Files
clang-p2996/mlir/lib/Conversion/GPUToSPIRV/GPUToSPIRVPass.cpp
Lei Zhang 80bb9477a9 [mlir] NFC: Prepare GPUToSPIRV tests for supporting 64bit index
This commit just adds options to control index type bitwidth in
GPUToSPIRV conversion, and updates tests to prepare for 64bit
index conversion.

Reviewed By: kuhar

Differential Revision: https://reviews.llvm.org/D144826
2023-02-26 22:13:15 +00:00

112 lines
4.2 KiB
C++

//===- GPUToSPIRVPass.cpp - GPU to SPIR-V Passes --------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert a kernel function in the GPU Dialect
// into a spirv.module operation.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUToSPIRV/GPUToSPIRVPass.h"
#include "mlir/Conversion/ArithToSPIRV/ArithToSPIRV.h"
#include "mlir/Conversion/FuncToSPIRV/FuncToSPIRV.h"
#include "mlir/Conversion/GPUToSPIRV/GPUToSPIRV.h"
#include "mlir/Conversion/MemRefToSPIRV/MemRefToSPIRV.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
namespace mlir {
#define GEN_PASS_DEF_CONVERTGPUTOSPIRV
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
namespace {
/// Pass to lower GPU Dialect to SPIR-V. The pass only converts the gpu.func ops
/// inside gpu.module ops. i.e., the function that are referenced in
/// gpu.launch_func ops. For each such function
///
/// 1) Create a spirv::ModuleOp, and clone the function into spirv::ModuleOp
/// (the original function is still needed by the gpu::LaunchKernelOp, so cannot
/// replace it).
///
/// 2) Lower the body of the spirv::ModuleOp.
class GPUToSPIRVPass : public impl::ConvertGPUToSPIRVBase<GPUToSPIRVPass> {
public:
explicit GPUToSPIRVPass(bool mapMemorySpace)
: mapMemorySpace(mapMemorySpace) {}
void runOnOperation() override;
private:
bool mapMemorySpace;
};
} // namespace
void GPUToSPIRVPass::runOnOperation() {
MLIRContext *context = &getContext();
ModuleOp module = getOperation();
SmallVector<Operation *, 1> gpuModules;
OpBuilder builder(context);
module.walk([&](gpu::GPUModuleOp moduleOp) {
// Clone each GPU kernel module for conversion, given that the GPU
// launch op still needs the original GPU kernel module.
builder.setInsertionPoint(moduleOp.getOperation());
gpuModules.push_back(builder.clone(*moduleOp.getOperation()));
});
// Run conversion for each module independently as they can have different
// TargetEnv attributes.
for (Operation *gpuModule : gpuModules) {
// Map MemRef memory space to SPIR-V storage class first if requested.
if (mapMemorySpace) {
std::unique_ptr<ConversionTarget> target =
spirv::getMemorySpaceToStorageClassTarget(*context);
spirv::MemorySpaceToStorageClassMap memorySpaceMap =
spirv::mapMemorySpaceToVulkanStorageClass;
spirv::MemorySpaceToStorageClassConverter converter(memorySpaceMap);
RewritePatternSet patterns(context);
spirv::populateMemorySpaceToStorageClassPatterns(converter, patterns);
if (failed(applyFullConversion(gpuModule, *target, std::move(patterns))))
return signalPassFailure();
}
auto targetAttr = spirv::lookupTargetEnvOrDefault(gpuModule);
std::unique_ptr<ConversionTarget> target =
SPIRVConversionTarget::get(targetAttr);
SPIRVConversionOptions options;
options.use64bitIndex = this->use64bitIndex;
SPIRVTypeConverter typeConverter(targetAttr, options);
typeConverter.addConversion([&](gpu::MMAMatrixType type) -> Type {
return convertMMAToSPIRVType(type);
});
RewritePatternSet patterns(context);
populateGPUToSPIRVPatterns(typeConverter, patterns);
populateGpuWMMAToSPIRVConversionPatterns(typeConverter, patterns);
// TODO: Change SPIR-V conversion to be progressive and remove the following
// patterns.
mlir::arith::populateArithToSPIRVPatterns(typeConverter, patterns);
populateMemRefToSPIRVPatterns(typeConverter, patterns);
populateFuncToSPIRVPatterns(typeConverter, patterns);
if (failed(applyFullConversion(gpuModule, *target, std::move(patterns))))
return signalPassFailure();
}
}
std::unique_ptr<OperationPass<ModuleOp>>
mlir::createConvertGPUToSPIRVPass(bool mapMemorySpace) {
return std::make_unique<GPUToSPIRVPass>(mapMemorySpace);
}