Files
clang-p2996/llvm/lib/DebugInfo/LogicalView/Readers/LVBinaryReader.cpp
Carlos Alberto Enciso e7950fceb1 [llvm-debuginfo-analyzer] (09/09) - CodeView Reader
llvm-debuginfo-analyzer is a command line tool that processes debug
info contained in a binary file and produces a debug information
format agnostic “Logical View”, which is a high-level semantic
representation of the debug info, independent of the low-level
format.

The code has been divided into the following patches:

1) Interval tree
2) Driver and documentation
3) Logical elements
4) Locations and ranges
5) Select elements
6) Warning and internal options
7) Compare elements
8) ELF Reader
9) CodeView Reader

Full details:
https://discourse.llvm.org/t/llvm-dev-rfc-llvm-dva-debug-information-visual-analyzer/62570

This patch:

This is a high level summary of the changes in this patch.

CodeView Reader
- Support for CodeView/PDB.
  LVCodeViewReader, LVTypeVisitor, LVSymbolVisitor, LVLogicalVisitor

Reviewed By: psamolysov, probinson, djtodoro, zequanwu

Differential Revision: https://reviews.llvm.org/D125784
2023-02-27 09:15:43 +00:00

940 lines
36 KiB
C++

//===-- LVBinaryReader.cpp ------------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements the LVBinaryReader class.
//
//===----------------------------------------------------------------------===//
#include "llvm/DebugInfo/LogicalView/Readers/LVBinaryReader.h"
#include "llvm/Support/Errc.h"
#include "llvm/Support/FormatAdapters.h"
#include "llvm/Support/FormatVariadic.h"
using namespace llvm;
using namespace llvm::logicalview;
#define DEBUG_TYPE "BinaryReader"
// Function names extracted from the object symbol table.
void LVSymbolTable::add(StringRef Name, LVScope *Function,
LVSectionIndex SectionIndex) {
std::string SymbolName(Name);
if (SymbolNames.find(SymbolName) == SymbolNames.end()) {
SymbolNames.emplace(
std::piecewise_construct, std::forward_as_tuple(SymbolName),
std::forward_as_tuple(Function, 0, SectionIndex, false));
} else {
// Update a recorded entry with its logical scope and section index.
SymbolNames[SymbolName].Scope = Function;
if (SectionIndex)
SymbolNames[SymbolName].SectionIndex = SectionIndex;
}
if (Function && SymbolNames[SymbolName].IsComdat)
Function->setIsComdat();
LLVM_DEBUG({ print(dbgs()); });
}
void LVSymbolTable::add(StringRef Name, LVAddress Address,
LVSectionIndex SectionIndex, bool IsComdat) {
std::string SymbolName(Name);
if (SymbolNames.find(SymbolName) == SymbolNames.end())
SymbolNames.emplace(
std::piecewise_construct, std::forward_as_tuple(SymbolName),
std::forward_as_tuple(nullptr, Address, SectionIndex, IsComdat));
else
// Update a recorded symbol name with its logical scope.
SymbolNames[SymbolName].Address = Address;
LVScope *Function = SymbolNames[SymbolName].Scope;
if (Function && IsComdat)
Function->setIsComdat();
LLVM_DEBUG({ print(dbgs()); });
}
LVSectionIndex LVSymbolTable::update(LVScope *Function) {
LVSectionIndex SectionIndex = getReader().getDotTextSectionIndex();
StringRef Name = Function->getLinkageName();
if (Name.empty())
Name = Function->getName();
std::string SymbolName(Name);
if (SymbolName.empty() || (SymbolNames.find(SymbolName) == SymbolNames.end()))
return SectionIndex;
// Update a recorded entry with its logical scope, only if the scope has
// ranges. That is the case when in DWARF there are 2 DIEs connected via
// the DW_AT_specification.
