Files
clang-p2996/llvm/lib/Target/AMDGPU/AMDGPURegBankCombiner.cpp
Jay Foad dcb834843e [AMDGPU] Split SIModeRegisterDefaults out of AMDGPUBaseInfo. NFC.
This is only used by CodeGen. Moving it out of AMDGPUBaseInfo simplifies
future changes to make some of it depend on the subtarget.

Differential Revision: https://reviews.llvm.org/D144650
2023-02-23 16:38:15 +00:00

493 lines
18 KiB
C++

//=== lib/CodeGen/GlobalISel/AMDGPURegBankCombiner.cpp ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass does combining of machine instructions at the generic MI level,
// after register banks are known.
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPURegisterBankInfo.h"
#include "GCNSubtarget.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/GlobalISel/Combiner.h"
#include "llvm/CodeGen/GlobalISel/CombinerHelper.h"
#include "llvm/CodeGen/GlobalISel/CombinerInfo.h"
#include "llvm/CodeGen/GlobalISel/GISelKnownBits.h"
#include "llvm/CodeGen/GlobalISel/MIPatternMatch.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/IR/IntrinsicsAMDGPU.h"
#include "llvm/Target/TargetMachine.h"
#define DEBUG_TYPE "amdgpu-regbank-combiner"
using namespace llvm;
using namespace MIPatternMatch;
class AMDGPURegBankCombinerHelper {
protected:
MachineIRBuilder &B;
MachineFunction &MF;
MachineRegisterInfo &MRI;
const GCNSubtarget &Subtarget;
const RegisterBankInfo &RBI;
const TargetRegisterInfo &TRI;
const SIInstrInfo &TII;
CombinerHelper &Helper;
public:
AMDGPURegBankCombinerHelper(MachineIRBuilder &B, CombinerHelper &Helper)
: B(B), MF(B.getMF()), MRI(*B.getMRI()),
Subtarget(MF.getSubtarget<GCNSubtarget>()),
RBI(*Subtarget.getRegBankInfo()), TRI(*Subtarget.getRegisterInfo()),
TII(*Subtarget.getInstrInfo()), Helper(Helper){};
bool isVgprRegBank(Register Reg);
Register getAsVgpr(Register Reg);
struct MinMaxMedOpc {
unsigned Min, Max, Med;
};
struct Med3MatchInfo {
unsigned Opc;
Register Val0, Val1, Val2;
};
MinMaxMedOpc getMinMaxPair(unsigned Opc);
template <class m_Cst, typename CstTy>
bool matchMed(MachineInstr &MI, MachineRegisterInfo &MRI, MinMaxMedOpc MMMOpc,
Register &Val, CstTy &K0, CstTy &K1);
bool matchIntMinMaxToMed3(MachineInstr &MI, Med3MatchInfo &MatchInfo);
bool matchFPMinMaxToMed3(MachineInstr &MI, Med3MatchInfo &MatchInfo);
bool matchFPMinMaxToClamp(MachineInstr &MI, Register &Reg);
bool matchFPMed3ToClamp(MachineInstr &MI, Register &Reg);
void applyMed3(MachineInstr &MI, Med3MatchInfo &MatchInfo);
void applyClamp(MachineInstr &MI, Register &Reg);
private:
SIModeRegisterDefaults getMode();
bool getIEEE();
bool getDX10Clamp();
bool isFminnumIeee(const MachineInstr &MI);
bool isFCst(MachineInstr *MI);
bool isClampZeroToOne(MachineInstr *K0, MachineInstr *K1);
};
bool AMDGPURegBankCombinerHelper::isVgprRegBank(Register Reg) {
return RBI.getRegBank(Reg, MRI, TRI)->getID() == AMDGPU::VGPRRegBankID;
}
Register AMDGPURegBankCombinerHelper::getAsVgpr(Register Reg) {
if (isVgprRegBank(Reg))
return Reg;
// Search for existing copy of Reg to vgpr.
for (MachineInstr &Use : MRI.use_instructions(Reg)) {
Register Def = Use.getOperand(0).getReg();
if (Use.getOpcode() == AMDGPU::COPY && isVgprRegBank(Def))
return Def;
}
// Copy Reg to vgpr.
