Files
clang-p2996/mlir/lib/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.cpp
Tres Popp 5550c82189 [mlir] Move casting calls from methods to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.

Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
  for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.

Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
   additional check:
   https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
   and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
   them to a pure state.
4. Some changes have been deleted for the following reasons:
   - Some files had a variable also named cast
   - Some files had not included a header file that defines the cast
     functions
   - Some files are definitions of the classes that have the casting
     methods, so the code still refers to the method instead of the
     function without adding a prefix or removing the method declaration
     at the same time.

```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
               -header-filter=mlir/ mlir/* -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc

git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
            mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
            mlir/lib/**/IR/\
            mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
            mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
            mlir/test/lib/Dialect/Test/TestTypes.cpp\
            mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
            mlir/test/lib/Dialect/Test/TestAttributes.cpp\
            mlir/unittests/TableGen/EnumsGenTest.cpp\
            mlir/test/python/lib/PythonTestCAPI.cpp\
            mlir/include/mlir/IR/
```

Differential Revision: https://reviews.llvm.org/D150123
2023-05-12 11:21:25 +02:00

465 lines
18 KiB
C++

//===- BufferizableOpInterfaceImpl.cpp - Impl. of BufferizableOpInterface -===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/Bufferization/Transforms/FuncBufferizableOpInterfaceImpl.h"
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
#include "mlir/Dialect/Func/IR/FuncOps.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Dialect.h"
#include "mlir/IR/Operation.h"
#include <optional>
namespace mlir {
namespace bufferization {
namespace func_ext {
void FuncAnalysisState::startFunctionAnalysis(FuncOp funcOp) {
analyzedFuncOps[funcOp] = FuncOpAnalysisState::InProgress;
auto createdEquiv = equivalentFuncArgs.try_emplace(funcOp, IndexMapping());
auto createdAliasingResults =
aliasingReturnVals.try_emplace(funcOp, IndexToIndexListMapping());
auto createdRead = readBbArgs.try_emplace(funcOp, BbArgIndexSet());
auto createdWritten = writtenBbArgs.try_emplace(funcOp, BbArgIndexSet());
(void)createdEquiv;
(void)createdAliasingResults;
(void)createdRead;
(void)createdWritten;
#ifndef NDEBUG
assert(createdEquiv.second && "equivalence info exists already");
assert(createdAliasingResults.second && "aliasing info exists already");
assert(createdRead.second && "bbarg access info exists already");
assert(createdWritten.second && "bbarg access info exists already");
#endif // NDEBUG
}
/// Return the unique ReturnOp that terminates `funcOp`.
/// Return nullptr if there is no such unique ReturnOp.
static func::ReturnOp getAssumedUniqueReturnOp(FuncOp funcOp) {
func::ReturnOp returnOp;
for (Block &b : funcOp.getBody()) {
if (auto candidateOp = dyn_cast<func::ReturnOp>(b.getTerminator())) {
if (returnOp)
return nullptr;
returnOp = candidateOp;
}
}
return returnOp;
}
/// Return the index-th bufferized function argument type. This assumes that the
/// specified argument is a tensor. If the tensor is ranked, a layout map may be
/// specified by the user (as per `options.functionArgTypeConverterFn`).
static BaseMemRefType
getBufferizedFunctionArgType(FuncOp funcOp, int64_t index,
const BufferizationOptions &options) {
auto tensorType =
dyn_cast<TensorType>(funcOp.getFunctionType().getInput(index));
assert(tensorType && "expected TensorType");
BaseMemRefType memrefType = options.functionArgTypeConverterFn(
tensorType, *options.defaultMemorySpace, funcOp, options);
auto layoutAttr = funcOp.getArgAttrOfType<AffineMapAttr>(
index, BufferizationDialect::kBufferLayoutAttrName);
if (!layoutAttr)
return memrefType;