if (Function->getHasRanges()) {
SymbolNames[SymbolName].Scope = Function;
SectionIndex = SymbolNames[SymbolName].SectionIndex;
} else {
SectionIndex = UndefinedSectionIndex;
}
if (SymbolNames[SymbolName].IsComdat)
Function->setIsComdat();
LLVM_DEBUG({ print(dbgs()); });
return SectionIndex;
}
const LVSymbolTableEntry &LVSymbolTable::getEntry(StringRef Name) {
static LVSymbolTableEntry Empty = LVSymbolTableEntry();
LVSymbolNames::iterator Iter = SymbolNames.find(std::string(Name));
return Iter != SymbolNames.end() ? Iter->second : Empty;
}
LVAddress LVSymbolTable::getAddress(StringRef Name) {
LVSymbolNames::iterator Iter = SymbolNames.find(std::string(Name));
return Iter != SymbolNames.end() ? Iter->second.Address : 0;
}
LVSectionIndex LVSymbolTable::getIndex(StringRef Name) {
LVSymbolNames::iterator Iter = SymbolNames.find(std::string(Name));
return Iter != SymbolNames.end() ? Iter->second.SectionIndex
: getReader().getDotTextSectionIndex();
}
bool LVSymbolTable::getIsComdat(StringRef Name) {
LVSymbolNames::iterator Iter = SymbolNames.find(std::string(Name));
return Iter != SymbolNames.end() ? Iter->second.IsComdat : false;
}
void LVSymbolTable::print(raw_ostream &OS) {
OS << "Symbol Table\n";
for (LVSymbolNames::reference Entry : SymbolNames) {
LVSymbolTableEntry &SymbolName = Entry.second;
LVScope *Scope = SymbolName.Scope;
LVOffset Offset = Scope ? Scope->getOffset() : 0;
OS << "Index: " << hexValue(SymbolName.SectionIndex, 5)
<< " Comdat: " << (SymbolName.IsComdat ? "Y" : "N")
<< " Scope: " << hexValue(Offset)
<< " Address: " << hexValue(SymbolName.Address)
<< " Name: " << Entry.first << "\n";
}
}
void LVBinaryReader::addToSymbolTable(StringRef Name, LVScope *Function,
LVSectionIndex SectionIndex) {
SymbolTable.add(Name, Function, SectionIndex);
}
void LVBinaryReader::addToSymbolTable(StringRef Name, LVAddress Address,
LVSectionIndex SectionIndex,
bool IsComdat) {
SymbolTable.add(Name, Address, SectionIndex, IsComdat);
}
LVSectionIndex LVBinaryReader::updateSymbolTable(LVScope *Function) {
return SymbolTable.update(Function);
}
const LVSymbolTableEntry &LVBinaryReader::getSymbolTableEntry(StringRef Name) {
return SymbolTable.getEntry(Name);
}
LVAddress LVBinaryReader::getSymbolTableAddress(StringRef Name) {
return SymbolTable.getAddress(Name);
}
LVSectionIndex LVBinaryReader::getSymbolTableIndex(StringRef Name) {
return SymbolTable.getIndex(Name);
}
bool LVBinaryReader::getSymbolTableIsComdat(StringRef Name) {
return SymbolTable.getIsComdat(Name);
}
void LVBinaryReader::mapVirtualAddress(const object::ObjectFile &Obj) {
for (const object::SectionRef &Section : Obj.sections()) {
if (!Section.isText() || Section.isVirtual() || !Section.getSize())
continue;
// Record section information required for symbol resolution.
// Note: The section index returned by 'getIndex()' is one based.
Sections.emplace(Section.getIndex(), Section);
addSectionAddress(Section);
// Identify the ".text" section.
Expected<StringRef> SectionNameOrErr = Section.getName();
if (!SectionNameOrErr) {
consumeError(SectionNameOrErr.takeError());
continue;
}
if ((*SectionNameOrErr).equals(".text") ||
(*SectionNameOrErr).equals(".code"))
DotTextSectionIndex = Section.getIndex();
}
// Process the symbol table.
mapRangeAddress(Obj);
LLVM_DEBUG({
dbgs() << "\nSections Information:\n";
for (LVSections::reference Entry : Sections) {
LVSectionIndex SectionIndex = Entry.first;
const object::SectionRef Section = Entry.second;
Expected<StringRef> SectionNameOrErr = Section.getName();
if (!SectionNameOrErr)
consumeError(SectionNameOrErr.takeError());
dbgs() << "\nIndex: " << format_decimal(SectionIndex, 3)
<< " Name: " << *SectionNameOrErr << "\n"
<< "Size: " << hexValue(Section.getSize()) << "\n"
<< "VirtualAddress: " << hexValue(VirtualAddress) << "\n"
<< "SectionAddress: " << hexValue(Section.getAddress()) << "\n";
}
dbgs() << "\nObject Section Information:\n";
for (LVSectionAddresses::const_reference Entry : SectionAddresses)
dbgs() << "[" << hexValue(Entry.first) << ":"
<< hexValue(Entry.first + Entry.second.getSize())
<< "] Size: " << hexValue(Entry.second.getSize()) << "\n";
});
}
void LVBinaryReader::mapVirtualAddress(const object::COFFObjectFile &COFFObj) {
ErrorOr<uint64_t> ImageBase = COFFObj.getImageBase();
if (ImageBase)
ImageBaseAddress = ImageBase.get();
LLVM_DEBUG({
dbgs() << "ImageBaseAddress: " << hexValue(ImageBaseAddress) << "\n";
});
uint32_t Flags = COFF::IMAGE_SCN_CNT_CODE | COFF::IMAGE_SCN_LNK_COMDAT;
for (const object::SectionRef &Section : COFFObj.sections()) {
if (!Section.isText() || Section.isVirtual() || !Section.getSize())
continue;
const object::coff_section *COFFSection = COFFObj.getCOFFSection(Section);
VirtualAddress = COFFSection->VirtualAddress;
bool IsComdat = (COFFSection->Characteristics & Flags) == Flags;
// Record section information required for symbol resolution.
