Files
clang-p2996/mlir/lib/Conversion/SCFToGPU/SCFToGPU.cpp
Tres Popp 5550c82189 [mlir] Move casting calls from methods to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.

Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
  for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.

Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
   additional check:
   https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
   and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
   them to a pure state.
4. Some changes have been deleted for the following reasons:
   - Some files had a variable also named cast
   - Some files had not included a header file that defines the cast
     functions
   - Some files are definitions of the classes that have the casting
     methods, so the code still refers to the method instead of the
     function without adding a prefix or removing the method declaration
     at the same time.

```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
               -header-filter=mlir/ mlir/* -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc

git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
            mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
            mlir/lib/**/IR/\
            mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
            mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
            mlir/test/lib/Dialect/Test/TestTypes.cpp\
            mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
            mlir/test/lib/Dialect/Test/TestAttributes.cpp\
            mlir/unittests/TableGen/EnumsGenTest.cpp\
            mlir/test/python/lib/PythonTestCAPI.cpp\
            mlir/include/mlir/IR/
```

Differential Revision: https://reviews.llvm.org/D150123
2023-05-12 11:21:25 +02:00

698 lines
30 KiB
C++

//===- SCFToGPU.cpp - Convert an affine loop nest to a GPU kernel -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements a straightforward conversion of an loop nest into a GPU
// kernel. The caller is expected to guarantee that the conversion is correct
// or to further transform the kernel to ensure correctness.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/SCFToGPU/SCFToGPU.h"
#include "mlir/Conversion/AffineToStandard/AffineToStandard.h"
#include "mlir/Dialect/Affine/IR/AffineOps.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/ParallelLoopMapper.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/SCF/IR/SCF.h"
#include "mlir/IR/AffineExpr.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/IRMapping.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/Passes.h"
#include "mlir/Transforms/RegionUtils.h"
#include "llvm/ADT/Sequence.h"
#include "llvm/Support/Debug.h"
#include <optional>
#define DEBUG_TYPE "loops-to-gpu"
using namespace mlir;
using namespace mlir::affine;
using namespace mlir::scf;
// Name of internal attribute to mark visited operations during conversion.
//
// NOTE: The conversion originally used the following legality criteria:
// `!parallelOp->hasAttr(gpu::getMappingAttrName())`
// But the provided pattern might reject some cases based on more detailed
// analysis of the `mapping` attribute.
// To avoid dialect conversion failure due to non-converted illegal operation
// we use this extra Unit attribute as a marker, that the operation was checked
// by the pattern and is should be considered as legal in the following legality
// checks. The `finalizeParallelLoopToGPUConversion` function performs clean up
// of this extra attributes ans is supposed to be called after the dialect
// conversion.
//
// TODO: Implement a cleaner solution, factoring out the "matching" logic
// from the pattern and its callees into a separate function that can be called
// from both the pattern and the op legality check.
static constexpr StringLiteral kVisitedAttrName = "SCFToGPU_visited";
// Extract an indexed value from KernelDim3.
static Value getDim3Value(const gpu::KernelDim3 &dim3, unsigned pos) {
switch (pos) {
case 0:
return dim3.x;
case 1:
return dim3.y;
case 2:
return dim3.z;
default:
llvm_unreachable("dim3 position out of bounds");
}
return nullptr;
}
// Get the lower bound-related operands of a loop operation.
static Operation::operand_range getLowerBoundOperands(AffineForOp forOp) {
return forOp.getLowerBoundOperands();
}
// Get the upper bound-related operands of a loop operation.
static Operation::operand_range getUpperBoundOperands(AffineForOp forOp) {
return forOp.getUpperBoundOperands();
}
// Get a Value that corresponds to the loop step. If the step is an attribute,
// materialize a corresponding constant using builder.
static Value getOrCreateStep(AffineForOp forOp, OpBuilder &builder) {
return builder.create<arith::ConstantIndexOp>(forOp.getLoc(),
forOp.getStep());
}
// Get a Value for the loop lower bound. If the value requires computation,
// materialize the instructions using builder.
static Value getOrEmitLowerBound(AffineForOp forOp, OpBuilder &builder) {
return lowerAffineLowerBound(forOp, builder);
}
// Get a Value for the loop upper bound. If the value requires computation,
// materialize the instructions using builder.
static Value getOrEmitUpperBound(AffineForOp forOp, OpBuilder &builder) {
return lowerAffineUpperBound(forOp, builder);
}
// Check the structure of the loop nest:
// - there are enough loops to map to numDims;
// - the loops are perfectly nested;
// - the loop bounds can be computed above the outermost loop.
