Files
clang-p2996/llvm/lib/ExecutionEngine/Orc/OrcABISupport.cpp
Lang Hames 8b1771bd9f [ORC] Move most ORC APIs to ExecutorAddr, introduce ExecutorSymbolDef.
ExecutorAddr was introduced in b8e5f91816 as an eventual replacement for
JITTargetAddress. ExecutorSymbolDef is introduced in this patch as a
replacement for JITEvaluatedSymbol: ExecutorSymbolDef is an (ExecutorAddr,
JITSymbolFlags) pair, where JITEvaluatedSymbol was a (JITTargetAddress,
JITSymbolFlags) pair.

A number of APIs had already migrated from JITTargetAddress to ExecutorAddr,
but many of ORC's internals were still using the older type. This patch aims
to address that.

Some public APIs are affected as well. If you need to migrate your APIs you can
use the following operations:

* ExecutorAddr::toPtr replaces jitTargetAddressToPointer and
  jitTargetAddressToFunction.

* ExecutorAddr::fromPtr replace pointerToJITTargetAddress.

* ExecutorAddr(JITTargetAddress) creates an ExecutorAddr value from a
  JITTargetAddress.

* ExecutorAddr::getValue() creates a JITTargetAddress value from an
  ExecutorAddr.

JITTargetAddress and JITEvaluatedSymbol will remain in JITSymbol.h for now, but
the aim will be to eventually deprecate and remove these types (probably when
MCJIT and RuntimeDyld are deprecated).
2023-03-27 17:37:58 -07:00

1241 lines
55 KiB
C++

//===------------- OrcABISupport.cpp - ABI specific support code ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "llvm/ExecutionEngine/Orc/OrcABISupport.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/Process.h"
#include "llvm/Support/raw_ostream.h"
#define DEBUG_TYPE "orc"
using namespace llvm;
using namespace llvm::orc;
template <typename ORCABI>
static bool stubAndPointerRangesOk(ExecutorAddr StubBlockAddr,
ExecutorAddr PointerBlockAddr,
unsigned NumStubs) {
constexpr unsigned MaxDisp = ORCABI::StubToPointerMaxDisplacement;
ExecutorAddr FirstStub = StubBlockAddr;
ExecutorAddr LastStub = FirstStub + ((NumStubs - 1) * ORCABI::StubSize);
ExecutorAddr FirstPointer = PointerBlockAddr;
ExecutorAddr LastPointer = FirstPointer + ((NumStubs - 1) * ORCABI::StubSize);
if (FirstStub < FirstPointer) {
if (LastStub >= FirstPointer)
return false; // Ranges overlap.
return (FirstPointer - FirstStub <= MaxDisp) &&
(LastPointer - LastStub <= MaxDisp); // out-of-range.
}
if (LastPointer >= FirstStub)
return false; // Ranges overlap.
return (FirstStub - FirstPointer <= MaxDisp) &&
(LastStub - LastPointer <= MaxDisp);
}
namespace llvm {
namespace orc {
void OrcAArch64::writeResolverCode(char *ResolverWorkingMem,
ExecutorAddr ResolverTargetAddress,
ExecutorAddr ReentryFnAddr,
ExecutorAddr ReentryCtxAddr) {
const uint32_t ResolverCode[] = {
// resolver_entry:
0xa9bf47fd, // 0x000: stp x29, x17, [sp, #-16]!
0x910003fd, // 0x004: mov x29, sp
0xa9bf73fb, // 0x008: stp x27, x28, [sp, #-16]!
0xa9bf6bf9, // 0x00c: stp x25, x26, [sp, #-16]!
0xa9bf63f7, // 0x010: stp x23, x24, [sp, #-16]!
0xa9bf5bf5, // 0x014: stp x21, x22, [sp, #-16]!
0xa9bf53f3, // 0x018: stp x19, x20, [sp, #-16]!
0xa9bf3fee, // 0x01c: stp x14, x15, [sp, #-16]!
0xa9bf37ec, // 0x020: stp x12, x13, [sp, #-16]!
0xa9bf2fea, // 0x024: stp x10, x11, [sp, #-16]!
0xa9bf27e8, // 0x028: stp x8, x9, [sp, #-16]!
0xa9bf1fe6, // 0x02c: stp x6, x7, [sp, #-16]!
0xa9bf17e4, // 0x030: stp x4, x5, [sp, #-16]!
0xa9bf0fe2, // 0x034: stp x2, x3, [sp, #-16]!
0xa9bf07e0, // 0x038: stp x0, x1, [sp, #-16]!
0xadbf7ffe, // 0x03c: stp q30, q31, [sp, #-32]!
0xadbf77fc, // 0x040: stp q28, q29, [sp, #-32]!
0xadbf6ffa, // 0x044: stp q26, q27, [sp, #-32]!
0xadbf67f8, // 0x048: stp q24, q25, [sp, #-32]!
0xadbf5ff6, // 0x04c: stp q22, q23, [sp, #-32]!
0xadbf57f4, // 0x050: stp q20, q21, [sp, #-32]!
0xadbf4ff2, // 0x054: stp q18, q19, [sp, #-32]!
0xadbf47f0, // 0x058: stp q16, q17, [sp, #-32]!
0xadbf3fee, // 0x05c: stp q14, q15, [sp, #-32]!
0xadbf37ec, // 0x060: stp q12, q13, [sp, #-32]!
0xadbf2fea, // 0x064: stp q10, q11, [sp, #-32]!
0xadbf27e8, // 0x068: stp q8, q9, [sp, #-32]!
0xadbf1fe6, // 0x06c: stp q6, q7, [sp, #-32]!
0xadbf17e4, // 0x070: stp q4, q5, [sp, #-32]!
0xadbf0fe2, // 0x074: stp q2, q3, [sp, #-32]!
0xadbf07e0, // 0x078: stp q0, q1, [sp, #-32]!
0x580004e0, // 0x07c: ldr x0, Lreentry_ctx_ptr
0xaa1e03e1, // 0x080: mov x1, x30
0xd1003021, // 0x084: sub x1, x1, #12
0x58000442, // 0x088: ldr x2, Lreentry_fn_ptr
0xd63f0040, // 0x08c: blr x2
0xaa0003f1, // 0x090: mov x17, x0
0xacc107e0, // 0x094: ldp q0, q1, [sp], #32
0xacc10fe2, // 0x098: ldp q2, q3, [sp], #32
0xacc117e4, // 0x09c: ldp q4, q5, [sp], #32
0xacc11fe6, // 0x0a0: ldp q6, q7, [sp], #32
0xacc127e8, // 0x0a4: ldp q8, q9, [sp], #32
0xacc12fea, // 0x0a8: ldp q10, q11, [sp], #32
0xacc137ec, // 0x0ac: ldp q12, q13, [sp], #32
0xacc13fee, // 0x0b0: ldp q14, q15, [sp], #32
0xacc147f0, // 0x0b4: ldp q16, q17, [sp], #32
0xacc14ff2, // 0x0b8: ldp q18, q19, [sp], #32
0xacc157f4, // 0x0bc: ldp q20, q21, [sp], #32
0xacc15ff6, // 0x0c0: ldp q22, q23, [sp], #32
0xacc167f8, // 0x0c4: ldp q24, q25, [sp], #32
0xacc16ffa, // 0x0c8: ldp q26, q27, [sp], #32
0xacc177fc, // 0x0cc: ldp q28, q29, [sp], #32
0xacc17ffe, // 0x0d0: ldp q30, q31, [sp], #32
0xa8c107e0, // 0x0d4: ldp x0, x1, [sp], #16
0xa8c10fe2, // 0x0d8: ldp x2, x3, [sp], #16
0xa8c117e4, // 0x0dc: ldp x4, x5, [sp], #16
0xa8c11fe6, // 0x0e0: ldp x6, x7, [sp], #16
0xa8c127e8, // 0x0e4: ldp x8, x9, [sp], #16
0xa8c12fea, // 0x0e8: ldp x10, x11, [sp], #16
0xa8c137ec, // 0x0ec: ldp x12, x13, [sp], #16
0xa8c13fee, // 0x0f0: ldp x14, x15, [sp], #16
0xa8c153f3, // 0x0f4: ldp x19, x20, [sp], #16
0xa8c15bf5, // 0x0f8: ldp x21, x22, [sp], #16
0xa8c163f7, // 0x0fc: ldp x23, x24, [sp], #16
0xa8c16bf9, // 0x100: ldp x25, x26, [sp], #16
0xa8c173fb, // 0x104: ldp x27, x28, [sp], #16
0xa8c17bfd, // 0x108: ldp x29, x30, [sp], #16
0xd65f0220, // 0x10c: ret x17
0x01234567, // 0x110: Lreentry_fn_ptr:
0xdeadbeef, // 0x114: .quad 0
0x98765432, // 0x118: Lreentry_ctx_ptr:
0xcafef00d // 0x11c: .quad 0
};
const unsigned ReentryFnAddrOffset = 0x110;
const unsigned ReentryCtxAddrOffset = 0x118;
memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode));
memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnAddr,
sizeof(uint64_t));
memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxAddr,
sizeof(uint64_t));
}
void OrcAArch64::writeTrampolines(char *TrampolineBlockWorkingMem,
ExecutorAddr TrampolineBlockTargetAddress,
ExecutorAddr ResolverAddr,
unsigned NumTrampolines) {
unsigned OffsetToPtr = alignTo(NumTrampolines * TrampolineSize, 8);
memcpy(TrampolineBlockWorkingMem + OffsetToPtr, &ResolverAddr,
sizeof(uint64_t));
// OffsetToPtr is actually the offset from the PC for the 2nd instruction, so
// subtract 32-bits.
