getExtTypes()) {
(void)Ty;
const auto &DstIOperand = DstI.Operands[OpIdx];
Record *DstIOpRec = DstIOperand.Rec;
if (!DstIOpRec->isSubClassOf("RegisterClass"))
return failedImport("Dst MI def isn't a register class");
OperandMatcher &OM = InsnMatcher.getOperand(OpIdx);
OM.setSymbolicName(DstIOperand.Name);
OM.addPredicate<RegisterBankOperandMatcher>(
Target.getRegisterClass(DstIOpRec));
++OpIdx;
}
auto DstMIBuilderOrError =
createAndImportInstructionRenderer(M, Dst, InsnMatcher);
if (auto Error = DstMIBuilderOrError.takeError())
return std::move(Error);
BuildMIAction &DstMIBuilder = DstMIBuilderOrError.get();
// Render the implicit defs.
// These are only added to the root of the result.
if (auto Error = importImplicitDefRenderers(DstMIBuilder, P.getDstRegs()))
return std::move(Error);
// We're done with this pattern! It's eligible for GISel emission; return it.
++NumPatternImported;
return std::move(M);
}
void GlobalISelEmitter::run(raw_ostream &OS) {
// Track the GINodeEquiv definitions.
gatherNodeEquivs();
emitSourceFileHeader(("Global Instruction Selector for the " +
Target.getName() + " target").str(), OS);
std::vector<RuleMatcher> Rules;
// Look through the SelectionDAG patterns we found, possibly emitting some.
for (const PatternToMatch &Pat : CGP.ptms()) {
++NumPatternTotal;
auto MatcherOrErr = runOnPattern(Pat);
// The pattern analysis can fail, indicating an unsupported pattern.
// Report that if we've been asked to do so.
if (auto Err = MatcherOrErr.takeError()) {
if (WarnOnSkippedPatterns) {
PrintWarning(Pat.getSrcRecord()->getLoc(),
"Skipped pattern: " + toString(std::move(Err)));
} else {
consumeError(std::move(Err));
}
++NumPatternImportsSkipped;
continue;
}
Rules.push_back(std::move(MatcherOrErr.get()));
}
std::stable_sort(Rules.begin(), Rules.end(),
[&](const RuleMatcher &A, const RuleMatcher &B) {
if (A.isHigherPriorityThan(B)) {
assert(!B.isHigherPriorityThan(A) && "Cannot be more important "
"and less important at "
"the same time");
return true;
}
return false;
});
unsigned MaxTemporaries = 0;
for (const auto &Rule : Rules)
MaxTemporaries = std::max(MaxTemporaries, Rule.countTemporaryOperands());
OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n";
for (unsigned I = 0; I < MaxTemporaries; ++I)
OS << " mutable MachineOperand TempOp" << I << ";\n";
OS << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_DECL\n\n";
OS << "#ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n";
for (unsigned I = 0; I < MaxTemporaries; ++I)
OS << ", TempOp" << I << "(MachineOperand::CreatePlaceholder())\n";
OS << "#endif // ifdef GET_GLOBALISEL_TEMPORARIES_INIT\n\n";
OS << "#ifdef GET_GLOBALISEL_IMPL\n"
<< "bool " << Target.getName()
<< "InstructionSelector::selectImpl(MachineInstr &I) const {\n"
<< " MachineFunction &MF = *I.getParent()->getParent();\n"
<< " const MachineRegisterInfo &MRI = MF.getRegInfo();\n";
for (auto &Rule : Rules) {
Rule.emit(OS);
++NumPatternEmitted;
}
OS << " return false;\n"
<< "}\n"
<< "#endif // ifdef GET_GLOBALISEL_IMPL\n";
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
namespace llvm {
void EmitGlobalISel(RecordKeeper &RK, raw_ostream &OS) {
GlobalISelEmitter(RK).run(OS);
}
} // End llvm namespace