// This roughly corresponds to the "matcher" part of the pattern-based
// rewriting infrastructure.
static LogicalResult checkAffineLoopNestMappableImpl(AffineForOp forOp,
unsigned numDims) {
Region &limit = forOp.getRegion();
for (unsigned i = 0, e = numDims; i < e; ++i) {
Operation *nested = &forOp.getBody()->front();
if (!areValuesDefinedAbove(getLowerBoundOperands(forOp), limit) ||
!areValuesDefinedAbove(getUpperBoundOperands(forOp), limit))
return forOp.emitError(
"loops with bounds depending on other mapped loops "
"are not supported");
// The innermost loop can have an arbitrary body, skip the perfect nesting
// check for it.
if (i == e - 1)
break;
auto begin = forOp.getBody()->begin(), end = forOp.getBody()->end();
if (forOp.getBody()->empty() || std::next(begin, 2) != end)
return forOp.emitError("expected perfectly nested loops in the body");
if (!(forOp = dyn_cast<AffineForOp>(nested)))
return nested->emitError("expected a nested loop");
}
return success();
}
static LogicalResult checkAffineLoopNestMappable(AffineForOp forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
if (numBlockDims < 1 || numThreadDims < 1) {
LLVM_DEBUG(llvm::dbgs() << "nothing to map");
return success();
}
if (numBlockDims > 3) {
return forOp.emitError("cannot map to more than 3 block dimensions");
}
if (numThreadDims > 3) {
return forOp.emitError("cannot map to more than 3 thread dimensions");
}
return checkAffineLoopNestMappableImpl(forOp, numBlockDims + numThreadDims);
}
namespace {
// Helper structure that holds common state of the loop to GPU kernel
// conversion.
struct AffineLoopToGpuConverter {
std::optional<AffineForOp> collectBounds(AffineForOp forOp,
unsigned numLoops);
void createLaunch(AffineForOp rootForOp, AffineForOp innermostForOp,
unsigned numBlockDims, unsigned numThreadDims);
// Ranges of the loops mapped to blocks or threads.
SmallVector<Value, 6> dims;
// Lower bounds of the loops mapped to blocks or threads.
SmallVector<Value, 6> lbs;
// Induction variables of the loops mapped to blocks or threads.
SmallVector<Value, 6> ivs;
// Steps of the loops mapped to blocks or threads.
SmallVector<Value, 6> steps;
};
} // namespace
// Return true if the value is obviously a constant "one".
static bool isConstantOne(Value value) {
if (auto def = value.getDefiningOp<arith::ConstantIndexOp>())
return def.value() == 1;
return false;
}
// Collect ranges, bounds, steps and induction variables in preparation for
// mapping a loop nest of depth "numLoops" rooted at "forOp" to a GPU kernel.
// This may fail if the IR for computing loop bounds cannot be constructed, for
// example if an affine loop uses semi-affine maps. Return the last loop to be
// mapped on success, std::nullopt on failure.
std::optional<AffineForOp>
AffineLoopToGpuConverter::collectBounds(AffineForOp forOp, unsigned numLoops) {
OpBuilder builder(forOp.getOperation());
dims.reserve(numLoops);
lbs.reserve(numLoops);
ivs.reserve(numLoops);
steps.reserve(numLoops);
AffineForOp currentLoop = forOp;
for (unsigned i = 0; i < numLoops; ++i) {
Value lowerBound = getOrEmitLowerBound(currentLoop, builder);
Value upperBound = getOrEmitUpperBound(currentLoop, builder);
if (!lowerBound || !upperBound) {
return std::nullopt;
}
Value range = builder.create<arith::SubIOp>(currentLoop.getLoc(),
upperBound, lowerBound);
Value step = getOrCreateStep(currentLoop, builder);
if (!isConstantOne(step))
range = builder.create<arith::DivSIOp>(currentLoop.getLoc(), range, step);
dims.push_back(range);
lbs.push_back(lowerBound);
ivs.push_back(currentLoop.getInductionVar());
steps.push_back(step);
if (i != numLoops - 1)
currentLoop = cast<AffineForOp>(&currentLoop.getBody()->front());
}
return currentLoop;
}
// Replace the rooted at "rootForOp" with a GPU launch operation. This expects
// "innermostForOp" to point to the last loop to be transformed to the kernel,
// and to have (numBlockDims + numThreadDims) perfectly nested loops between
// "rootForOp" and "innermostForOp".
