Files
clang-p2996/mlir/lib/AsmParser/DialectSymbolParser.cpp
Tres Popp 5550c82189 [mlir] Move casting calls from methods to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.

Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
  for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.

Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
   additional check:
   https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
   and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
   them to a pure state.
4. Some changes have been deleted for the following reasons:
   - Some files had a variable also named cast
   - Some files had not included a header file that defines the cast
     functions
   - Some files are definitions of the classes that have the casting
     methods, so the code still refers to the method instead of the
     function without adding a prefix or removing the method declaration
     at the same time.

```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
               -header-filter=mlir/ mlir/* -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc

git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
            mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
            mlir/lib/**/IR/\
            mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
            mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
            mlir/test/lib/Dialect/Test/TestTypes.cpp\
            mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
            mlir/test/lib/Dialect/Test/TestAttributes.cpp\
            mlir/unittests/TableGen/EnumsGenTest.cpp\
            mlir/test/python/lib/PythonTestCAPI.cpp\
            mlir/include/mlir/IR/
```

Differential Revision: https://reviews.llvm.org/D150123
2023-05-12 11:21:25 +02:00

360 lines
13 KiB
C++

//===- DialectSymbolParser.cpp - MLIR Dialect Symbol Parser --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the parser for the dialect symbols, such as extended
// attributes and types.
//
//===----------------------------------------------------------------------===//
#include "AsmParserImpl.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/DialectImplementation.h"
#include "llvm/Support/SourceMgr.h"
using namespace mlir;
using namespace mlir::detail;
using llvm::MemoryBuffer;
using llvm::SourceMgr;
namespace {
/// This class provides the main implementation of the DialectAsmParser that
/// allows for dialects to parse attributes and types. This allows for dialect
/// hooking into the main MLIR parsing logic.
class CustomDialectAsmParser : public AsmParserImpl<DialectAsmParser> {
public:
CustomDialectAsmParser(StringRef fullSpec, Parser &parser)
: AsmParserImpl<DialectAsmParser>(parser.getToken().getLoc(), parser),
fullSpec(fullSpec) {}
~CustomDialectAsmParser() override = default;
/// Returns the full specification of the symbol being parsed. This allows
/// for using a separate parser if necessary.
StringRef getFullSymbolSpec() const override { return fullSpec; }
private:
/// The full symbol specification.
StringRef fullSpec;
};
} // namespace
///
/// pretty-dialect-sym-body ::= '<' pretty-dialect-sym-contents+ '>'
/// pretty-dialect-sym-contents ::= pretty-dialect-sym-body
/// | '(' pretty-dialect-sym-contents+ ')'
/// | '[' pretty-dialect-sym-contents+ ']'
/// | '{' pretty-dialect-sym-contents+ '}'
/// | '[^[<({>\])}\0]+'
///
ParseResult Parser::parseDialectSymbolBody(StringRef &body,
bool &isCodeCompletion) {
// Symbol bodies are a relatively unstructured format that contains a series
// of properly nested punctuation, with anything else in the middle. Scan
// ahead to find it and consume it if successful, otherwise emit an error.
const char *curPtr = getTokenSpelling().data();
// Scan over the nested punctuation, bailing out on error and consuming until
// we find the end. We know that we're currently looking at the '<', so we can
// go until we find the matching '>' character.
assert(*curPtr == '<');
SmallVector<char, 8> nestedPunctuation;
const char *codeCompleteLoc = state.lex.getCodeCompleteLoc();
// Functor used to emit an unbalanced punctuation error.
auto emitPunctError = [&] {
return emitError() << "unbalanced '" << nestedPunctuation.back()
<< "' character in pretty dialect name";
};
// Functor used to check for unbalanced punctuation.
auto checkNestedPunctuation = [&](char expectedToken) -> ParseResult {