Register VgprReg = B.buildCopy(MRI.getType(Reg), Reg).getReg(0);
MRI.setRegBank(VgprReg, RBI.getRegBank(AMDGPU::VGPRRegBankID));
return VgprReg;
}
AMDGPURegBankCombinerHelper::MinMaxMedOpc
AMDGPURegBankCombinerHelper::getMinMaxPair(unsigned Opc) {
switch (Opc) {
default:
llvm_unreachable("Unsupported opcode");
case AMDGPU::G_SMAX:
case AMDGPU::G_SMIN:
return {AMDGPU::G_SMIN, AMDGPU::G_SMAX, AMDGPU::G_AMDGPU_SMED3};
case AMDGPU::G_UMAX:
case AMDGPU::G_UMIN:
return {AMDGPU::G_UMIN, AMDGPU::G_UMAX, AMDGPU::G_AMDGPU_UMED3};
case AMDGPU::G_FMAXNUM:
case AMDGPU::G_FMINNUM:
return {AMDGPU::G_FMINNUM, AMDGPU::G_FMAXNUM, AMDGPU::G_AMDGPU_FMED3};
case AMDGPU::G_FMAXNUM_IEEE:
case AMDGPU::G_FMINNUM_IEEE:
return {AMDGPU::G_FMINNUM_IEEE, AMDGPU::G_FMAXNUM_IEEE,
AMDGPU::G_AMDGPU_FMED3};
}
}
template <class m_Cst, typename CstTy>
bool AMDGPURegBankCombinerHelper::matchMed(MachineInstr &MI,
MachineRegisterInfo &MRI,
MinMaxMedOpc MMMOpc, Register &Val,
CstTy &K0, CstTy &K1) {
// 4 operand commutes of: min(max(Val, K0), K1).
// Find K1 from outer instr: min(max(...), K1) or min(K1, max(...)).
// Find K0 and Val from inner instr: max(K0, Val) or max(Val, K0).
// 4 operand commutes of: max(min(Val, K1), K0).
// Find K0 from outer instr: max(min(...), K0) or max(K0, min(...)).
// Find K1 and Val from inner instr: min(K1, Val) or min(Val, K1).
return mi_match(
MI, MRI,
m_any_of(
m_CommutativeBinOp(
MMMOpc.Min, m_CommutativeBinOp(MMMOpc.Max, m_Reg(Val), m_Cst(K0)),
m_Cst(K1)),
m_CommutativeBinOp(
MMMOpc.Max, m_CommutativeBinOp(MMMOpc.Min, m_Reg(Val), m_Cst(K1)),
m_Cst(K0))));
}
bool AMDGPURegBankCombinerHelper::matchIntMinMaxToMed3(
MachineInstr &MI, Med3MatchInfo &MatchInfo) {
Register Dst = MI.getOperand(0).getReg();
if (!isVgprRegBank(Dst))
return false;
// med3 for i16 is only available on gfx9+, and not available for v2i16.
LLT Ty = MRI.getType(Dst);
if ((Ty != LLT::scalar(16) || !Subtarget.hasMed3_16()) &&
Ty != LLT::scalar(32))
return false;
MinMaxMedOpc OpcodeTriple = getMinMaxPair(MI.getOpcode());
Register Val;
std::optional<ValueAndVReg> K0, K1;
// Match min(max(Val, K0), K1) or max(min(Val, K1), K0). Then see if K0 <= K1.