OffsetToPtr -= 4;
uint32_t *Trampolines =
reinterpret_cast<uint32_t *>(TrampolineBlockWorkingMem);
for (unsigned I = 0; I < NumTrampolines; ++I, OffsetToPtr -= TrampolineSize) {
Trampolines[3 * I + 0] = 0xaa1e03f1; // mov x17, x30
Trampolines[3 * I + 1] = 0x58000010 | (OffsetToPtr << 3); // adr x16, Lptr
Trampolines[3 * I + 2] = 0xd63f0200; // blr x16
}
}
void OrcAArch64::writeIndirectStubsBlock(
char *StubsBlockWorkingMem, ExecutorAddr StubsBlockTargetAddress,
ExecutorAddr PointersBlockTargetAddress, unsigned NumStubs) {
// Stub format is:
//
// .section __orc_stubs
// stub1:
// ldr x0, ptr1 ; PC-rel load of ptr1
// br x0 ; Jump to resolver
// stub2:
// ldr x0, ptr2 ; PC-rel load of ptr2
// br x0 ; Jump to resolver
//
// ...
//
// .section __orc_ptrs
// ptr1:
// .quad 0x0
// ptr2:
// .quad 0x0
//
// ...
static_assert(StubSize == PointerSize,
"Pointer and stub size must match for algorithm below");
assert(stubAndPointerRangesOk<OrcAArch64>(
StubsBlockTargetAddress, PointersBlockTargetAddress, NumStubs) &&
"PointersBlock is out of range");
uint64_t PtrDisplacement =
PointersBlockTargetAddress - StubsBlockTargetAddress;
uint64_t *Stub = reinterpret_cast<uint64_t *>(StubsBlockWorkingMem);
uint64_t PtrOffsetField = PtrDisplacement << 3;
for (unsigned I = 0; I < NumStubs; ++I)
Stub[I] = 0xd61f020058000010 | PtrOffsetField;
}
void OrcX86_64_Base::writeTrampolines(char *TrampolineBlockWorkingMem,
ExecutorAddr TrampolineBlockTargetAddress,
ExecutorAddr ResolverAddr,
unsigned NumTrampolines) {
unsigned OffsetToPtr = NumTrampolines * TrampolineSize;
memcpy(TrampolineBlockWorkingMem + OffsetToPtr, &ResolverAddr,
sizeof(uint64_t));
uint64_t *Trampolines =
reinterpret_cast<uint64_t *>(TrampolineBlockWorkingMem);
uint64_t CallIndirPCRel = 0xf1c40000000015ff;
for (unsigned I = 0; I < NumTrampolines; ++I, OffsetToPtr -= TrampolineSize)
Trampolines[I] = CallIndirPCRel | ((OffsetToPtr - 6) << 16);
}
void OrcX86_64_Base::writeIndirectStubsBlock(
char *StubsBlockWorkingMem, ExecutorAddr StubsBlockTargetAddress,
ExecutorAddr PointersBlockTargetAddress, unsigned NumStubs) {
// Stub format is:
//
// .section __orc_stubs
// stub1:
// jmpq *ptr1(%rip)
// .byte 0xC4 ; <- Invalid opcode padding.
// .byte 0xF1
// stub2:
// jmpq *ptr2(%rip)
//
// ...
//
// .section __orc_ptrs
// ptr1:
// .quad 0x0
// ptr2:
// .quad 0x0
//
// ...
// Populate the stubs page stubs and mark it executable.
static_assert(StubSize == PointerSize,
"Pointer and stub size must match for algorithm below");
assert(stubAndPointerRangesOk<OrcX86_64_Base>(
StubsBlockTargetAddress, PointersBlockTargetAddress, NumStubs) &&
"PointersBlock is out of range");
uint64_t *Stub = reinterpret_cast<uint64_t *>(StubsBlockWorkingMem);
uint64_t PtrOffsetField =
(PointersBlockTargetAddress - StubsBlockTargetAddress - 6) << 16;
for (unsigned I = 0; I < NumStubs; ++I)
Stub[I] = 0xF1C40000000025ff | PtrOffsetField;
}
void OrcX86_64_SysV::writeResolverCode(char *ResolverWorkingMem,
ExecutorAddr ResolverTargetAddress,
ExecutorAddr ReentryFnAddr,
ExecutorAddr ReentryCtxAddr) {
LLVM_DEBUG({
dbgs() << "Writing resolver code to "
<< formatv("{0:x16}", ResolverTargetAddress) << "\n";
});
const uint8_t ResolverCode[] = {
// resolver_entry:
0x55, // 0x00: pushq %rbp
0x48, 0x89, 0xe5, // 0x01: movq %rsp, %rbp
0x50, // 0x04: pushq %rax
0x53, // 0x05: pushq %rbx
0x51, // 0x06: pushq %rcx
0x52, // 0x07: pushq %rdx
0x56, // 0x08: pushq %rsi
0x57, // 0x09: pushq %rdi
0x41, 0x50, // 0x0a: pushq %r8
0x41, 0x51, // 0x0c: pushq %r9
0x41, 0x52, // 0x0e: pushq %r10
0x41, 0x53, // 0x10: pushq %r11
0x41, 0x54, // 0x12: pushq %r12
0x41, 0x55, // 0x14: pushq %r13
0x41, 0x56, // 0x16: pushq %r14
0x41, 0x57, // 0x18: pushq %r15
0x48, 0x81, 0xec, 0x08, 0x02, 0x00, 0x00, // 0x1a: subq 0x208, %rsp
0x48, 0x0f, 0xae, 0x04, 0x24, // 0x21: fxsave64 (%rsp)
0x48, 0xbf, // 0x26: movabsq <CBMgr>, %rdi
// 0x28: JIT re-entry ctx addr.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x48, 0x8b, 0x75, 0x08, // 0x30: movq 8(%rbp), %rsi
0x48, 0x83, 0xee, 0x06, // 0x34: subq $6, %rsi
0x48, 0xb8, // 0x38: movabsq <REntry>, %rax
// 0x3a: JIT re-entry fn addr:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0xff, 0xd0, // 0x42: callq *%rax
0x48, 0x89, 0x45, 0x08, // 0x44: movq %rax, 8(%rbp)
0x48, 0x0f, 0xae, 0x0c, 0x24, // 0x48: fxrstor64 (%rsp)
0x48, 0x81, 0xc4, 0x08, 0x02, 0x00, 0x00, // 0x4d: addq 0x208, %rsp
0x41, 0x5f, // 0x54: popq %r15
0x41, 0x5e, // 0x56: popq %r14
0x41, 0x5d, // 0x58: popq %r13
0x41, 0x5c, // 0x5a: popq %r12
0x41, 0x5b, // 0x5c: popq %r11
0x41, 0x5a, // 0x5e: popq %r10
0x41, 0x59, // 0x60: popq %r9
0x41, 0x58, // 0x62: popq %r8
0x5f, // 0x64: popq %rdi
0x5e, // 0x65: popq %rsi
0x5a, // 0x66: popq %rdx
0x59, // 0x67: popq %rcx
0x5b, // 0x68: popq %rbx
0x58, // 0x69: popq %rax
0x5d, // 0x6a: popq %rbp
0xc3, // 0x6b: retq
};
const unsigned ReentryFnAddrOffset = 0x3a;
const unsigned ReentryCtxAddrOffset = 0x28;
memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode));
memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnAddr,
sizeof(uint64_t));
memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxAddr,
sizeof(uint64_t));
}
void OrcX86_64_Win32::writeResolverCode(char *ResolverWorkingMem,
ExecutorAddr ResolverTargetAddress,