void AffineLoopToGpuConverter::createLaunch(AffineForOp rootForOp,
AffineForOp innermostForOp,
unsigned numBlockDims,
unsigned numThreadDims) {
OpBuilder builder(rootForOp.getOperation());
// Prepare the grid and block sizes for the launch operation. If there is
// no loop mapped to a specific dimension, use constant "1" as its size.
Value constOne =
(numBlockDims < 3 || numThreadDims < 3)
? builder.create<arith::ConstantIndexOp>(rootForOp.getLoc(), 1)
: nullptr;
Value gridSizeX = numBlockDims > 0 ? dims[0] : constOne;
Value gridSizeY = numBlockDims > 1 ? dims[1] : constOne;
Value gridSizeZ = numBlockDims > 2 ? dims[2] : constOne;
Value blockSizeX = numThreadDims > 0 ? dims[numBlockDims] : constOne;
Value blockSizeY = numThreadDims > 1 ? dims[numBlockDims + 1] : constOne;
Value blockSizeZ = numThreadDims > 2 ? dims[numBlockDims + 2] : constOne;
// Create a launch op and move the body region of the innermost loop to the
// launch op.
auto launchOp = builder.create<gpu::LaunchOp>(
rootForOp.getLoc(), gridSizeX, gridSizeY, gridSizeZ, blockSizeX,
blockSizeY, blockSizeZ);
// Replace the loop terminator (loops contain only a single block) with the
// gpu terminator and move the operations from the loop body block to the gpu
// launch body block. Do not move the entire block because of the difference
// in block arguments.
Operation &terminator = innermostForOp.getBody()->back();
Location terminatorLoc = terminator.getLoc();
terminator.erase();
builder.setInsertionPointToEnd(innermostForOp.getBody());
builder.create<gpu::TerminatorOp>(terminatorLoc, std::nullopt);
launchOp.getBody().front().getOperations().splice(
launchOp.getBody().front().begin(),
innermostForOp.getBody()->getOperations());
// Remap the loop iterators to use block/thread identifiers instead. Loops
// may iterate from LB with step S whereas GPU thread/block ids always iterate
// from 0 to N with step 1. Therefore, loop induction variables are replaced
// with (gpu-thread/block-id * S) + LB.
builder.setInsertionPointToStart(&launchOp.getBody().front());
auto *lbArgumentIt = lbs.begin();
auto *stepArgumentIt = steps.begin();
for (const auto &en : llvm::enumerate(ivs)) {
Value id =
en.index() < numBlockDims
? getDim3Value(launchOp.getBlockIds(), en.index())
: getDim3Value(launchOp.getThreadIds(), en.index() - numBlockDims);
Value step = steps[en.index()];
if (!isConstantOne(step))
id = builder.create<arith::MulIOp>(rootForOp.getLoc(), step, id);
Value ivReplacement =
builder.create<arith::AddIOp>(rootForOp.getLoc(), *lbArgumentIt, id);
en.value().replaceAllUsesWith(ivReplacement);
std::advance(lbArgumentIt, 1);
std::advance(stepArgumentIt, 1);
}
// We are done and can erase the original outermost loop.
rootForOp.erase();
}
// Generic loop to GPU kernel conversion function.