// Note: The section index returned by 'getIndex()' is zero based.
Sections.emplace(Section.getIndex() + 1, Section);
addSectionAddress(Section);
// Additional initialization on the specific object format.
mapRangeAddress(COFFObj, Section, IsComdat);
}
LLVM_DEBUG({
dbgs() << "\nSections Information:\n";
for (LVSections::reference Entry : Sections) {
LVSectionIndex SectionIndex = Entry.first;
const object::SectionRef Section = Entry.second;
const object::coff_section *COFFSection = COFFObj.getCOFFSection(Section);
Expected<StringRef> SectionNameOrErr = Section.getName();
if (!SectionNameOrErr)
consumeError(SectionNameOrErr.takeError());
dbgs() << "\nIndex: " << format_decimal(SectionIndex, 3)
<< " Name: " << *SectionNameOrErr << "\n"
<< "Size: " << hexValue(Section.getSize()) << "\n"
<< "VirtualAddress: " << hexValue(VirtualAddress) << "\n"
<< "SectionAddress: " << hexValue(Section.getAddress()) << "\n"
<< "PointerToRawData: " << hexValue(COFFSection->PointerToRawData)
<< "\n"
<< "SizeOfRawData: " << hexValue(COFFSection->SizeOfRawData)
<< "\n";
}
dbgs() << "\nObject Section Information:\n";
for (LVSectionAddresses::const_reference Entry : SectionAddresses)
dbgs() << "[" << hexValue(Entry.first) << ":"
<< hexValue(Entry.first + Entry.second.getSize())
<< "] Size: " << hexValue(Entry.second.getSize()) << "\n";
});
}
Error LVBinaryReader::loadGenericTargetInfo(StringRef TheTriple,
StringRef TheFeatures) {
std::string TargetLookupError;
const Target *TheTarget =
TargetRegistry::lookupTarget(std::string(TheTriple), TargetLookupError);
if (!TheTarget)
return createStringError(errc::invalid_argument, TargetLookupError.c_str());
// Register information.
MCRegisterInfo *RegisterInfo = TheTarget->createMCRegInfo(TheTriple);
if (!RegisterInfo)
return createStringError(errc::invalid_argument,
"no register info for target " + TheTriple);
MRI.reset(RegisterInfo);
// Assembler properties and features.
MCTargetOptions MCOptions;
MCAsmInfo *AsmInfo(TheTarget->createMCAsmInfo(*MRI, TheTriple, MCOptions));
if (!AsmInfo)
return createStringError(errc::invalid_argument,
"no assembly info for target " + TheTriple);
MAI.reset(AsmInfo);
// Target subtargets.
StringRef CPU;
MCSubtargetInfo *SubtargetInfo(
TheTarget->createMCSubtargetInfo(TheTriple, CPU, TheFeatures));
if (!SubtargetInfo)
return createStringError(errc::invalid_argument,
"no subtarget info for target " + TheTriple);
STI.reset(SubtargetInfo);
// Instructions Info.
MCInstrInfo *InstructionInfo(TheTarget->createMCInstrInfo());
if (!InstructionInfo)
return createStringError(errc::invalid_argument,
"no instruction info for target " + TheTriple);
MII.reset(InstructionInfo);
MC = std::make_unique<MCContext>(Triple(TheTriple), MAI.get(), MRI.get(),
STI.get());
// Assembler.
MCDisassembler *DisAsm(TheTarget->createMCDisassembler(*STI, *MC));
if (!DisAsm)
return createStringError(errc::invalid_argument,
"no disassembler for target " + TheTriple);
MD.reset(DisAsm);
MCInstPrinter *InstructionPrinter(TheTarget->createMCInstPrinter(
Triple(TheTriple), AsmInfo->getAssemblerDialect(), *MAI, *MII, *MRI));
if (!InstructionPrinter)
return createStringError(errc::invalid_argument,
"no target assembly language printer for target " +
TheTriple);
MIP.reset(InstructionPrinter);
InstructionPrinter->setPrintImmHex(true);
return Error::success();
}
Expected<std::pair<uint64_t, object::SectionRef>>
LVBinaryReader::getSection(LVScope *Scope, LVAddress Address,
LVSectionIndex SectionIndex) {
// Return the 'text' section with the code for this logical scope.
// COFF: SectionIndex is zero. Use 'SectionAddresses' data.