ExecutorAddr ReentryFnAddr,
ExecutorAddr ReentryCtxAddr) {
// resolverCode is similar to OrcX86_64 with differences specific to windows
// x64 calling convention: arguments go into rcx, rdx and come in reverse
// order, shadow space allocation on stack
const uint8_t ResolverCode[] = {
// resolver_entry:
0x55, // 0x00: pushq %rbp
0x48, 0x89, 0xe5, // 0x01: movq %rsp, %rbp
0x50, // 0x04: pushq %rax
0x53, // 0x05: pushq %rbx
0x51, // 0x06: pushq %rcx
0x52, // 0x07: pushq %rdx
0x56, // 0x08: pushq %rsi
0x57, // 0x09: pushq %rdi
0x41, 0x50, // 0x0a: pushq %r8
0x41, 0x51, // 0x0c: pushq %r9
0x41, 0x52, // 0x0e: pushq %r10
0x41, 0x53, // 0x10: pushq %r11
0x41, 0x54, // 0x12: pushq %r12
0x41, 0x55, // 0x14: pushq %r13
0x41, 0x56, // 0x16: pushq %r14
0x41, 0x57, // 0x18: pushq %r15
0x48, 0x81, 0xec, 0x08, 0x02, 0x00, 0x00, // 0x1a: subq 0x208, %rsp
0x48, 0x0f, 0xae, 0x04, 0x24, // 0x21: fxsave64 (%rsp)
0x48, 0xb9, // 0x26: movabsq <CBMgr>, %rcx
// 0x28: JIT re-entry ctx addr.
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x48, 0x8B, 0x55, 0x08, // 0x30: mov rdx, [rbp+0x8]
0x48, 0x83, 0xea, 0x06, // 0x34: sub rdx, 0x6
0x48, 0xb8, // 0x38: movabsq <REntry>, %rax
// 0x3a: JIT re-entry fn addr:
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
// 0x42: sub rsp, 0x20 (Allocate shadow space)
0x48, 0x83, 0xEC, 0x20,
0xff, 0xd0, // 0x46: callq *%rax
// 0x48: add rsp, 0x20 (Free shadow space)
0x48, 0x83, 0xC4, 0x20,
0x48, 0x89, 0x45, 0x08, // 0x4C: movq %rax, 8(%rbp)
0x48, 0x0f, 0xae, 0x0c, 0x24, // 0x50: fxrstor64 (%rsp)
0x48, 0x81, 0xc4, 0x08, 0x02, 0x00, 0x00, // 0x55: addq 0x208, %rsp
0x41, 0x5f, // 0x5C: popq %r15
0x41, 0x5e, // 0x5E: popq %r14
0x41, 0x5d, // 0x60: popq %r13
0x41, 0x5c, // 0x62: popq %r12
0x41, 0x5b, // 0x64: popq %r11
0x41, 0x5a, // 0x66: popq %r10
0x41, 0x59, // 0x68: popq %r9
0x41, 0x58, // 0x6a: popq %r8
0x5f, // 0x6c: popq %rdi
0x5e, // 0x6d: popq %rsi
0x5a, // 0x6e: popq %rdx
0x59, // 0x6f: popq %rcx
0x5b, // 0x70: popq %rbx
0x58, // 0x71: popq %rax
0x5d, // 0x72: popq %rbp
0xc3, // 0x73: retq
};
const unsigned ReentryFnAddrOffset = 0x3a;
const unsigned ReentryCtxAddrOffset = 0x28;
memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode));
memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnAddr,
sizeof(uint64_t));
memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxAddr,
sizeof(uint64_t));
}
void OrcI386::writeResolverCode(char *ResolverWorkingMem,
ExecutorAddr ResolverTargetAddress,
ExecutorAddr ReentryFnAddr,
ExecutorAddr ReentryCtxAddr) {
assert((ReentryFnAddr.getValue() >> 32) == 0 && "ReentryFnAddr out of range");
assert((ReentryCtxAddr.getValue() >> 32) == 0 &&
"ReentryCtxAddr out of range");
const uint8_t ResolverCode[] = {
// resolver_entry:
0x55, // 0x00: pushl %ebp
0x89, 0xe5, // 0x01: movl %esp, %ebp
0x54, // 0x03: pushl %esp
0x83, 0xe4, 0xf0, // 0x04: andl $-0x10, %esp
0x50, // 0x07: pushl %eax
0x53, // 0x08: pushl %ebx
0x51, // 0x09: pushl %ecx
0x52, // 0x0a: pushl %edx
0x56, // 0x0b: pushl %esi
0x57, // 0x0c: pushl %edi
0x81, 0xec, 0x18, 0x02, 0x00, 0x00, // 0x0d: subl $0x218, %esp
0x0f, 0xae, 0x44, 0x24, 0x10, // 0x13: fxsave 0x10(%esp)
0x8b, 0x75, 0x04, // 0x18: movl 0x4(%ebp), %esi
0x83, 0xee, 0x05, // 0x1b: subl $0x5, %esi
0x89, 0x74, 0x24, 0x04, // 0x1e: movl %esi, 0x4(%esp)
0xc7, 0x04, 0x24, 0x00, 0x00, 0x00,
0x00, // 0x22: movl <cbmgr>, (%esp)
0xb8, 0x00, 0x00, 0x00, 0x00, // 0x29: movl <reentry>, %eax
0xff, 0xd0, // 0x2e: calll *%eax
0x89, 0x45, 0x04, // 0x30: movl %eax, 0x4(%ebp)
0x0f, 0xae, 0x4c, 0x24, 0x10, // 0x33: fxrstor 0x10(%esp)
0x81, 0xc4, 0x18, 0x02, 0x00, 0x00, // 0x38: addl $0x218, %esp
0x5f, // 0x3e: popl %edi
0x5e, // 0x3f: popl %esi
0x5a, // 0x40: popl %edx
0x59, // 0x41: popl %ecx
0x5b, // 0x42: popl %ebx
0x58, // 0x43: popl %eax
0x8b, 0x65, 0xfc, // 0x44: movl -0x4(%ebp), %esp
0x5d, // 0x48: popl %ebp
0xc3 // 0x49: retl
};
const unsigned ReentryFnAddrOffset = 0x2a;
const unsigned ReentryCtxAddrOffset = 0x25;
memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode));
memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnAddr,
sizeof(uint32_t));
memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxAddr,
sizeof(uint32_t));
}
void OrcI386::writeTrampolines(char *TrampolineWorkingMem,
ExecutorAddr TrampolineBlockTargetAddress,
ExecutorAddr ResolverAddr,
unsigned NumTrampolines) {
assert((ResolverAddr.getValue() >> 32) == 0 && "ResolverAddr out of range");
uint64_t CallRelImm = 0xF1C4C400000000e8;
uint64_t ResolverRel = ResolverAddr - TrampolineBlockTargetAddress - 5;
uint64_t *Trampolines = reinterpret_cast<uint64_t *>(TrampolineWorkingMem);
for (unsigned I = 0; I < NumTrampolines; ++I, ResolverRel -= TrampolineSize)
Trampolines[I] = CallRelImm | (ResolverRel << 8);
}
void OrcI386::writeIndirectStubsBlock(char *StubsBlockWorkingMem,
ExecutorAddr StubsBlockTargetAddress,
ExecutorAddr PointersBlockTargetAddress,
unsigned NumStubs) {
assert((StubsBlockTargetAddress.getValue() >> 32) == 0 &&
"StubsBlockTargetAddress is out of range");
assert((PointersBlockTargetAddress.getValue() >> 32) == 0 &&
"PointersBlockTargetAddress is out of range");
// Stub format is:
//
// .section __orc_stubs
// stub1:
// jmpq *ptr1
// .byte 0xC4 ; <- Invalid opcode padding.