static LogicalResult convertAffineLoopNestToGPULaunch(AffineForOp forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
if (failed(checkAffineLoopNestMappable(forOp, numBlockDims, numThreadDims)))
return failure();
AffineLoopToGpuConverter converter;
auto maybeInnerLoop =
converter.collectBounds(forOp, numBlockDims + numThreadDims);
if (!maybeInnerLoop)
return failure();
converter.createLaunch(forOp, *maybeInnerLoop, numBlockDims, numThreadDims);
return success();
}
LogicalResult mlir::convertAffineLoopNestToGPULaunch(AffineForOp forOp,
unsigned numBlockDims,
unsigned numThreadDims) {
return ::convertAffineLoopNestToGPULaunch(forOp, numBlockDims, numThreadDims);
}
namespace {
struct ParallelToGpuLaunchLowering : public OpRewritePattern<ParallelOp> {
using OpRewritePattern<ParallelOp>::OpRewritePattern;
LogicalResult matchAndRewrite(ParallelOp parallelOp,
PatternRewriter &rewriter) const override;
};
} // namespace
/// Tries to derive a static upper bound from the defining operation of
/// `upperBound`.
static Value deriveStaticUpperBound(Value upperBound,
PatternRewriter &rewriter) {
if (auto op = upperBound.getDefiningOp<arith::ConstantIndexOp>()) {
return op;
}
if (auto minOp = upperBound.getDefiningOp<AffineMinOp>()) {
for (const AffineExpr &result : minOp.getMap().getResults()) {
if (auto constExpr = result.dyn_cast<AffineConstantExpr>()) {
return rewriter.create<arith::ConstantIndexOp>(minOp.getLoc(),
constExpr.getValue());
}
}
}
if (auto minOp = upperBound.getDefiningOp<arith::MinSIOp>()) {
for (Value operand : {minOp.getLhs(), minOp.getRhs()}) {
if (auto staticBound = deriveStaticUpperBound(operand, rewriter))
return staticBound;
}
}
if (auto multiplyOp = upperBound.getDefiningOp<arith::MulIOp>()) {
if (auto lhs = dyn_cast_or_null<arith::ConstantIndexOp>(
deriveStaticUpperBound(multiplyOp.getOperand(0), rewriter)
.getDefiningOp()))
if (auto rhs = dyn_cast_or_null<arith::ConstantIndexOp>(
deriveStaticUpperBound(multiplyOp.getOperand(1), rewriter)
.getDefiningOp())) {
// Assumptions about the upper bound of minimum computations no longer
// work if multiplied by mixed signs, so abort in this case.
if ((lhs.value() < 0) != (rhs.value() < 0))
return {};
return rewriter.create<arith::ConstantIndexOp>(
multiplyOp.getLoc(), lhs.value() * rhs.value());
}
}
return {};
}
static bool isMappedToProcessor(gpu::Processor processor) {
return processor != gpu::Processor::Sequential;
}
static unsigned getLaunchOpArgumentNum(gpu::Processor processor) {
switch (processor) {
case gpu::Processor::BlockX:
return 0;
case gpu::Processor::BlockY:
return 1;
case gpu::Processor::BlockZ:
return 2;
case gpu::Processor::ThreadX:
return 3;
case gpu::Processor::ThreadY:
return 4;
case gpu::Processor::ThreadZ:
return 5;
default:;
}
llvm_unreachable(
"invalid processor type while retrieving launch op argument number");
}
/// Modifies the current transformation state to capture the effect of the given
/// `scf.parallel` operation on index substitutions and the operations to be
/// inserted.
/// Specifically, if a dimension of a parallel loop is mapped to a hardware id,
/// this function will
/// - compute the loop index based on the hardware id and affine map from the
/// mapping and update `cloningMap` to substitute all uses.
/// - derive a new upper bound for the hardware id and augment the provided
/// `gpu.launch operation` accordingly.
/// - if the upper bound is imprecise, insert a conditional in the `gpu.launch`
/// and update the rewriter to insert into the conditional's body.
/// If the dimension is mapped to sequential,
/// - insert a for loop into the body and update the rewriter to insert into
/// the for loop's body.
/// - update the `cloningMap` to replace uses of the index with the index of
/// the new for loop.
/// In either case,
/// - append the instructions from the loops body to worklist, in reverse order.
/// To note the end of the current scope in case a loop or conditional was
/// inserted, a sentinel (the `gpu.launch` operation) is inserted into the
/// worklist. This signals the processor of the worklist to pop the rewriter
/// one scope-level up.
static LogicalResult processParallelLoop(
ParallelOp parallelOp, gpu::LaunchOp launchOp, IRMapping &cloningMap,
SmallVectorImpl<Operation *> &worklist,
DenseMap<gpu::Processor, Value> &bounds, PatternRewriter &rewriter) {
// TODO: Verify that this is a valid GPU mapping.