// ELF: SectionIndex is the section index in the file.
if (SectionIndex) {
LVSections::iterator Iter = Sections.find(SectionIndex);
if (Iter == Sections.end()) {
return createStringError(errc::invalid_argument,
"invalid section index for: '%s'",
Scope->getName().str().c_str());
}
const object::SectionRef Section = Iter->second;
return std::make_pair(Section.getAddress(), Section);
}
// Ensure a valid starting address for the public names.
LVSectionAddresses::const_iterator Iter =
SectionAddresses.upper_bound(Address);
if (Iter == SectionAddresses.begin())
return createStringError(errc::invalid_argument,
"invalid section address for: '%s'",
Scope->getName().str().c_str());
// Get section that contains the code for this function.
Iter = SectionAddresses.lower_bound(Address);
if (Iter != SectionAddresses.begin())
--Iter;
return std::make_pair(Iter->first, Iter->second);
}
void LVBinaryReader::addSectionRange(LVSectionIndex SectionIndex,
LVScope *Scope) {
LVRange *ScopesWithRanges = getSectionRanges(SectionIndex);
ScopesWithRanges->addEntry(Scope);
}
void LVBinaryReader::addSectionRange(LVSectionIndex SectionIndex,
LVScope *Scope, LVAddress LowerAddress,
LVAddress UpperAddress) {
LVRange *ScopesWithRanges = getSectionRanges(SectionIndex);
ScopesWithRanges->addEntry(Scope, LowerAddress, UpperAddress);
}
LVRange *LVBinaryReader::getSectionRanges(LVSectionIndex SectionIndex) {
// Check if we already have a mapping for this section index.
LVSectionRanges::iterator IterSection = SectionRanges.find(SectionIndex);
if (IterSection == SectionRanges.end())
IterSection =
SectionRanges.emplace(SectionIndex, std::make_unique<LVRange>()).first;
LVRange *Range = IterSection->second.get();
assert(Range && "Range is null.");
return Range;
}
Error LVBinaryReader::createInstructions(LVScope *Scope,
LVSectionIndex SectionIndex,
const LVNameInfo &NameInfo) {
assert(Scope && "Scope is null.");
// Skip stripped functions.
if (Scope->getIsDiscarded())
return Error::success();
// Find associated address and size for the given function entry point.
LVAddress Address = NameInfo.first;
uint64_t Size = NameInfo.second;
LLVM_DEBUG({
dbgs() << "\nPublic Name instructions: '" << Scope->getName() << "' / '"
<< Scope->getLinkageName() << "'\n"
<< "DIE Offset: " << hexValue(Scope->getOffset()) << " Range: ["
<< hexValue(Address) << ":" << hexValue(Address + Size) << "]\n";
});
Expected<std::pair<uint64_t, const object::SectionRef>> SectionOrErr =
getSection(Scope, Address, SectionIndex);
if (!SectionOrErr)
return SectionOrErr.takeError();
const object::SectionRef Section = (*SectionOrErr).second;
uint64_t SectionAddress = (*SectionOrErr).first;
Expected<StringRef> SectionContentsOrErr = Section.getContents();
if (!SectionContentsOrErr)
return SectionOrErr.takeError();
// There are cases where the section size is smaller than the [LowPC,HighPC]
// range; it causes us to decode invalid addresses. The recorded size in the
// logical scope is one less than the real size.
LLVM_DEBUG({
dbgs() << " Size: " << hexValue(Size)
<< ", Section Size: " << hexValue(Section.getSize()) << "\n";
});
Size = std::min(Size + 1, Section.getSize());
ArrayRef<uint8_t> Bytes = arrayRefFromStringRef(*SectionContentsOrErr);
uint64_t Offset = Address - SectionAddress;
uint8_t const *Begin = Bytes.data() + Offset;
uint8_t const *End = Bytes.data() + Offset + Size;
LLVM_DEBUG({
Expected<StringRef> SectionNameOrErr = Section.getName();
if (!SectionNameOrErr)
consumeError(SectionNameOrErr.takeError());
else
dbgs() << "Section Index: " << hexValue(Section.getIndex()) << " ["
<< hexValue((uint64_t)Section.getAddress()) << ":"
<< hexValue((uint64_t)Section.getAddress() + Section.getSize(), 10)
<< "] Name: '" << *SectionNameOrErr << "'\n"
<< "Begin: " << hexValue((uint64_t)Begin)
<< ", End: " << hexValue((uint64_t)End) << "\n";
});
// Address for first instruction line.