// .byte 0xF1
// stub2:
// jmpq *ptr2
//
// ...
//
// .section __orc_ptrs
// ptr1:
// .quad 0x0
// ptr2:
// .quad 0x0
//
// ...
assert(stubAndPointerRangesOk<OrcI386>(
StubsBlockTargetAddress, PointersBlockTargetAddress, NumStubs) &&
"PointersBlock is out of range");
uint64_t *Stub = reinterpret_cast<uint64_t *>(StubsBlockWorkingMem);
uint64_t PtrAddr = PointersBlockTargetAddress.getValue();
for (unsigned I = 0; I < NumStubs; ++I, PtrAddr += 4)
Stub[I] = 0xF1C40000000025ff | (PtrAddr << 16);
}
void OrcMips32_Base::writeResolverCode(char *ResolverWorkingMem,
ExecutorAddr ResolverTargetAddress,
ExecutorAddr ReentryFnAddr,
ExecutorAddr ReentryCtxAddr,
bool isBigEndian) {
const uint32_t ResolverCode[] = {
// resolver_entry:
0x27bdff98, // 0x00: addiu $sp,$sp,-104
0xafa20000, // 0x04: sw $v0,0($sp)
0xafa30004, // 0x08: sw $v1,4($sp)
0xafa40008, // 0x0c: sw $a0,8($sp)
0xafa5000c, // 0x10: sw $a1,12($sp)
0xafa60010, // 0x14: sw $a2,16($sp)
0xafa70014, // 0x18: sw $a3,20($sp)
0xafb00018, // 0x1c: sw $s0,24($sp)
0xafb1001c, // 0x20: sw $s1,28($sp)
0xafb20020, // 0x24: sw $s2,32($sp)
0xafb30024, // 0x28: sw $s3,36($sp)
0xafb40028, // 0x2c: sw $s4,40($sp)
0xafb5002c, // 0x30: sw $s5,44($sp)
0xafb60030, // 0x34: sw $s6,48($sp)
0xafb70034, // 0x38: sw $s7,52($sp)
0xafa80038, // 0x3c: sw $t0,56($sp)
0xafa9003c, // 0x40: sw $t1,60($sp)
0xafaa0040, // 0x44: sw $t2,64($sp)
0xafab0044, // 0x48: sw $t3,68($sp)
0xafac0048, // 0x4c: sw $t4,72($sp)
0xafad004c, // 0x50: sw $t5,76($sp)
0xafae0050, // 0x54: sw $t6,80($sp)
0xafaf0054, // 0x58: sw $t7,84($sp)
0xafb80058, // 0x5c: sw $t8,88($sp)
0xafb9005c, // 0x60: sw $t9,92($sp)
0xafbe0060, // 0x64: sw $fp,96($sp)
0xafbf0064, // 0x68: sw $ra,100($sp)
// JIT re-entry ctx addr.
0x00000000, // 0x6c: lui $a0,ctx
0x00000000, // 0x70: addiu $a0,$a0,ctx
0x03e02825, // 0x74: move $a1, $ra
0x24a5ffec, // 0x78: addiu $a1,$a1,-20
// JIT re-entry fn addr:
0x00000000, // 0x7c: lui $t9,reentry
0x00000000, // 0x80: addiu $t9,$t9,reentry
0x0320f809, // 0x84: jalr $t9
0x00000000, // 0x88: nop
0x8fbf0064, // 0x8c: lw $ra,100($sp)
0x8fbe0060, // 0x90: lw $fp,96($sp)
0x8fb9005c, // 0x94: lw $t9,92($sp)
0x8fb80058, // 0x98: lw $t8,88($sp)
0x8faf0054, // 0x9c: lw $t7,84($sp)
0x8fae0050, // 0xa0: lw $t6,80($sp)
0x8fad004c, // 0xa4: lw $t5,76($sp)
0x8fac0048, // 0xa8: lw $t4,72($sp)
0x8fab0044, // 0xac: lw $t3,68($sp)
0x8faa0040, // 0xb0: lw $t2,64($sp)
0x8fa9003c, // 0xb4: lw $t1,60($sp)
0x8fa80038, // 0xb8: lw $t0,56($sp)
0x8fb70034, // 0xbc: lw $s7,52($sp)
0x8fb60030, // 0xc0: lw $s6,48($sp)
0x8fb5002c, // 0xc4: lw $s5,44($sp)
0x8fb40028, // 0xc8: lw $s4,40($sp)
0x8fb30024, // 0xcc: lw $s3,36($sp)
0x8fb20020, // 0xd0: lw $s2,32($sp)
0x8fb1001c, // 0xd4: lw $s1,28($sp)
0x8fb00018, // 0xd8: lw $s0,24($sp)
0x8fa70014, // 0xdc: lw $a3,20($sp)
0x8fa60010, // 0xe0: lw $a2,16($sp)
0x8fa5000c, // 0xe4: lw $a1,12($sp)
0x8fa40008, // 0xe8: lw $a0,8($sp)
0x27bd0068, // 0xec: addiu $sp,$sp,104
0x0300f825, // 0xf0: move $ra, $t8
0x03200008, // 0xf4: jr $t9
0x00000000, // 0xf8: move $t9, $v0/v1
};
const unsigned ReentryFnAddrOffset = 0x7c; // JIT re-entry fn addr lui
const unsigned ReentryCtxAddrOffset = 0x6c; // JIT re-entry context addr lui
const unsigned Offsett = 0xf8;
memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode));
// Depending on endian return value will be in v0 or v1.
uint32_t MoveVxT9 = isBigEndian ? 0x0060c825 : 0x0040c825;
memcpy(ResolverWorkingMem + Offsett, &MoveVxT9, sizeof(MoveVxT9));
uint32_t ReentryCtxLUi =
0x3c040000 | (((ReentryCtxAddr.getValue() + 0x8000) >> 16) & 0xFFFF);
uint32_t ReentryCtxADDiu = 0x24840000 | (ReentryCtxAddr.getValue() & 0xFFFF);
memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxLUi,
sizeof(ReentryCtxLUi));
memcpy(ResolverWorkingMem + ReentryCtxAddrOffset + 4, &ReentryCtxADDiu,
sizeof(ReentryCtxADDiu));
uint32_t ReentryFnLUi =
0x3c190000 | (((ReentryFnAddr.getValue() + 0x8000) >> 16) & 0xFFFF);
uint32_t ReentryFnADDiu = 0x27390000 | (ReentryFnAddr.getValue() & 0xFFFF);
memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnLUi,
sizeof(ReentryFnLUi));
memcpy(ResolverWorkingMem + ReentryFnAddrOffset + 4, &ReentryFnADDiu,
sizeof(ReentryFnADDiu));
}
void OrcMips32_Base::writeTrampolines(char *TrampolineBlockWorkingMem,
ExecutorAddr TrampolineBlockTargetAddress,
ExecutorAddr ResolverAddr,
unsigned NumTrampolines) {
assert((ResolverAddr.getValue() >> 32) == 0 && "ResolverAddr out of range");
uint32_t *Trampolines =
reinterpret_cast<uint32_t *>(TrampolineBlockWorkingMem);
uint32_t RHiAddr = ((ResolverAddr.getValue() + 0x8000) >> 16);
for (unsigned I = 0; I < NumTrampolines; ++I) {
// move $t8,$ra
// lui $t9,ResolverAddr
// addiu $t9,$t9,ResolverAddr
// jalr $t9
// nop
Trampolines[5 * I + 0] = 0x03e0c025;
Trampolines[5 * I + 1] = 0x3c190000 | (RHiAddr & 0xFFFF);
Trampolines[5 * I + 2] = 0x27390000 | (ResolverAddr.getValue() & 0xFFFF);
Trampolines[5 * I + 3] = 0x0320f809;
Trampolines[5 * I + 4] = 0x00000000;
}
}
void OrcMips32_Base::writeIndirectStubsBlock(
char *StubsBlockWorkingMem, ExecutorAddr StubsBlockTargetAddress,
ExecutorAddr PointersBlockTargetAddress, unsigned NumStubs) {
assert((StubsBlockTargetAddress.getValue() >> 32) == 0 &&
"InitialPtrVal is out of range");
// Stub format is:
//
// .section __orc_stubs
// stub1:
// lui $t9, ptr1
// lw $t9, %lo(ptr1)($t9)
// jr $t9
// stub2:
// lui $t9, ptr2
// lw $t9,%lo(ptr1)($t9)
// jr $t9
//
// ...