if (!matchMed<GCstAndRegMatch>(MI, MRI, OpcodeTriple, Val, K0, K1))
return false;
if (OpcodeTriple.Med == AMDGPU::G_AMDGPU_SMED3 && K0->Value.sgt(K1->Value))
return false;
if (OpcodeTriple.Med == AMDGPU::G_AMDGPU_UMED3 && K0->Value.ugt(K1->Value))
return false;
MatchInfo = {OpcodeTriple.Med, Val, K0->VReg, K1->VReg};
return true;
}
// fmed3(NaN, K0, K1) = min(min(NaN, K0), K1)
// ieee = true : min/max(SNaN, K) = QNaN, min/max(QNaN, K) = K
// ieee = false : min/max(NaN, K) = K
// clamp(NaN) = dx10_clamp ? 0.0 : NaN
// Consider values of min(max(Val, K0), K1) and max(min(Val, K1), K0) as input.
// Other operand commutes (see matchMed) give same result since min and max are
// commutative.
// Try to replace fp min(max(Val, K0), K1) or max(min(Val, K1), K0), KO<=K1
// with fmed3(Val, K0, K1) or clamp(Val). Clamp requires K0 = 0.0 and K1 = 1.0.
// Val = SNaN only for ieee = true
// fmed3(SNaN, K0, K1) = min(min(SNaN, K0), K1) = min(QNaN, K1) = K1
// min(max(SNaN, K0), K1) = min(QNaN, K1) = K1
// max(min(SNaN, K1), K0) = max(K1, K0) = K1
// Val = NaN,ieee = false or Val = QNaN,ieee = true
// fmed3(NaN, K0, K1) = min(min(NaN, K0), K1) = min(K0, K1) = K0
// min(max(NaN, K0), K1) = min(K0, K1) = K0 (can clamp when dx10_clamp = true)
// max(min(NaN, K1), K0) = max(K1, K0) = K1 != K0
bool AMDGPURegBankCombinerHelper::matchFPMinMaxToMed3(
MachineInstr &MI, Med3MatchInfo &MatchInfo) {
Register Dst = MI.getOperand(0).getReg();
LLT Ty = MRI.getType(Dst);
// med3 for f16 is only available on gfx9+, and not available for v2f16.
if ((Ty != LLT::scalar(16) || !Subtarget.hasMed3_16()) &&
Ty != LLT::scalar(32))
return false;
auto OpcodeTriple = getMinMaxPair(MI.getOpcode());
Register Val;
std::optional<FPValueAndVReg> K0, K1;
// Match min(max(Val, K0), K1) or max(min(Val, K1), K0). Then see if K0 <= K1.
if (!matchMed<GFCstAndRegMatch>(MI, MRI, OpcodeTriple, Val, K0, K1))
return false;
if (K0->Value > K1->Value)
return false;
// For IEEE=false perform combine only when it's safe to assume that there are
// no NaN inputs. Most often MI is marked with nnan fast math flag.
// For IEEE=true consider NaN inputs. fmed3(NaN, K0, K1) is equivalent to
// min(min(NaN, K0), K1). Safe to fold for min(max(Val, K0), K1) since inner
// nodes(max/min) have same behavior when one input is NaN and other isn't.
// Don't consider max(min(SNaN, K1), K0) since there is no isKnownNeverQNaN,
// also post-legalizer inputs to min/max are fcanonicalized (never SNaN).
if ((getIEEE() && isFminnumIeee(MI)) || isKnownNeverNaN(Dst, MRI)) {
// Don't fold single use constant that can't be inlined.
if ((!MRI.hasOneNonDBGUse(K0->VReg) || TII.isInlineConstant(K0->Value)) &&
(!MRI.hasOneNonDBGUse(K1->VReg) || TII.isInlineConstant(K1->Value))) {
MatchInfo = {OpcodeTriple.Med, Val, K0->VReg, K1->VReg};
return true;
}
}
return false;
}
bool AMDGPURegBankCombinerHelper::matchFPMinMaxToClamp(MachineInstr &MI,
Register &Reg) {
// Clamp is available on all types after regbankselect (f16, f32, f64, v2f16).