LVAddress FirstAddress = Address;
auto InstructionsSP = std::make_unique<LVLines>();
LVLines &Instructions = *InstructionsSP;
DiscoveredLines.emplace_back(std::move(InstructionsSP));
while (Begin < End) {
MCInst Instruction;
uint64_t BytesConsumed = 0;
SmallVector<char, 64> InsnStr;
raw_svector_ostream Annotations(InsnStr);
MCDisassembler::DecodeStatus const S =
MD->getInstruction(Instruction, BytesConsumed,
ArrayRef<uint8_t>(Begin, End), Address, outs());
switch (S) {
case MCDisassembler::Fail:
LLVM_DEBUG({ dbgs() << "Invalid instruction\n"; });
if (BytesConsumed == 0)
// Skip invalid bytes
BytesConsumed = 1;
break;
case MCDisassembler::SoftFail:
LLVM_DEBUG({ dbgs() << "Potentially undefined instruction:"; });
LLVM_FALLTHROUGH;
case MCDisassembler::Success: {
std::string Buffer;
raw_string_ostream Stream(Buffer);
StringRef AnnotationsStr = Annotations.str();
MIP->printInst(&Instruction, Address, AnnotationsStr, *STI, Stream);
LLVM_DEBUG({
std::string BufferCodes;
raw_string_ostream StreamCodes(BufferCodes);
StreamCodes << format_bytes(
ArrayRef<uint8_t>(Begin, Begin + BytesConsumed), std::nullopt, 16,
16);
dbgs() << "[" << hexValue((uint64_t)Begin) << "] "
<< "Size: " << format_decimal(BytesConsumed, 2) << " ("
<< formatv("{0}",
fmt_align(StreamCodes.str(), AlignStyle::Left, 32))
<< ") " << hexValue((uint64_t)Address) << ": " << Stream.str()
<< "\n";
});
// Here we add logical lines to the Instructions. Later on,
// the 'processLines()' function will move each created logical line
// to its enclosing logical scope, using the debug ranges information
// and they will be released when its scope parent is deleted.
LVLineAssembler *Line = createLineAssembler();
Line->setAddress(Address);
Line->setName(StringRef(Stream.str()).trim());
Instructions.push_back(Line);
break;
}
}
Address += BytesConsumed;
Begin += BytesConsumed;
}
LLVM_DEBUG({
size_t Index = 0;
dbgs() << "\nSectionIndex: " << format_decimal(SectionIndex, 3)
<< " Scope DIE: " << hexValue(Scope->getOffset()) << "\n"
<< "Address: " << hexValue(FirstAddress)
<< format(" - Collected instructions lines: %d\n",
Instructions.size());
for (const LVLine *Line : Instructions)
dbgs() << format_decimal(++Index, 5) << ": "
<< hexValue(Line->getOffset()) << ", (" << Line->getName()
<< ")\n";
});
// The scope in the assembler names is linked to its own instructions.
ScopeInstructions.add(SectionIndex, Scope, &Instructions);
AssemblerMappings.add(SectionIndex, FirstAddress, Scope);
return Error::success();
}
Error LVBinaryReader::createInstructions(LVScope *Function,
LVSectionIndex SectionIndex) {
if (!options().getPrintInstructions())
return Error::success();
LVNameInfo Name = CompileUnit->findPublicName(Function);
if (Name.first != LVAddress(UINT64_MAX))
return createInstructions(Function, SectionIndex, Name);
return Error::success();
}
Error LVBinaryReader::createInstructions() {
if (!options().getPrintInstructions())
return Error::success();
LLVM_DEBUG({
size_t Index = 1;
dbgs() << "\nPublic Names (Scope):\n";
for (LVPublicNames::const_reference Name : CompileUnit->getPublicNames()) {
LVScope *Scope = Name.first;
const LVNameInfo &NameInfo = Name.second;
LVAddress Address = NameInfo.first;
uint64_t Size = NameInfo.second;
dbgs() << format_decimal(Index++, 5) << ": "
<< "DIE Offset: " << hexValue(Scope->getOffset()) << " Range: ["
<< hexValue(Address) << ":" << hexValue(Address + Size) << "] "
<< "Name: '" << Scope->getName() << "' / '"
<< Scope->getLinkageName() << "'\n";
}
});
// For each public name in the current compile unit, create the line
// records that represent the executable instructions.
for (LVPublicNames::const_reference Name : CompileUnit->getPublicNames()) {
LVScope *Scope = Name.first;
// The symbol table extracted from the object file always contains a
// non-empty name (linkage name). However, the logical scope does not
// guarantee to have a name for the linkage name (main is one case).
// For those cases, set the linkage name the same as the name.
if (!Scope->getLinkageNameIndex())
Scope->setLinkageName(Scope->getName());
LVSectionIndex SectionIndex = getSymbolTableIndex(Scope->getLinkageName());
if (Error Err = createInstructions(Scope, SectionIndex, Name.second))
return Err;
}
return Error::success();
}
// During the traversal of the debug information sections, we created the
// logical lines representing the disassembled instructions from the text
// section and the logical lines representing the line records from the
// debug line section. Using the ranges associated with the logical scopes,
// we will allocate those logical lines to their logical scopes.
void LVBinaryReader::processLines(LVLines *DebugLines,
LVSectionIndex SectionIndex,
LVScope *Function) {
assert(DebugLines && "DebugLines is null.");
// Just return if this compilation unit does not have any line records
// and no instruction lines were created.
if (DebugLines->empty() && !options().getPrintInstructions())
return;
// Merge the debug lines and instruction lines using their text address;
// the logical line representing the debug line record is followed by the
// line(s) representing the disassembled instructions, whose addresses are
// equal or greater that the line address and less than the address of the
// next debug line record.