//
// .section __orc_ptrs
// ptr1:
// .word 0x0
// ptr2:
// .word 0x0
//
// i..
assert(stubAndPointerRangesOk<OrcMips32_Base>(
StubsBlockTargetAddress, PointersBlockTargetAddress, NumStubs) &&
"PointersBlock is out of range");
// Populate the stubs page stubs and mark it executable.
uint32_t *Stub = reinterpret_cast<uint32_t *>(StubsBlockWorkingMem);
uint64_t PtrAddr = PointersBlockTargetAddress.getValue();
for (unsigned I = 0; I < NumStubs; ++I) {
uint32_t HiAddr = ((PtrAddr + 0x8000) >> 16);
Stub[4 * I + 0] = 0x3c190000 | (HiAddr & 0xFFFF); // lui $t9,ptr1
Stub[4 * I + 1] = 0x8f390000 | (PtrAddr & 0xFFFF); // lw $t9,%lo(ptr1)($t9)
Stub[4 * I + 2] = 0x03200008; // jr $t9
Stub[4 * I + 3] = 0x00000000; // nop
PtrAddr += 4;
}
}
void OrcMips64::writeResolverCode(char *ResolverWorkingMem,
ExecutorAddr ResolverTargetAddress,
ExecutorAddr ReentryFnAddr,
ExecutorAddr ReentryCtxAddr) {
const uint32_t ResolverCode[] = {
//resolver_entry:
0x67bdff30, // 0x00: daddiu $sp,$sp,-208
0xffa20000, // 0x04: sd v0,0(sp)
0xffa30008, // 0x08: sd v1,8(sp)
0xffa40010, // 0x0c: sd a0,16(sp)
0xffa50018, // 0x10: sd a1,24(sp)
0xffa60020, // 0x14: sd a2,32(sp)
0xffa70028, // 0x18: sd a3,40(sp)
0xffa80030, // 0x1c: sd a4,48(sp)
0xffa90038, // 0x20: sd a5,56(sp)
0xffaa0040, // 0x24: sd a6,64(sp)
0xffab0048, // 0x28: sd a7,72(sp)
0xffac0050, // 0x2c: sd t0,80(sp)
0xffad0058, // 0x30: sd t1,88(sp)
0xffae0060, // 0x34: sd t2,96(sp)
0xffaf0068, // 0x38: sd t3,104(sp)
0xffb00070, // 0x3c: sd s0,112(sp)
0xffb10078, // 0x40: sd s1,120(sp)
0xffb20080, // 0x44: sd s2,128(sp)
0xffb30088, // 0x48: sd s3,136(sp)
0xffb40090, // 0x4c: sd s4,144(sp)
0xffb50098, // 0x50: sd s5,152(sp)
0xffb600a0, // 0x54: sd s6,160(sp)
0xffb700a8, // 0x58: sd s7,168(sp)
0xffb800b0, // 0x5c: sd t8,176(sp)
0xffb900b8, // 0x60: sd t9,184(sp)
0xffbe00c0, // 0x64: sd fp,192(sp)
0xffbf00c8, // 0x68: sd ra,200(sp)
// JIT re-entry ctx addr.
0x00000000, // 0x6c: lui $a0,heighest(ctx)
0x00000000, // 0x70: daddiu $a0,$a0,heigher(ctx)
0x00000000, // 0x74: dsll $a0,$a0,16
0x00000000, // 0x78: daddiu $a0,$a0,hi(ctx)
0x00000000, // 0x7c: dsll $a0,$a0,16
0x00000000, // 0x80: daddiu $a0,$a0,lo(ctx)
0x03e02825, // 0x84: move $a1, $ra
0x64a5ffdc, // 0x88: daddiu $a1,$a1,-36
// JIT re-entry fn addr:
0x00000000, // 0x8c: lui $t9,reentry
0x00000000, // 0x90: daddiu $t9,$t9,reentry
0x00000000, // 0x94: dsll $t9,$t9,
0x00000000, // 0x98: daddiu $t9,$t9,
0x00000000, // 0x9c: dsll $t9,$t9,
0x00000000, // 0xa0: daddiu $t9,$t9,
0x0320f809, // 0xa4: jalr $t9
0x00000000, // 0xa8: nop
0xdfbf00c8, // 0xac: ld ra, 200(sp)
0xdfbe00c0, // 0xb0: ld fp, 192(sp)
0xdfb900b8, // 0xb4: ld t9, 184(sp)
0xdfb800b0, // 0xb8: ld t8, 176(sp)
0xdfb700a8, // 0xbc: ld s7, 168(sp)
0xdfb600a0, // 0xc0: ld s6, 160(sp)
0xdfb50098, // 0xc4: ld s5, 152(sp)
0xdfb40090, // 0xc8: ld s4, 144(sp)
0xdfb30088, // 0xcc: ld s3, 136(sp)
0xdfb20080, // 0xd0: ld s2, 128(sp)
0xdfb10078, // 0xd4: ld s1, 120(sp)
0xdfb00070, // 0xd8: ld s0, 112(sp)
0xdfaf0068, // 0xdc: ld t3, 104(sp)
0xdfae0060, // 0xe0: ld t2, 96(sp)
0xdfad0058, // 0xe4: ld t1, 88(sp)
0xdfac0050, // 0xe8: ld t0, 80(sp)
0xdfab0048, // 0xec: ld a7, 72(sp)
0xdfaa0040, // 0xf0: ld a6, 64(sp)
0xdfa90038, // 0xf4: ld a5, 56(sp)
0xdfa80030, // 0xf8: ld a4, 48(sp)
0xdfa70028, // 0xfc: ld a3, 40(sp)
0xdfa60020, // 0x100: ld a2, 32(sp)
0xdfa50018, // 0x104: ld a1, 24(sp)
0xdfa40010, // 0x108: ld a0, 16(sp)
0xdfa30008, // 0x10c: ld v1, 8(sp)
0x67bd00d0, // 0x110: daddiu $sp,$sp,208
0x0300f825, // 0x114: move $ra, $t8
0x03200008, // 0x118: jr $t9
0x0040c825, // 0x11c: move $t9, $v0
};
const unsigned ReentryFnAddrOffset = 0x8c; // JIT re-entry fn addr lui
const unsigned ReentryCtxAddrOffset = 0x6c; // JIT re-entry ctx addr lui
memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode));
uint32_t ReentryCtxLUi =
0x3c040000 |
(((ReentryCtxAddr.getValue() + 0x800080008000) >> 48) & 0xFFFF);
uint32_t ReentryCtxDADDiu =
0x64840000 | (((ReentryCtxAddr.getValue() + 0x80008000) >> 32) & 0xFFFF);
uint32_t ReentryCtxDSLL = 0x00042438;
uint32_t ReentryCtxDADDiu2 =
0x64840000 | ((((ReentryCtxAddr.getValue() + 0x8000) >> 16) & 0xFFFF));
uint32_t ReentryCtxDSLL2 = 0x00042438;
uint32_t ReentryCtxDADDiu3 =
0x64840000 | (ReentryCtxAddr.getValue() & 0xFFFF);
memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxLUi,
sizeof(ReentryCtxLUi));
memcpy(ResolverWorkingMem + (ReentryCtxAddrOffset + 4), &ReentryCtxDADDiu,
sizeof(ReentryCtxDADDiu));
memcpy(ResolverWorkingMem + (ReentryCtxAddrOffset + 8), &ReentryCtxDSLL,