auto OpcodeTriple = getMinMaxPair(MI.getOpcode());
Register Val;
std::optional<FPValueAndVReg> K0, K1;
// Match min(max(Val, K0), K1) or max(min(Val, K1), K0).
if (!matchMed<GFCstOrSplatGFCstMatch>(MI, MRI, OpcodeTriple, Val, K0, K1))
return false;
if (!K0->Value.isExactlyValue(0.0) || !K1->Value.isExactlyValue(1.0))
return false;
// For IEEE=false perform combine only when it's safe to assume that there are
// no NaN inputs. Most often MI is marked with nnan fast math flag.
// For IEEE=true consider NaN inputs. Only min(max(QNaN, 0.0), 1.0) evaluates
// to 0.0 requires dx10_clamp = true.
if ((getIEEE() && getDX10Clamp() && isFminnumIeee(MI) &&
isKnownNeverSNaN(Val, MRI)) ||
isKnownNeverNaN(MI.getOperand(0).getReg(), MRI)) {
Reg = Val;
return true;
}
return false;
}
// Replacing fmed3(NaN, 0.0, 1.0) with clamp. Requires dx10_clamp = true.
// Val = SNaN only for ieee = true. It is important which operand is NaN.
// min(min(SNaN, 0.0), 1.0) = min(QNaN, 1.0) = 1.0
// min(min(SNaN, 1.0), 0.0) = min(QNaN, 0.0) = 0.0
// min(min(0.0, 1.0), SNaN) = min(0.0, SNaN) = QNaN
// Val = NaN,ieee = false or Val = QNaN,ieee = true
// min(min(NaN, 0.0), 1.0) = min(0.0, 1.0) = 0.0
// min(min(NaN, 1.0), 0.0) = min(1.0, 0.0) = 0.0
// min(min(0.0, 1.0), NaN) = min(0.0, NaN) = 0.0
bool AMDGPURegBankCombinerHelper::matchFPMed3ToClamp(MachineInstr &MI,
Register &Reg) {
if (MI.getIntrinsicID() != Intrinsic::amdgcn_fmed3)
return false;
// In llvm-ir, clamp is often represented as an intrinsic call to
// @llvm.amdgcn.fmed3.f32(%Val, 0.0, 1.0). Check for other operand orders.
MachineInstr *Src0 = getDefIgnoringCopies(MI.getOperand(2).getReg(), MRI);
MachineInstr *Src1 = getDefIgnoringCopies(MI.getOperand(3).getReg(), MRI);
MachineInstr *Src2 = getDefIgnoringCopies(MI.getOperand(4).getReg(), MRI);
if (isFCst(Src0) && !isFCst(Src1))
std::swap(Src0, Src1);
if (isFCst(Src1) && !isFCst(Src2))
std::swap(Src1, Src2);
if (isFCst(Src0) && !isFCst(Src1))
std::swap(Src0, Src1);
if (!isClampZeroToOne(Src1, Src2))
return false;
Register Val = Src0->getOperand(0).getReg();
auto isOp3Zero = [&]() {
MachineInstr *Op3 = getDefIgnoringCopies(MI.getOperand(4).getReg(), MRI);
if (Op3->getOpcode() == TargetOpcode::G_FCONSTANT)
return Op3->getOperand(1).getFPImm()->isExactlyValue(0.0);
return false;
};
// For IEEE=false perform combine only when it's safe to assume that there are
// no NaN inputs. Most often MI is marked with nnan fast math flag.