LLVM_DEBUG({
size_t Index = 1;
size_t PerLine = 4;
dbgs() << format("\nProcess debug lines: %d\n", DebugLines->size());
for (const LVLine *Line : *DebugLines) {
dbgs() << format_decimal(Index, 5) << ": " << hexValue(Line->getOffset())
<< ", (" << Line->getLineNumber() << ")"
<< ((Index % PerLine) ? " " : "\n");
++Index;
}
dbgs() << ((Index % PerLine) ? "\n" : "");
});
bool TraverseLines = true;
LVLines::iterator Iter = DebugLines->begin();
while (TraverseLines && Iter != DebugLines->end()) {
uint64_t DebugAddress = (*Iter)->getAddress();
// Get the function with an entry point that matches this line and
// its associated assembler entries. In the case of COMDAT, the input
// 'Function' is not null. Use it to find its address ranges.
LVScope *Scope = Function;
if (!Function) {
Scope = AssemblerMappings.find(SectionIndex, DebugAddress);
if (!Scope) {
++Iter;
continue;
}
}
// Get the associated instructions for the found 'Scope'.
LVLines InstructionLines;
LVLines *Lines = ScopeInstructions.find(SectionIndex, Scope);
if (Lines)
InstructionLines = std::move(*Lines);
LLVM_DEBUG({
size_t Index = 0;
dbgs() << "\nSectionIndex: " << format_decimal(SectionIndex, 3)
<< " Scope DIE: " << hexValue(Scope->getOffset()) << "\n"
<< format("Process instruction lines: %d\n",
InstructionLines.size());
for (const LVLine *Line : InstructionLines)
dbgs() << format_decimal(++Index, 5) << ": "
<< hexValue(Line->getOffset()) << ", (" << Line->getName()
<< ")\n";
});
// Continue with next debug line if there are not instructions lines.
if (InstructionLines.empty()) {
++Iter;
continue;
}
for (LVLine *InstructionLine : InstructionLines) {
uint64_t InstructionAddress = InstructionLine->getAddress();
LLVM_DEBUG({
dbgs() << "Instruction address: " << hexValue(InstructionAddress)
<< "\n";
});
if (TraverseLines) {
while (Iter != DebugLines->end()) {
DebugAddress = (*Iter)->getAddress();
LLVM_DEBUG({
bool IsDebug = (*Iter)->getIsLineDebug();
dbgs() << "Line " << (IsDebug ? "dbg:" : "ins:") << " ["
<< hexValue(DebugAddress) << "]";
if (IsDebug)
dbgs() << format(" %d", (*Iter)->getLineNumber());
dbgs() << "\n";
});
// Instruction address before debug line.
if (InstructionAddress < DebugAddress) {
LLVM_DEBUG({
dbgs() << "Inserted instruction address: "
<< hexValue(InstructionAddress) << " before line: "
<< format("%d", (*Iter)->getLineNumber()) << " ["
<< hexValue(DebugAddress) << "]\n";
});
Iter = DebugLines->insert(Iter, InstructionLine);
// The returned iterator points to the inserted instruction.
// Skip it and point to the line acting as reference.
++Iter;
break;
}
++Iter;
}
if (Iter == DebugLines->end()) {
// We have reached the end of the source lines and the current
// instruction line address is greater than the last source line.
TraverseLines = false;
DebugLines->push_back(InstructionLine);
}
} else {
DebugLines->push_back(InstructionLine);
}
}
}
LLVM_DEBUG({
dbgs() << format("Lines after merge: %d\n", DebugLines->size());
size_t Index = 0;
for (const LVLine *Line : *DebugLines) {
dbgs() << format_decimal(++Index, 5) << ": "
<< hexValue(Line->getOffset()) << ", ("
<< ((Line->getIsLineDebug())
? Line->lineNumberAsStringStripped(/*ShowZero=*/true)
: Line->getName())
<< ")\n";
}
});
// If this compilation unit does not have line records, traverse its scopes
// and take any collected instruction lines as the working set in order
// to move them to their associated scope.