// processor ids: 0-2 block [x/y/z], 3-5 -> thread [x/y/z], 6-> sequential
ArrayAttr mapping =
parallelOp->getAttrOfType<ArrayAttr>(gpu::getMappingAttrName());
// TODO: Support reductions.
if (!mapping || parallelOp.getNumResults() != 0)
return failure();
Location loc = parallelOp.getLoc();
auto launchIndependent = [&launchOp](Value val) {
return val.getParentRegion()->isAncestor(launchOp->getParentRegion());
};
auto ensureLaunchIndependent = [&rewriter,
launchIndependent](Value val) -> Value {
if (launchIndependent(val))
return val;
if (auto constOp = val.getDefiningOp<arith::ConstantOp>())
return rewriter.create<arith::ConstantOp>(constOp.getLoc(),
constOp.getValue());
return {};
};
for (auto config : llvm::zip(
mapping, parallelOp.getInductionVars(), parallelOp.getLowerBound(),
parallelOp.getUpperBound(), parallelOp.getStep())) {
Attribute mappingAttribute;
Value iv, lowerBound, upperBound, step;
std::tie(mappingAttribute, iv, lowerBound, upperBound, step) = config;
auto annotation =
dyn_cast<gpu::ParallelLoopDimMappingAttr>(mappingAttribute);
if (!annotation)
return parallelOp.emitOpError()
<< "expected mapping attribute for lowering to GPU";
Value newIndex;
gpu::Processor processor = annotation.getProcessor();
if (isMappedToProcessor(processor)) {
// Use the corresponding thread/grid index as replacement for the loop iv.
Value operand =
launchOp.getBody().getArgument(getLaunchOpArgumentNum(processor));
// Take the indexmap and add the lower bound and step computations in.
// This computes operand * step + lowerBound.
// Use an affine map here so that it composes nicely with the provided
// annotation.
AffineMap lowerAndStep = AffineMap::get(
1, 2,
rewriter.getAffineDimExpr(0) * rewriter.getAffineSymbolExpr(0) +
rewriter.getAffineSymbolExpr(1));
newIndex = rewriter.create<AffineApplyOp>(
loc, annotation.getMap().compose(lowerAndStep),
ValueRange{operand, step, lowerBound});
// If there was also a bound, insert that, too.
// TODO: Check that we do not assign bounds twice.
if (annotation.getBound()) {
// We pass as the single operand to the bound-map the number of
// iterations, which is (upperBound - lowerBound) ceilDiv step. To
// support inner loops with dynamic upper bounds (as generated by e.g.
// tiling), try to derive a max for the bounds. If the used bound for
// the hardware id is imprecise, wrap the contained code into a
// conditional. If the lower-bound is constant or defined before the
// launch, we can use it in the launch bounds. Otherwise fail.
if (!launchIndependent(lowerBound) &&
!isa_and_nonnull<arith::ConstantOp>(lowerBound.getDefiningOp()))
return failure();
// The step must also be constant or defined outside of the loop nest.
if (!launchIndependent(step) &&
!isa_and_nonnull<arith::ConstantOp>(step.getDefiningOp()))
return failure();
// If the upper-bound is constant or defined before the launch, we can
// use it in the launch bounds directly. Otherwise try derive a bound.
bool boundIsPrecise =
launchIndependent(upperBound) ||
isa_and_nonnull<arith::ConstantOp>(upperBound.getDefiningOp());
{
PatternRewriter::InsertionGuard guard(rewriter);
rewriter.setInsertionPoint(launchOp);
if (!boundIsPrecise) {
upperBound = deriveStaticUpperBound(upperBound, rewriter);
if (!upperBound) {
return rewriter.notifyMatchFailure(
parallelOp,
"cannot derive loop-invariant upper bound for number of"
"iterations");
}
}
// Compute the number of iterations needed. We compute this as an
// affine expression ceilDiv (upperBound - lowerBound) step. We use
// affine.apply here so that it composes nicely with the provided map.