// For IEEE=true consider NaN inputs. Requires dx10_clamp = true. Safe to fold
// when Val could be QNaN. If Val can also be SNaN third input should be 0.0.
if (isKnownNeverNaN(MI.getOperand(0).getReg(), MRI) ||
(getIEEE() && getDX10Clamp() &&
(isKnownNeverSNaN(Val, MRI) || isOp3Zero()))) {
Reg = Val;
return true;
}
return false;
}
void AMDGPURegBankCombinerHelper::applyClamp(MachineInstr &MI, Register &Reg) {
B.setInstrAndDebugLoc(MI);
B.buildInstr(AMDGPU::G_AMDGPU_CLAMP, {MI.getOperand(0)}, {Reg},
MI.getFlags());
MI.eraseFromParent();
}
void AMDGPURegBankCombinerHelper::applyMed3(MachineInstr &MI,
Med3MatchInfo &MatchInfo) {
B.setInstrAndDebugLoc(MI);
B.buildInstr(MatchInfo.Opc, {MI.getOperand(0)},
{getAsVgpr(MatchInfo.Val0), getAsVgpr(MatchInfo.Val1),
getAsVgpr(MatchInfo.Val2)},
MI.getFlags());
MI.eraseFromParent();
}
SIModeRegisterDefaults AMDGPURegBankCombinerHelper::getMode() {
return MF.getInfo<SIMachineFunctionInfo>()->getMode();
}
bool AMDGPURegBankCombinerHelper::getIEEE() { return getMode().IEEE; }
bool AMDGPURegBankCombinerHelper::getDX10Clamp() { return getMode().DX10Clamp; }
bool AMDGPURegBankCombinerHelper::isFminnumIeee(const MachineInstr &MI) {
return MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE;
}
bool AMDGPURegBankCombinerHelper::isFCst(MachineInstr *MI) {
return MI->getOpcode() == AMDGPU::G_FCONSTANT;
}
bool AMDGPURegBankCombinerHelper::isClampZeroToOne(MachineInstr *K0,
MachineInstr *K1) {
if (isFCst(K0) && isFCst(K1)) {
const ConstantFP *KO_FPImm = K0->getOperand(1).getFPImm();
const ConstantFP *K1_FPImm = K1->getOperand(1).getFPImm();
return (KO_FPImm->isExactlyValue(0.0) && K1_FPImm->isExactlyValue(1.0)) ||
(KO_FPImm->isExactlyValue(1.0) && K1_FPImm->isExactlyValue(0.0));
}
return false;
}
class AMDGPURegBankCombinerHelperState {
protected:
CombinerHelper &Helper;
AMDGPURegBankCombinerHelper &RegBankHelper;
public:
AMDGPURegBankCombinerHelperState(CombinerHelper &Helper,
AMDGPURegBankCombinerHelper &RegBankHelper)
: Helper(Helper), RegBankHelper(RegBankHelper) {}
};
#define AMDGPUREGBANKCOMBINERHELPER_GENCOMBINERHELPER_DEPS
#include "AMDGPUGenRegBankGICombiner.inc"
#undef AMDGPUREGBANKCOMBINERHELPER_GENCOMBINERHELPER_DEPS
namespace {
#define AMDGPUREGBANKCOMBINERHELPER_GENCOMBINERHELPER_H
#include "AMDGPUGenRegBankGICombiner.inc"
#undef AMDGPUREGBANKCOMBINERHELPER_GENCOMBINERHELPER_H
class AMDGPURegBankCombinerInfo final : public CombinerInfo {
GISelKnownBits *KB;
MachineDominatorTree *MDT;
public:
AMDGPUGenRegBankCombinerHelperRuleConfig GeneratedRuleCfg;
AMDGPURegBankCombinerInfo(bool EnableOpt, bool OptSize, bool MinSize,
const AMDGPULegalizerInfo *LI,
GISelKnownBits *KB, MachineDominatorTree *MDT)
: CombinerInfo(/*AllowIllegalOps*/ false, /*ShouldLegalizeIllegal*/ true,
/*LegalizerInfo*/ LI, EnableOpt, OptSize, MinSize),
KB(KB), MDT(MDT) {
if (!GeneratedRuleCfg.parseCommandLineOption())
report_fatal_error("Invalid rule identifier");