if (DebugLines->empty()) {
if (const LVScopes *Scopes = CompileUnit->getScopes())
for (LVScope *Scope : *Scopes) {
LVLines *Lines = ScopeInstructions.find(Scope);
if (Lines) {
LLVM_DEBUG({
size_t Index = 0;
dbgs() << "\nSectionIndex: " << format_decimal(SectionIndex, 3)
<< " Scope DIE: " << hexValue(Scope->getOffset()) << "\n"
<< format("Instruction lines: %d\n", Lines->size());
for (const LVLine *Line : *Lines)
dbgs() << format_decimal(++Index, 5) << ": "
<< hexValue(Line->getOffset()) << ", (" << Line->getName()
<< ")\n";
});
if (Scope->getIsArtificial()) {
// Add the instruction lines to their artificial scope.
for (LVLine *Line : *Lines)
Scope->addElement(Line);
} else {
DebugLines->append(*Lines);
}
Lines->clear();
}
}
}
LVRange *ScopesWithRanges = getSectionRanges(SectionIndex);
ScopesWithRanges->startSearch();
// Process collected lines.
LVScope *Scope;
for (LVLine *Line : *DebugLines) {
// Using the current line address, get its associated lexical scope and
// add the line information to it.
Scope = ScopesWithRanges->getEntry(Line->getAddress());
if (!Scope) {
// If missing scope, use the compile unit.
Scope = CompileUnit;
LLVM_DEBUG({
dbgs() << "Adding line to CU: " << hexValue(Line->getOffset()) << ", ("
<< ((Line->getIsLineDebug())
? Line->lineNumberAsStringStripped(/*ShowZero=*/true)
: Line->getName())
<< ")\n";
});
}
// Add line object to scope.
Scope->addElement(Line);
// Report any line zero.
if (options().getWarningLines() && Line->getIsLineDebug() &&
!Line->getLineNumber())
CompileUnit->addLineZero(Line);
// Some compilers generate ranges in the compile unit; other compilers
// only DW_AT_low_pc/DW_AT_high_pc. In order to correctly map global
// variables, we need to generate the map ranges for the compile unit.
// If we use the ranges stored at the scope level, there are cases where
// the address referenced by a symbol location, is not in the enclosing
// scope, but in an outer one. By using the ranges stored in the compile
// unit, we can catch all those addresses.
if (Line->getIsLineDebug())
CompileUnit->addMapping(Line, SectionIndex);
// Resolve any given pattern.
patterns().resolvePatternMatch(Line);
}
ScopesWithRanges->endSearch();
}
void LVBinaryReader::processLines(LVLines *DebugLines,
LVSectionIndex SectionIndex) {
assert(DebugLines && "DebugLines is null.");
if (DebugLines->empty() && !ScopeInstructions.findMap(SectionIndex))
return;
// If the Compile Unit does not contain comdat functions, use the whole
// set of debug lines, as the addresses don't have conflicts.
if (!CompileUnit->getHasComdatScopes()) {
processLines(DebugLines, SectionIndex, nullptr);
return;
}
// Find the indexes for the lines whose address is zero.
std::vector<size_t> AddressZero;
LVLines::iterator It =
std::find_if(std::begin(*DebugLines), std::end(*DebugLines),
[](LVLine *Line) { return !Line->getAddress(); });
while (It != std::end(*DebugLines)) {
AddressZero.emplace_back(std::distance(std::begin(*DebugLines), It));
It = std::find_if(std::next(It), std::end(*DebugLines),
[](LVLine *Line) { return !Line->getAddress(); });
}
// If the set of debug lines does not contain any line with address zero,
// use the whole set. It means we are dealing with an initialization
// section from a fully linked binary.
if (AddressZero.empty()) {
processLines(DebugLines, SectionIndex, nullptr);
return;
}
// The Compile unit contains comdat functions. Traverse the collected
// debug lines and identify logical groups based on their start and
// address. Each group starts with a zero address.
// Begin, End, Address, IsDone.
using LVBucket = std::tuple<size_t, size_t, LVAddress, bool>;
std::vector<LVBucket> Buckets;
LVAddress Address;
size_t Begin = 0;
size_t End = 0;
size_t Index = 0;
for (Index = 0; Index < AddressZero.size() - 1; ++Index) {
Begin = AddressZero[Index];
End = AddressZero[Index + 1] - 1;
Address = (*DebugLines)[End]->getAddress();
Buckets.emplace_back(Begin, End, Address, false);
}
// Add the last bucket.
if (Index) {
Begin = AddressZero[Index];
End = DebugLines->size() - 1;
Address = (*DebugLines)[End]->getAddress();
Buckets.emplace_back(Begin, End, Address, false);
}
LLVM_DEBUG({
dbgs() << "\nDebug Lines buckets: " << Buckets.size() << "\n";
for (LVBucket &Bucket : Buckets) {
dbgs() << "Begin: " << format_decimal(std::get<0>(Bucket), 5) << ", "
<< "End: " << format_decimal(std::get<1>(Bucket), 5) << ", "
<< "Address: " << hexValue(std::get<2>(Bucket)) << "\n";
}
});
// Traverse the sections and buckets looking for matches on the section
// sizes. In the unlikely event of different buckets with the same size
// process them in order and mark them as done.