sizeof(ReentryCtxDSLL));
memcpy(ResolverWorkingMem + (ReentryCtxAddrOffset + 12), &ReentryCtxDADDiu2,
sizeof(ReentryCtxDADDiu2));
memcpy(ResolverWorkingMem + (ReentryCtxAddrOffset + 16), &ReentryCtxDSLL2,
sizeof(ReentryCtxDSLL2));
memcpy(ResolverWorkingMem + (ReentryCtxAddrOffset + 20), &ReentryCtxDADDiu3,
sizeof(ReentryCtxDADDiu3));
uint32_t ReentryFnLUi =
0x3c190000 |
(((ReentryFnAddr.getValue() + 0x800080008000) >> 48) & 0xFFFF);
uint32_t ReentryFnDADDiu =
0x67390000 | (((ReentryFnAddr.getValue() + 0x80008000) >> 32) & 0xFFFF);
uint32_t ReentryFnDSLL = 0x0019cc38;
uint32_t ReentryFnDADDiu2 =
0x67390000 | (((ReentryFnAddr.getValue() + 0x8000) >> 16) & 0xFFFF);
uint32_t ReentryFnDSLL2 = 0x0019cc38;
uint32_t ReentryFnDADDiu3 = 0x67390000 | (ReentryFnAddr.getValue() & 0xFFFF);
memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnLUi,
sizeof(ReentryFnLUi));
memcpy(ResolverWorkingMem + (ReentryFnAddrOffset + 4), &ReentryFnDADDiu,
sizeof(ReentryFnDADDiu));
memcpy(ResolverWorkingMem + (ReentryFnAddrOffset + 8), &ReentryFnDSLL,
sizeof(ReentryFnDSLL));
memcpy(ResolverWorkingMem + (ReentryFnAddrOffset + 12), &ReentryFnDADDiu2,
sizeof(ReentryFnDADDiu2));
memcpy(ResolverWorkingMem + (ReentryFnAddrOffset + 16), &ReentryFnDSLL2,
sizeof(ReentryFnDSLL2));
memcpy(ResolverWorkingMem + (ReentryFnAddrOffset + 20), &ReentryFnDADDiu3,
sizeof(ReentryFnDADDiu3));
}
void OrcMips64::writeTrampolines(char *TrampolineBlockWorkingMem,
ExecutorAddr TrampolineBlockTargetAddress,
ExecutorAddr ResolverAddr,
unsigned NumTrampolines) {
uint32_t *Trampolines =
reinterpret_cast<uint32_t *>(TrampolineBlockWorkingMem);
uint64_t HeighestAddr = ((ResolverAddr.getValue() + 0x800080008000) >> 48);
uint64_t HeigherAddr = ((ResolverAddr.getValue() + 0x80008000) >> 32);
uint64_t HiAddr = ((ResolverAddr.getValue() + 0x8000) >> 16);
for (unsigned I = 0; I < NumTrampolines; ++I) {
Trampolines[10 * I + 0] = 0x03e0c025; // move $t8,$ra
Trampolines[10 * I + 1] = 0x3c190000 | (HeighestAddr & 0xFFFF); // lui $t9,resolveAddr
Trampolines[10 * I + 2] = 0x67390000 | (HeigherAddr & 0xFFFF); // daddiu $t9,$t9,%higher(resolveAddr)
Trampolines[10 * I + 3] = 0x0019cc38; // dsll $t9,$t9,16
Trampolines[10 * I + 4] = 0x67390000 | (HiAddr & 0xFFFF); // daddiu $t9,$t9,%hi(ptr)
Trampolines[10 * I + 5] = 0x0019cc38; // dsll $t9,$t9,16
Trampolines[10 * I + 6] = 0x67390000 | (ResolverAddr.getValue() &
0xFFFF); // daddiu $t9,$t9,%lo(ptr)
Trampolines[10 * I + 7] = 0x0320f809; // jalr $t9
Trampolines[10 * I + 8] = 0x00000000; // nop
Trampolines[10 * I + 9] = 0x00000000; // nop
}
}
void OrcMips64::writeIndirectStubsBlock(char *StubsBlockWorkingMem,
ExecutorAddr StubsBlockTargetAddress,
ExecutorAddr PointersBlockTargetAddress,
unsigned NumStubs) {
// Stub format is:
//
// .section __orc_stubs
// stub1:
// lui $t9,ptr1
// dsll $t9,$t9,16
// daddiu $t9,$t9,%hi(ptr)
// dsll $t9,$t9,16
// ld $t9,%lo(ptr)
// jr $t9
// stub2:
// lui $t9,ptr1
// dsll $t9,$t9,16
// daddiu $t9,$t9,%hi(ptr)
// dsll $t9,$t9,16
// ld $t9,%lo(ptr)
// jr $t9
//
// ...
//
// .section __orc_ptrs
// ptr1:
// .dword 0x0
// ptr2:
// .dword 0x0
//
// ...
assert(stubAndPointerRangesOk<OrcMips64>(
StubsBlockTargetAddress, PointersBlockTargetAddress, NumStubs) &&
"PointersBlock is out of range");
// Populate the stubs page stubs and mark it executable.
uint32_t *Stub = reinterpret_cast<uint32_t *>(StubsBlockWorkingMem);
uint64_t PtrAddr = PointersBlockTargetAddress.getValue();
for (unsigned I = 0; I < NumStubs; ++I, PtrAddr += 8) {
uint64_t HeighestAddr = ((PtrAddr + 0x800080008000) >> 48);
uint64_t HeigherAddr = ((PtrAddr + 0x80008000) >> 32);
uint64_t HiAddr = ((PtrAddr + 0x8000) >> 16);
Stub[8 * I + 0] = 0x3c190000 | (HeighestAddr & 0xFFFF); // lui $t9,ptr1
Stub[8 * I + 1] = 0x67390000 | (HeigherAddr & 0xFFFF); // daddiu $t9,$t9,%higher(ptr)
Stub[8 * I + 2] = 0x0019cc38; // dsll $t9,$t9,16
Stub[8 * I + 3] = 0x67390000 | (HiAddr & 0xFFFF); // daddiu $t9,$t9,%hi(ptr)
Stub[8 * I + 4] = 0x0019cc38; // dsll $t9,$t9,16
Stub[8 * I + 5] = 0xdf390000 | (PtrAddr & 0xFFFF); // ld $t9,%lo(ptr)
Stub[8 * I + 6] = 0x03200008; // jr $t9
Stub[8 * I + 7] = 0x00000000; // nop
}
}
void OrcRiscv64::writeResolverCode(char *ResolverWorkingMem,
ExecutorAddr ResolverTargetAddress,
ExecutorAddr ReentryFnAddr,
ExecutorAddr ReentryCtxAddr) {
const uint32_t ResolverCode[] = {
0xef810113, // 0x00: addi sp,sp,-264
0x00813023, // 0x04: sd s0,0(sp)
0x00913423, // 0x08: sd s1,8(sp)
0x01213823, // 0x0c: sd s2,16(sp)