}
bool combine(GISelChangeObserver &Observer, MachineInstr &MI,
MachineIRBuilder &B) const override;
};
bool AMDGPURegBankCombinerInfo::combine(GISelChangeObserver &Observer,
MachineInstr &MI,
MachineIRBuilder &B) const {
CombinerHelper Helper(Observer, B, /* IsPreLegalize*/ false, KB, MDT);
AMDGPURegBankCombinerHelper RegBankHelper(B, Helper);
AMDGPUGenRegBankCombinerHelper Generated(GeneratedRuleCfg, Helper,
RegBankHelper);
if (Generated.tryCombineAll(Observer, MI, B))
return true;
return false;
}
#define AMDGPUREGBANKCOMBINERHELPER_GENCOMBINERHELPER_CPP
#include "AMDGPUGenRegBankGICombiner.inc"
#undef AMDGPUREGBANKCOMBINERHELPER_GENCOMBINERHELPER_CPP
// Pass boilerplate
// ================
class AMDGPURegBankCombiner : public MachineFunctionPass {
public:
static char ID;
AMDGPURegBankCombiner(bool IsOptNone = false);
StringRef getPassName() const override {
return "AMDGPURegBankCombiner";
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
bool IsOptNone;
};
} // end anonymous namespace
void AMDGPURegBankCombiner::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<TargetPassConfig>();
AU.setPreservesCFG();
getSelectionDAGFallbackAnalysisUsage(AU);
AU.addRequired<GISelKnownBitsAnalysis>();
AU.addPreserved<GISelKnownBitsAnalysis>();
if (!IsOptNone) {
AU.addRequired<MachineDominatorTree>();
AU.addPreserved<MachineDominatorTree>();
}
MachineFunctionPass::getAnalysisUsage(AU);
}
AMDGPURegBankCombiner::AMDGPURegBankCombiner(bool IsOptNone)
: MachineFunctionPass(ID), IsOptNone(IsOptNone) {
initializeAMDGPURegBankCombinerPass(*PassRegistry::getPassRegistry());
}
bool AMDGPURegBankCombiner::runOnMachineFunction(MachineFunction &MF) {
if (MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel))
return false;
auto *TPC = &getAnalysis<TargetPassConfig>();
const Function &F = MF.getFunction();
bool EnableOpt =
MF.getTarget().getOptLevel() != CodeGenOpt::None && !skipFunction(F);
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const AMDGPULegalizerInfo *LI
= static_cast<const AMDGPULegalizerInfo *>(ST.getLegalizerInfo());
GISelKnownBits *KB = &getAnalysis<GISelKnownBitsAnalysis>().get(MF);
MachineDominatorTree *MDT =
IsOptNone ? nullptr : &getAnalysis<MachineDominatorTree>();
AMDGPURegBankCombinerInfo PCInfo(EnableOpt, F.hasOptSize(),
F.hasMinSize(), LI, KB, MDT);
Combiner C(PCInfo, TPC);
return C.combineMachineInstrs(MF, /*CSEInfo*/ nullptr);
}
char AMDGPURegBankCombiner::ID = 0;
INITIALIZE_PASS_BEGIN(AMDGPURegBankCombiner, DEBUG_TYPE,
"Combine AMDGPU machine instrs after regbankselect",
false, false)
INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
INITIALIZE_PASS_DEPENDENCY(GISelKnownBitsAnalysis)
INITIALIZE_PASS_END(AMDGPURegBankCombiner, DEBUG_TYPE,
"Combine AMDGPU machine instrs after regbankselect", false,
false)
namespace llvm {
FunctionPass *createAMDGPURegBankCombiner(bool IsOptNone) {
return new AMDGPURegBankCombiner(IsOptNone);
}
} // end namespace llvm