if (nestedPunctuation.back() != expectedToken)
return emitPunctError();
nestedPunctuation.pop_back();
return success();
};
do {
// Handle code completions, which may appear in the middle of the symbol
// body.
if (curPtr == codeCompleteLoc) {
isCodeCompletion = true;
nestedPunctuation.clear();
break;
}
char c = *curPtr++;
switch (c) {
case '\0':
// This also handles the EOF case.
if (!nestedPunctuation.empty())
return emitPunctError();
return emitError("unexpected nul or EOF in pretty dialect name");
case '<':
case '[':
case '(':
case '{':
nestedPunctuation.push_back(c);
continue;
case '-':
// The sequence `->` is treated as special token.
if (*curPtr == '>')
++curPtr;
continue;
case '>':
if (failed(checkNestedPunctuation('<')))
return failure();
break;
case ']':
if (failed(checkNestedPunctuation('[')))
return failure();
break;
case ')':
if (failed(checkNestedPunctuation('(')))
return failure();
break;
case '}':
if (failed(checkNestedPunctuation('{')))
return failure();
break;
case '"': {
// Dispatch to the lexer to lex past strings.
resetToken(curPtr - 1);
curPtr = state.curToken.getEndLoc().getPointer();
// Handle code completions, which may appear in the middle of the symbol
// body.
if (state.curToken.isCodeCompletion()) {
isCodeCompletion = true;
nestedPunctuation.clear();
break;
}
// Otherwise, ensure this token was actually a string.
if (state.curToken.isNot(Token::string))
return failure();
break;
}
default:
continue;
}
} while (!nestedPunctuation.empty());
// Ok, we succeeded, remember where we stopped, reset the lexer to know it is
// consuming all this stuff, and return.
resetToken(curPtr);
unsigned length = curPtr - body.begin();
body = StringRef(body.data(), length);
return success();
}
/// Parse an extended dialect symbol.
template <typename Symbol, typename SymbolAliasMap, typename CreateFn>
static Symbol parseExtendedSymbol(Parser &p, SymbolAliasMap &aliases,
CreateFn &&createSymbol) {
Token tok = p.getToken();
// Handle code completion of the extended symbol.
StringRef identifier = tok.getSpelling().drop_front();
if (tok.isCodeCompletion() && identifier.empty())
return p.codeCompleteDialectSymbol(aliases);
// Parse the dialect namespace.
SMLoc loc = p.getToken().getLoc();
p.consumeToken();
// Check to see if this is a pretty name.
auto [dialectName, symbolData] = identifier.split('.');
bool isPrettyName = !symbolData.empty() || identifier.back() == '.';
// Check to see if the symbol has trailing data, i.e. has an immediately
// following '<'.
bool hasTrailingData =
p.getToken().is(Token::less) &&
identifier.bytes_end() == p.getTokenSpelling().bytes_begin();
// If there is no '<' token following this, and if the typename contains no
// dot, then we are parsing a symbol alias.
if (!hasTrailingData && !isPrettyName) {
// Check for an alias for this type.
auto aliasIt = aliases.find(identifier);
if (aliasIt == aliases.end())
return (p.emitWrongTokenError("undefined symbol alias id '" + identifier +
"'"),
nullptr);
return aliasIt->second;
}
// If this isn't an alias, we are parsing a dialect-specific symbol. If the
// name contains a dot, then this is the "pretty" form. If not, it is the
// verbose form that looks like <...>.
if (!isPrettyName) {
// Point the symbol data to the end of the dialect name to start.
symbolData = StringRef(dialectName.end(), 0);
// Parse the body of the symbol.
bool isCodeCompletion = false;
if (p.parseDialectSymbolBody(symbolData, isCodeCompletion))
return nullptr;
symbolData = symbolData.drop_front();
// If the body contained a code completion it won't have the trailing `>`
// token, so don't drop it.
if (!isCodeCompletion)
symbolData = symbolData.drop_back();
} else {
loc = SMLoc::getFromPointer(symbolData.data());
// If the dialect's symbol is followed immediately by a <, then lex the body
// of it into prettyName.
if (hasTrailingData && p.parseDialectSymbolBody(symbolData))
return nullptr;
}
return createSymbol(dialectName, symbolData, loc);
}
/// Parse an extended attribute.
///
/// extended-attribute ::= (dialect-attribute | attribute-alias)
/// dialect-attribute ::= `#` dialect-namespace `<` attr-data `>`
/// (`:` type)?
/// | `#` alias-name pretty-dialect-sym-body? (`:` type)?
/// attribute-alias ::= `#` alias-name
///
Attribute Parser::parseExtendedAttr(Type type) {
MLIRContext *ctx = getContext();
Attribute attr = parseExtendedSymbol<Attribute>(