LVLines Group;
for (LVSections::reference Entry : Sections) {
LVSectionIndex SectionIndex = Entry.first;
const object::SectionRef Section = Entry.second;
uint64_t Size = Section.getSize();
LLVM_DEBUG({
dbgs() << "\nSection Index: " << format_decimal(SectionIndex, 3)
<< " , Section Size: " << hexValue(Section.getSize())
<< " , Section Address: " << hexValue(Section.getAddress())
<< "\n";
});
for (LVBucket &Bucket : Buckets) {
if (std::get<3>(Bucket))
// Already done for previous section.
continue;
if (Size == std::get<2>(Bucket)) {
// We have a match on the section size.
Group.clear();
LVLines::iterator IterStart = DebugLines->begin() + std::get<0>(Bucket);
LVLines::iterator IterEnd =
DebugLines->begin() + std::get<1>(Bucket) + 1;
for (LVLines::iterator Iter = IterStart; Iter < IterEnd; ++Iter)
Group.push_back(*Iter);
processLines(&Group, SectionIndex, /*Function=*/nullptr);
std::get<3>(Bucket) = true;
break;
}
}
}
}
// Traverse the scopes for the given 'Function' looking for any inlined
// scopes with inlined lines, which are found in 'CUInlineeLines'.
void LVBinaryReader::includeInlineeLines(LVSectionIndex SectionIndex,
LVScope *Function) {
SmallVector<LVInlineeLine::iterator> InlineeIters;
std::function<void(LVScope * Parent)> FindInlinedScopes =
[&](LVScope *Parent) {
if (const LVScopes *Scopes = Parent->getScopes())
for (LVScope *Scope : *Scopes) {
LVInlineeLine::iterator Iter = CUInlineeLines.find(Scope);
if (Iter != CUInlineeLines.end())
InlineeIters.push_back(Iter);
FindInlinedScopes(Scope);
}
};
// Find all inlined scopes for the given 'Function'.
FindInlinedScopes(Function);
for (LVInlineeLine::iterator InlineeIter : InlineeIters) {
LVScope *Scope = InlineeIter->first;
addToSymbolTable(Scope->getLinkageName(), Scope, SectionIndex);
// TODO: Convert this into a reference.
LVLines *InlineeLines = InlineeIter->second.get();
LLVM_DEBUG({
dbgs() << "Inlined lines for: " << Scope->getName() << "\n";
for (const LVLine *Line : *InlineeLines)
dbgs() << "[" << hexValue(Line->getAddress()) << "] "
<< Line->getLineNumber() << "\n";
dbgs() << format("Debug lines: %d\n", CULines.size());
for (const LVLine *Line : CULines)
dbgs() << "Line address: " << hexValue(Line->getOffset()) << ", ("
<< Line->getLineNumber() << ")\n";
;
});
// The inlined lines must be merged using its address, in order to keep
// the real order of the instructions. The inlined lines are mixed with
// the other non-inlined lines.
if (InlineeLines->size()) {
// First address of inlinee code.
uint64_t InlineeStart = (InlineeLines->front())->getAddress();
LVLines::iterator Iter = std::find_if(
CULines.begin(), CULines.end(), [&](LVLine *Item) -> bool {
return Item->getAddress() == InlineeStart;
});
if (Iter != CULines.end()) {
// 'Iter' points to the line where the inlined function is called.
// Emulate the DW_AT_call_line attribute.
Scope->setCallLineNumber((*Iter)->getLineNumber());
// Mark the referenced line as the start of the inlined function.
// Skip the first line during the insertion, as the address and
// line number as the same. Otherwise we have to erase and insert.
(*Iter)->setLineNumber((*InlineeLines->begin())->getLineNumber());
++Iter;
CULines.insert(Iter, InlineeLines->begin() + 1, InlineeLines->end());
}
}
// Remove this set of lines from the container; each inlined function
// creates an unique set of lines. Remove only the created container.
CUInlineeLines.erase(InlineeIter);
InlineeLines->clear();
}
LLVM_DEBUG({
dbgs() << "Merged Inlined lines for: " << Function->getName() << "\n";
dbgs() << format("Debug lines: %d\n", CULines.size());
for (const LVLine *Line : CULines)
dbgs() << "Line address: " << hexValue(Line->getOffset()) << ", ("
<< Line->getLineNumber() << ")\n";
;
});
}
void LVBinaryReader::print(raw_ostream &OS) const {
OS << "LVBinaryReader\n";
LLVM_DEBUG(dbgs() << "PrintReader\n");
}