AffineMap stepMap = AffineMap::get(
1, 2,
((rewriter.getAffineDimExpr(0) - rewriter.getAffineSymbolExpr(0))
.ceilDiv(rewriter.getAffineSymbolExpr(1))));
Value launchBound = rewriter.create<AffineApplyOp>(
loc, annotation.getBound().compose(stepMap),
ValueRange{
ensureLaunchIndependent(
cloningMap.lookupOrDefault(upperBound)),
ensureLaunchIndependent(
cloningMap.lookupOrDefault(lowerBound)),
ensureLaunchIndependent(cloningMap.lookupOrDefault(step))});
// todo(herhut,ravishankarm): Update the behavior of setMappingAttr
// when this condition is relaxed.
if (bounds.contains(processor)) {
return rewriter.notifyMatchFailure(
parallelOp, "cannot redefine the bound for processor " +
Twine(static_cast<int64_t>(processor)));
}
bounds[processor] = launchBound;
}
if (!boundIsPrecise) {
// We are using an approximation, create a surrounding conditional.
Value originalBound = std::get<3>(config);
arith::CmpIOp pred = rewriter.create<arith::CmpIOp>(
loc, arith::CmpIPredicate::slt, newIndex,
cloningMap.lookupOrDefault(originalBound));
scf::IfOp ifOp = rewriter.create<scf::IfOp>(loc, pred, false);
rewriter.setInsertionPointToStart(&ifOp.getThenRegion().front());
// Put a sentinel into the worklist so we know when to pop out of the
// if body again. We use the launchOp here, as that cannot be part of
// the bodies instruction.
worklist.push_back(launchOp.getOperation());
}
}
} else {
// Create a sequential for loop.
auto loopOp = rewriter.create<scf::ForOp>(
loc, cloningMap.lookupOrDefault(lowerBound),
cloningMap.lookupOrDefault(upperBound),
cloningMap.lookupOrDefault(step));
newIndex = loopOp.getInductionVar();
rewriter.setInsertionPointToStart(loopOp.getBody());
// Put a sentinel into the worklist so we know when to pop out of the loop
// body again. We use the launchOp here, as that cannot be part of the
// bodies instruction.
worklist.push_back(launchOp.getOperation());
}
cloningMap.map(iv, newIndex);
}
// Propagate custom user defined optional attributes, that can be used at
// later stage, such as extension data for GPU kernel dispatch
for (const auto &namedAttr : parallelOp->getAttrs()) {
if (namedAttr.getName() == gpu::getMappingAttrName() ||
namedAttr.getName() == ParallelOp::getOperandSegmentSizeAttr())
continue;
launchOp->setAttr(namedAttr.getName(), namedAttr.getValue());
}
Block *body = parallelOp.getBody();
worklist.reserve(worklist.size() + body->getOperations().size());
for (Operation &op : llvm::reverse(body->without_terminator()))
worklist.push_back(&op);
return success();
}
/// Lower a `scf.parallel` operation into a corresponding `gpu.launch`
/// operation.
///
/// This essentially transforms a loop nest into a corresponding SIMT function.
/// The conversion is driven by mapping annotations on the `scf.parallel`
/// operations. The mapping is provided via a `DictionaryAttribute` named
/// `mapping`, which has three entries:
/// - processor: the hardware id to map to. 0-2 are block dimensions, 3-5 are
/// thread dimensions and 6 is sequential.
/// - map : An affine map that is used to pre-process hardware ids before
/// substitution.
/// - bound : An affine map that is used to compute the bound of the hardware
/// id based on an upper bound of the number of iterations.
/// If the `scf.parallel` contains nested `scf.parallel` operations, those
/// need to be annotated, as well. Structurally, the transformation works by
/// splicing all operations from nested `scf.parallel` operations into a single
/// sequence. Indices mapped to hardware ids are substituted with those ids,
/// wheras sequential mappings result in a sequential for-loop. To have more
/// flexibility when mapping code to hardware ids, the transform supports two
/// affine maps. The first `map` is used to compute the actual index for
/// substitution from the hardware id. The second `bound` is used to compute the
/// launch dimension for the hardware id from the number of iterations the
/// mapped loop is performing. Note that the number of iterations might be
/// imprecise if the corresponding loop-bounds are loop-dependent. In such case,
/// the hardware id might iterate over additional indices. The transformation
/// caters for this by predicating the created sequence of instructions on
/// the actual loop bound. This only works if an static upper bound for the
/// dynamic loop bound can be derived, currently via analyzing `affine.min`
/// operations.