*this, state.symbols.attributeAliasDefinitions,
[&](StringRef dialectName, StringRef symbolData, SMLoc loc) -> Attribute {
// Parse an optional trailing colon type.
Type attrType = type;
if (consumeIf(Token::colon) && !(attrType = parseType()))
return Attribute();
// If we found a registered dialect, then ask it to parse the attribute.
if (Dialect *dialect =
builder.getContext()->getOrLoadDialect(dialectName)) {
// Temporarily reset the lexer to let the dialect parse the attribute.
const char *curLexerPos = getToken().getLoc().getPointer();
resetToken(symbolData.data());
// Parse the attribute.
CustomDialectAsmParser customParser(symbolData, *this);
Attribute attr = dialect->parseAttribute(customParser, attrType);
resetToken(curLexerPos);
return attr;
}
// Otherwise, form a new opaque attribute.
return OpaqueAttr::getChecked(
[&] { return emitError(loc); }, StringAttr::get(ctx, dialectName),
symbolData, attrType ? attrType : NoneType::get(ctx));
});
// Ensure that the attribute has the same type as requested.
auto typedAttr = dyn_cast_or_null<TypedAttr>(attr);
if (type && typedAttr && typedAttr.getType() != type) {
emitError("attribute type different than expected: expected ")
<< type << ", but got " << typedAttr.getType();
return nullptr;
}
return attr;
}
/// Parse an extended type.
///
/// extended-type ::= (dialect-type | type-alias)
/// dialect-type ::= `!` dialect-namespace `<` `"` type-data `"` `>`
/// dialect-type ::= `!` alias-name pretty-dialect-attribute-body?
/// type-alias ::= `!` alias-name
///
Type Parser::parseExtendedType() {
MLIRContext *ctx = getContext();
return parseExtendedSymbol<Type>(
*this, state.symbols.typeAliasDefinitions,
[&](StringRef dialectName, StringRef symbolData, SMLoc loc) -> Type {
// If we found a registered dialect, then ask it to parse the type.
if (auto *dialect = ctx->getOrLoadDialect(dialectName)) {
// Temporarily reset the lexer to let the dialect parse the type.
const char *curLexerPos = getToken().getLoc().getPointer();
resetToken(symbolData.data());
// Parse the type.
CustomDialectAsmParser customParser(symbolData, *this);
Type type = dialect->parseType(customParser);
resetToken(curLexerPos);
return type;
}
// Otherwise, form a new opaque type.
return OpaqueType::getChecked([&] { return emitError(loc); },
StringAttr::get(ctx, dialectName),
symbolData);
});
}
//===----------------------------------------------------------------------===//
// mlir::parseAttribute/parseType
//===----------------------------------------------------------------------===//
/// Parses a symbol, of type 'T', and returns it if parsing was successful. If
/// parsing failed, nullptr is returned.
template <typename T, typename ParserFn>
static T parseSymbol(StringRef inputStr, MLIRContext *context,
size_t *numReadOut, bool isKnownNullTerminated,
ParserFn &&parserFn) {
// Set the buffer name to the string being parsed, so that it appears in error
// diagnostics.
auto memBuffer =
isKnownNullTerminated
? MemoryBuffer::getMemBuffer(inputStr,
/*BufferName=*/inputStr)
: MemoryBuffer::getMemBufferCopy(inputStr, /*BufferName=*/inputStr);
SourceMgr sourceMgr;
sourceMgr.AddNewSourceBuffer(std::move(memBuffer), SMLoc());
SymbolState aliasState;
ParserConfig config(context);
ParserState state(sourceMgr, config, aliasState, /*asmState=*/nullptr,
/*codeCompleteContext=*/nullptr);
Parser parser(state);
Token startTok = parser.getToken();
T symbol = parserFn(parser);
if (!symbol)
return T();
// Provide the number of bytes that were read.
Token endTok = parser.getToken();
size_t numRead =
endTok.getLoc().getPointer() - startTok.getLoc().getPointer();
if (numReadOut) {
*numReadOut = numRead;
} else if (numRead != inputStr.size()) {
parser.emitError(endTok.getLoc()) << "found trailing characters: '"
<< inputStr.drop_front(numRead) << "'";
return T();
}
return symbol;
}
Attribute mlir::parseAttribute(StringRef attrStr, MLIRContext *context,
Type type, size_t *numRead,
bool isKnownNullTerminated) {
return parseSymbol<Attribute>(
attrStr, context, numRead, isKnownNullTerminated,
[type](Parser &parser) { return parser.parseAttribute(type); });
}
Type mlir::parseType(StringRef typeStr, MLIRContext *context, size_t *numRead,
bool isKnownNullTerminated) {
return parseSymbol<Type>(typeStr, context, numRead, isKnownNullTerminated,
[](Parser &parser) { return parser.parseType(); });
}