0x01313c23, // 0x10: sd s3,24(sp)
0x03413023, // 0x14: sd s4,32(sp)
0x03513423, // 0x18: sd s5,40(sp)
0x03613823, // 0x1c: sd s6,48(sp)
0x03713c23, // 0x20: sd s7,56(sp)
0x05813023, // 0x24: sd s8,64(sp)
0x05913423, // 0x28: sd s9,72(sp)
0x05a13823, // 0x2c: sd s10,80(sp)
0x05b13c23, // 0x30: sd s11,88(sp)
0x06113023, // 0x34: sd ra,96(sp)
0x06a13423, // 0x38: sd a0,104(sp)
0x06b13823, // 0x3c: sd a1,112(sp)
0x06c13c23, // 0x40: sd a2,120(sp)
0x08d13023, // 0x44: sd a3,128(sp)
0x08e13423, // 0x48: sd a4,136(sp)
0x08f13823, // 0x4c: sd a5,144(sp)
0x09013c23, // 0x50: sd a6,152(sp)
0x0b113023, // 0x54: sd a7,160(sp)
0x0a813427, // 0x58: fsd fs0,168(sp)
0x0a913827, // 0x5c: fsd fs1,176(sp)
0x0b213c27, // 0x60: fsd fs2,184(sp)
0x0d313027, // 0x64: fsd fs3,192(sp)
0x0d413427, // 0x68: fsd fs4,200(sp)
0x0d513827, // 0x6c: fsd fs5,208(sp)
0x0d613c27, // 0x70: fsd fs6,216(sp)
0x0f713027, // 0x74: fsd fs7,224(sp)
0x0f813427, // 0x78: fsd fs8,232(sp)
0x0f913827, // 0x7c: fsd fs9,240(sp)
0x0fa13c27, // 0x80: fsd fs10,248(sp)
0x11b13027, // 0x84: fsd fs11,256(sp)
0x00000517, // 0x88: auipc a0,0x0
0x0b053503, // 0x8c: ld a0,176(a0) # 0x138
0x00030593, // 0x90: mv a1,t1
0xff458593, // 0x94: addi a1,a1,-12
0x00000617, // 0x98: auipc a2,0x0
0x0a863603, // 0x9c: ld a2,168(a2) # 0x140
0x000600e7, // 0xa0: jalr a2
0x00050293, // 0xa4: mv t0,a0
0x00013403, // 0xa8: ld s0,0(sp)
0x00813483, // 0xac: ld s1,8(sp)
0x01013903, // 0xb0: ld s2,16(sp)
0x01813983, // 0xb4: ld s3,24(sp)
0x02013a03, // 0xb8: ld s4,32(sp)
0x02813a83, // 0xbc: ld s5,40(sp)
0x03013b03, // 0xc0: ld s6,48(sp)
0x03813b83, // 0xc4: ld s7,56(sp)
0x04013c03, // 0xc8: ld s8,64(sp)
0x04813c83, // 0xcc: ld s9,72(sp)
0x05013d03, // 0xd0: ld s10,80(sp)
0x05813d83, // 0xd4: ld s11,88(sp)
0x06013083, // 0xd8: ld ra,96(sp)
0x06813503, // 0xdc: ld a0,104(sp)
0x07013583, // 0xe0: ld a1,112(sp)
0x07813603, // 0xe4: ld a2,120(sp)
0x08013683, // 0xe8: ld a3,128(sp)
0x08813703, // 0xec: ld a4,136(sp)
0x09013783, // 0xf0: ld a5,144(sp)
0x09813803, // 0xf4: ld a6,152(sp)
0x0a013883, // 0xf8: ld a7,160(sp)
0x0a813407, // 0xfc: fld fs0,168(sp)
0x0b013487, // 0x100: fld fs1,176(sp)
0x0b813907, // 0x104: fld fs2,184(sp)
0x0c013987, // 0x108: fld fs3,192(sp)
0x0c813a07, // 0x10c: fld fs4,200(sp)
0x0d013a87, // 0x110: fld fs5,208(sp)
0x0d813b07, // 0x114: fld fs6,216(sp)
0x0e013b87, // 0x118: fld fs7,224(sp)
0x0e813c07, // 0x11c: fld fs8,232(sp)
0x0f013c87, // 0x120: fld fs9,240(sp)
0x0f813d07, // 0x124: fld fs10,248(sp)
0x10013d87, // 0x128: fld fs11,256(sp)
0x10810113, // 0x12c: addi sp,sp,264
0x00028067, // 0x130: jr t0
0x12345678, // 0x134: padding to align at 8 byte
0x12345678, // 0x138: Lreentry_ctx_ptr:
0xdeadbeef, // 0x13c: .quad 0
0x98765432, // 0x140: Lreentry_fn_ptr:
0xcafef00d // 0x144: .quad 0
};
const unsigned ReentryCtxAddrOffset = 0x138;
const unsigned ReentryFnAddrOffset = 0x140;
memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode));
memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnAddr,
sizeof(uint64_t));
memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxAddr,
sizeof(uint64_t));
}
void OrcRiscv64::writeTrampolines(char *TrampolineBlockWorkingMem,
ExecutorAddr TrampolineBlockTargetAddress,
ExecutorAddr ResolverAddr,
unsigned NumTrampolines) {
unsigned OffsetToPtr = alignTo(NumTrampolines * TrampolineSize, 8);
memcpy(TrampolineBlockWorkingMem + OffsetToPtr, &ResolverAddr,
sizeof(uint64_t));
uint32_t *Trampolines =
reinterpret_cast<uint32_t *>(TrampolineBlockWorkingMem);
for (unsigned I = 0; I < NumTrampolines; ++I, OffsetToPtr -= TrampolineSize) {
uint32_t Hi20 = (OffsetToPtr + 0x800) & 0xFFFFF000;
uint32_t Lo12 = OffsetToPtr - Hi20;
Trampolines[4 * I + 0] = 0x00000297 | Hi20; // auipc t0, %hi(Lptr)
Trampolines[4 * I + 1] =
0x0002b283 | ((Lo12 & 0xFFF) << 20); // ld t0, %lo(Lptr)
Trampolines[4 * I + 2] = 0x00028367; // jalr t1, t0
Trampolines[4 * I + 3] = 0xdeadface; // padding
}
}
void OrcRiscv64::writeIndirectStubsBlock(
char *StubsBlockWorkingMem, ExecutorAddr StubsBlockTargetAddress,
ExecutorAddr PointersBlockTargetAddress, unsigned NumStubs) {
// Stub format is:
//
// .section __orc_stubs
// stub1:
// auipc t0, %hi(ptr1) ; PC-rel load of ptr1
// ld t0, %lo(t0)
// jr t0 ; Jump to resolver
// .quad 0 ; Pad to 16 bytes
// stub2:
// auipc t0, %hi(ptr1) ; PC-rel load of ptr1
// ld t0, %lo(t0)
// jr t0 ; Jump to resolver
// .quad 0
//
// ...
//
// .section __orc_ptrs
// ptr1:
// .quad 0x0
// ptr2:
// .quad 0x0
//
// ...