LogicalResult
ParallelToGpuLaunchLowering::matchAndRewrite(ParallelOp parallelOp,
PatternRewriter &rewriter) const {
// Mark the operation as visited for recursive legality check.
parallelOp->setAttr(kVisitedAttrName, rewriter.getUnitAttr());
// We can only transform starting at the outer-most loop. Launches inside of
// parallel loops are not supported.
if (auto parentLoop = parallelOp->getParentOfType<ParallelOp>())
return failure();
// Create a launch operation. We start with bound one for all grid/block
// sizes. Those will be refined later as we discover them from mappings.
Location loc = parallelOp.getLoc();
Value constantOne =
rewriter.create<arith::ConstantIndexOp>(parallelOp.getLoc(), 1);
gpu::LaunchOp launchOp = rewriter.create<gpu::LaunchOp>(
parallelOp.getLoc(), constantOne, constantOne, constantOne, constantOne,
constantOne, constantOne);
rewriter.setInsertionPointToEnd(&launchOp.getBody().front());
rewriter.create<gpu::TerminatorOp>(loc);
rewriter.setInsertionPointToStart(&launchOp.getBody().front());
IRMapping cloningMap;
llvm::DenseMap<gpu::Processor, Value> launchBounds;
SmallVector<Operation *, 16> worklist;
if (failed(processParallelLoop(parallelOp, launchOp, cloningMap, worklist,
launchBounds, rewriter)))
return failure();
// Whether we have seen any side-effects. Reset when leaving an inner scope.
bool seenSideeffects = false;
// Whether we have left a nesting scope (and hence are no longer innermost).
bool leftNestingScope = false;
while (!worklist.empty()) {
Operation *op = worklist.pop_back_val();
// Now walk over the body and clone it.
// TODO: This is only correct if there either is no further scf.parallel
// nested or this code is side-effect free. Otherwise we might need
// predication. We are overly conservative for now and only allow
// side-effects in the innermost scope.
if (auto nestedParallel = dyn_cast<ParallelOp>(op)) {
// Before entering a nested scope, make sure there have been no
// sideeffects until now.
if (seenSideeffects)
return failure();
// A nested scf.parallel needs insertion of code to compute indices.
// Insert that now. This will also update the worklist with the loops
// body.
if (failed(processParallelLoop(nestedParallel, launchOp, cloningMap,
worklist, launchBounds, rewriter)))
return failure();
} else if (op == launchOp.getOperation()) {
// Found our sentinel value. We have finished the operations from one
// nesting level, pop one level back up.
auto *parent = rewriter.getInsertionPoint()->getParentOp();
rewriter.setInsertionPointAfter(parent);
leftNestingScope = true;
seenSideeffects = false;
} else {
// Otherwise we copy it over.
Operation *clone = rewriter.clone(*op, cloningMap);
cloningMap.map(op->getResults(), clone->getResults());
// Check for side effects.
// TODO: Handle region side effects properly.
seenSideeffects |=
!isMemoryEffectFree(clone) || clone->getNumRegions() != 0;
// If we are no longer in the innermost scope, sideeffects are disallowed.
if (seenSideeffects && leftNestingScope)
return failure();
}
}
// Now that we succeeded creating the launch operation, also update the
// bounds.
for (auto bound : launchBounds)
launchOp.setOperand(getLaunchOpArgumentNum(std::get<0>(bound)),
std::get<1>(bound));
rewriter.eraseOp(parallelOp);
return success();
}
void mlir::populateParallelLoopToGPUPatterns(RewritePatternSet &patterns) {
patterns.add<ParallelToGpuLaunchLowering>(patterns.getContext());
}
void mlir::configureParallelLoopToGPULegality(ConversionTarget &target) {
target.addLegalDialect<memref::MemRefDialect>();
target.addDynamicallyLegalOp<scf::ParallelOp>([](scf::ParallelOp parallelOp) {
return !parallelOp->hasAttr(gpu::getMappingAttrName()) ||
parallelOp->hasAttr(kVisitedAttrName);
});
}
void mlir::finalizeParallelLoopToGPUConversion(Operation *op) {
op->walk([](scf::ParallelOp parallelOp) {
parallelOp->removeAttr(kVisitedAttrName);
});
}