assert(stubAndPointerRangesOk<OrcRiscv64>(
StubsBlockTargetAddress, PointersBlockTargetAddress, NumStubs) &&
"PointersBlock is out of range");
uint32_t *Stub = reinterpret_cast<uint32_t *>(StubsBlockWorkingMem);
for (unsigned I = 0; I < NumStubs; ++I) {
uint64_t PtrDisplacement =
PointersBlockTargetAddress - StubsBlockTargetAddress;
uint32_t Hi20 = (PtrDisplacement + 0x800) & 0xFFFFF000;
uint32_t Lo12 = PtrDisplacement - Hi20;
Stub[4 * I + 0] = 0x00000297 | Hi20; // auipc t0, %hi(Lptr)
Stub[4 * I + 1] = 0x0002b283 | ((Lo12 & 0xFFF) << 20); // ld t0, %lo(Lptr)
Stub[4 * I + 2] = 0x00028067; // jr t0
Stub[4 * I + 3] = 0xfeedbeef; // padding
PointersBlockTargetAddress += PointerSize;
StubsBlockTargetAddress += StubSize;
}
}
void OrcLoongArch64::writeResolverCode(char *ResolverWorkingMem,
ExecutorAddr ResolverTargetAddress,
ExecutorAddr ReentryFnAddr,
ExecutorAddr ReentryCtxAddr) {
LLVM_DEBUG({
dbgs() << "Writing resolver code to "
<< formatv("{0:x16}", ResolverTargetAddress) << "\n";
});
const uint32_t ResolverCode[] = {
0x02fde063, // 0x0: addi.d $sp, $sp, -136(0xf78)
0x29c00061, // 0x4: st.d $ra, $sp, 0
0x29c02064, // 0x8: st.d $a0, $sp, 8(0x8)
0x29c04065, // 0xc: st.d $a1, $sp, 16(0x10)
0x29c06066, // 0x10: st.d $a2, $sp, 24(0x18)
0x29c08067, // 0x14: st.d $a3, $sp, 32(0x20)
0x29c0a068, // 0x18: st.d $a4, $sp, 40(0x28)
0x29c0c069, // 0x1c: st.d $a5, $sp, 48(0x30)
0x29c0e06a, // 0x20: st.d $a6, $sp, 56(0x38)
0x29c1006b, // 0x24: st.d $a7, $sp, 64(0x40)
0x2bc12060, // 0x28: fst.d $fa0, $sp, 72(0x48)
0x2bc14061, // 0x2c: fst.d $fa1, $sp, 80(0x50)
0x2bc16062, // 0x30: fst.d $fa2, $sp, 88(0x58)
0x2bc18063, // 0x34: fst.d $fa3, $sp, 96(0x60)
0x2bc1a064, // 0x38: fst.d $fa4, $sp, 104(0x68)
0x2bc1c065, // 0x3c: fst.d $fa5, $sp, 112(0x70)
0x2bc1e066, // 0x40: fst.d $fa6, $sp, 120(0x78)
0x2bc20067, // 0x44: fst.d $fa7, $sp, 128(0x80)
0x1c000004, // 0x48: pcaddu12i $a0, 0
0x28c1c084, // 0x4c: ld.d $a0, $a0, 112(0x70)
0x001501a5, // 0x50: move $a1, $t1
0x02ffd0a5, // 0x54: addi.d $a1, $a1, -12(0xff4)
0x1c000006, // 0x58: pcaddu12i $a2, 0
0x28c1a0c6, // 0x5c: ld.d $a2, $a2, 104(0x68)
0x4c0000c1, // 0x60: jirl $ra, $a2, 0
0x0015008c, // 0x64: move $t0, $a0
0x2b820067, // 0x68: fld.d $fa7, $sp, 128(0x80)
0x2b81e066, // 0x6c: fld.d $fa6, $sp, 120(0x78)
0x2b81c065, // 0x70: fld.d $fa5, $sp, 112(0x70)
0x2b81a064, // 0x74: fld.d $fa4, $sp, 104(0x68)
0x2b818063, // 0x78: fld.d $fa3, $sp, 96(0x60)
0x2b816062, // 0x7c: fld.d $fa2, $sp, 88(0x58)
0x2b814061, // 0x80: fld.d $fa1, $sp, 80(0x50)
0x2b812060, // 0x84: fld.d $fa0, $sp, 72(0x48)
0x28c1006b, // 0x88: ld.d $a7, $sp, 64(0x40)
0x28c0e06a, // 0x8c: ld.d $a6, $sp, 56(0x38)
0x28c0c069, // 0x90: ld.d $a5, $sp, 48(0x30)
0x28c0a068, // 0x94: ld.d $a4, $sp, 40(0x28)
0x28c08067, // 0x98: ld.d $a3, $sp, 32(0x20)
0x28c06066, // 0x9c: ld.d $a2, $sp, 24(0x18)
0x28c04065, // 0xa0: ld.d $a1, $sp, 16(0x10)
0x28c02064, // 0xa4: ld.d $a0, $sp, 8(0x8)
0x28c00061, // 0xa8: ld.d $ra, $sp, 0
0x02c22063, // 0xac: addi.d $sp, $sp, 136(0x88)
0x4c000180, // 0xb0: jr $t0
0x00000000, // 0xb4: padding to align at 8 bytes
0x01234567, // 0xb8: Lreentry_ctx_ptr:
0xdeedbeef, // 0xbc: .dword 0
0x98765432, // 0xc0: Lreentry_fn_ptr:
0xcafef00d, // 0xc4: .dword 0
};
const unsigned ReentryCtxAddrOffset = 0xb8;
const unsigned ReentryFnAddrOffset = 0xc0;
memcpy(ResolverWorkingMem, ResolverCode, sizeof(ResolverCode));
memcpy(ResolverWorkingMem + ReentryFnAddrOffset, &ReentryFnAddr,
sizeof(uint64_t));
memcpy(ResolverWorkingMem + ReentryCtxAddrOffset, &ReentryCtxAddr,
sizeof(uint64_t));
}
void OrcLoongArch64::writeTrampolines(char *TrampolineBlockWorkingMem,
ExecutorAddr TrampolineBlockTargetAddress,
ExecutorAddr ResolverAddr,
unsigned NumTrampolines) {
LLVM_DEBUG({
dbgs() << "Writing trampoline code to "
<< formatv("{0:x16}", TrampolineBlockTargetAddress) << "\n";
});
unsigned OffsetToPtr = alignTo(NumTrampolines * TrampolineSize, 8);
memcpy(TrampolineBlockWorkingMem + OffsetToPtr, &ResolverAddr,
sizeof(uint64_t));
uint32_t *Trampolines =
reinterpret_cast<uint32_t *>(TrampolineBlockWorkingMem);
for (unsigned I = 0; I < NumTrampolines; ++I, OffsetToPtr -= TrampolineSize) {
uint32_t Hi20 = (OffsetToPtr + 0x800) & 0xfffff000;
uint32_t Lo12 = OffsetToPtr - Hi20;
Trampolines[4 * I + 0] =
0x1c00000c |
(((Hi20 >> 12) & 0xfffff) << 5); // pcaddu12i $t0, %pc_hi20(Lptr)
Trampolines[4 * I + 1] =
0x28c0018c | ((Lo12 & 0xfff) << 10); // ld.d $t0, $t0, %pc_lo12(Lptr)
Trampolines[4 * I + 2] = 0x4c00018d; // jirl $t1, $t0, 0
Trampolines[4 * I + 3] = 0x0; // padding
}
}
void OrcLoongArch64::writeIndirectStubsBlock(
char *StubsBlockWorkingMem, ExecutorAddr StubsBlockTargetAddress,
ExecutorAddr PointersBlockTargetAddress, unsigned NumStubs) {
// Stub format is:
//
// .section __orc_stubs
// stub1:
// pcaddu12i $t0, %pc_hi20(ptr1) ; PC-rel load of ptr1
// ld.d $t0, $t0, %pc_lo12(ptr1)
// jr $t0 ; Jump to resolver
// .dword 0 ; Pad to 16 bytes
// stub2:
// pcaddu12i $t0, %pc_hi20(ptr2) ; PC-rel load of ptr2
// ld.d $t0, $t0, %pc_lo12(ptr2)
// jr $t0 ; Jump to resolver
// .dword 0 ; Pad to 16 bytes
// ...
//
// .section __orc_ptrs
// ptr1:
// .dword 0x0
// ptr2:
// .dword 0x0
// ...
LLVM_DEBUG({
dbgs() << "Writing stubs code to "
<< formatv("{0:x16}", StubsBlockTargetAddress) << "\n";
});
assert(stubAndPointerRangesOk<OrcLoongArch64>(
StubsBlockTargetAddress, PointersBlockTargetAddress, NumStubs) &&
"PointersBlock is out of range");
uint32_t *Stub = reinterpret_cast<uint32_t *>(StubsBlockWorkingMem);
for (unsigned I = 0; I < NumStubs; ++I) {
uint64_t PtrDisplacement =
PointersBlockTargetAddress - StubsBlockTargetAddress;
uint32_t Hi20 = (PtrDisplacement + 0x800) & 0xfffff000;
uint32_t Lo12 = PtrDisplacement - Hi20;
Stub[4 * I + 0] = 0x1c00000c | (((Hi20 >> 12) & 0xfffff)
<< 5); // pcaddu12i $t0, %pc_hi20(Lptr)
Stub[4 * I + 1] =
0x28c0018c | ((Lo12 & 0xfff) << 10); // ld.d $t0, $t0, %pc_lo12(Lptr)
Stub[4 * I + 2] = 0x4c000180; // jr $t0
Stub[4 * I + 3] = 0x0; // padding
PointersBlockTargetAddress += PointerSize;
StubsBlockTargetAddress += StubSize;
}
}
} // End namespace orc.
} // End namespace llvm.