auto rankedMemrefType = dyn_cast<MemRefType>(memrefType);
assert(rankedMemrefType && "buffer layout not supported on unranked tensors");
return MemRefType::get(
rankedMemrefType.getShape(), rankedMemrefType.getElementType(),
layoutAttr.getValue(), rankedMemrefType.getMemorySpace());
}
/// Return the FuncOp called by `callOp`.
static FuncOp getCalledFunction(CallOpInterface callOp) {
SymbolRefAttr sym = callOp.getCallableForCallee().dyn_cast<SymbolRefAttr>();
if (!sym)
return nullptr;
return dyn_cast_or_null<FuncOp>(
SymbolTable::lookupNearestSymbolFrom(callOp, sym));
}
/// Get FuncAnalysisState.
static const FuncAnalysisState &
getFuncAnalysisState(const AnalysisState &state) {
assert(isa<OneShotAnalysisState>(state) && "expected OneShotAnalysisState");
auto *result = static_cast<const OneShotAnalysisState &>(state)
.getExtension<FuncAnalysisState>();
assert(result && "FuncAnalysisState does not exist");
return *result;
}
/// Return the state (phase) of analysis of the FuncOp.
static FuncOpAnalysisState getFuncOpAnalysisState(const AnalysisState &state,
FuncOp funcOp) {
if (!isa<OneShotAnalysisState>(state))
return FuncOpAnalysisState::NotAnalyzed;
auto *funcState = static_cast<const OneShotAnalysisState &>(state)
.getExtension<FuncAnalysisState>();
if (!funcState)
return FuncOpAnalysisState::NotAnalyzed;
const auto &analyzedFuncOps = funcState->analyzedFuncOps;
auto it = analyzedFuncOps.find(funcOp);
if (it == analyzedFuncOps.end())
return FuncOpAnalysisState::NotAnalyzed;
return it->second;
}
/// Return the index of the bbArg in the given FuncOp that is equivalent to the
/// specified return value (if any).
static std::optional<int64_t>
getEquivalentFuncArgIdx(FuncOp funcOp, const FuncAnalysisState &state,
int64_t returnValIdx) {
auto funcOpIt = state.equivalentFuncArgs.find(funcOp);
if (funcOpIt == state.equivalentFuncArgs.end())
// No equivalence info stores for funcOp.
return std::nullopt;
auto retValIt = funcOpIt->getSecond().find(returnValIdx);
if (retValIt == funcOpIt->getSecond().end())
// Return value has no equivalent bbArg.
return std::nullopt;
return retValIt->getSecond();
}
struct CallOpInterface
: public BufferizableOpInterface::ExternalModel<CallOpInterface,
func::CallOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
func::CallOp callOp = cast<func::CallOp>(op);
FuncOp funcOp = getCalledFunction(callOp);
assert(funcOp && "expected CallOp to a FuncOp");
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
// FuncOp not analyzed yet. Assume that OpOperand is read.
return true;
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
return funcState.readBbArgs.lookup(funcOp).contains(
opOperand.getOperandNumber());
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
func::CallOp callOp = cast<func::CallOp>(op);
FuncOp funcOp = getCalledFunction(callOp);
assert(funcOp && "expected CallOp to a FuncOp");
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
// FuncOp not analyzed yet. Assume that OpOperand is written.
return true;
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
return funcState.writtenBbArgs.lookup(funcOp).contains(
opOperand.getOperandNumber());
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
func::CallOp callOp = cast<func::CallOp>(op);
FuncOp funcOp = getCalledFunction(callOp);
assert(funcOp && "expected CallOp to a FuncOp");
if (getFuncOpAnalysisState(state, funcOp) != FuncOpAnalysisState::Analyzed)
// FuncOp not analyzed yet. Any OpResult may be aliasing.
return detail::unknownGetAliasingOpResults(opOperand);
// Get aliasing results from state.
const FuncAnalysisState &funcState = getFuncAnalysisState(state);
auto aliasingReturnVals =
funcState.aliasingReturnVals.lookup(funcOp).lookup(
opOperand.getOperandNumber());
// Check if the aliasing OpResult is equivalent to the OpOperand.
std::optional<int64_t> equivalent = {};
if (aliasingReturnVals.size() == 1) {
equivalent = getEquivalentFuncArgIdx(funcOp, funcState,
aliasingReturnVals.front());
assert((!equivalent.has_value() ||
*equivalent == opOperand.getOperandNumber()) &&
"inconsistent analysis state");
}
AliasingOpResultList result;
for (int64_t resultIdx : aliasingReturnVals)
result.addAlias({callOp->getOpResult(resultIdx),
equivalent.has_value() ? BufferRelation::Equivalent
: BufferRelation::Unknown,
/*isDefinite=*/equivalent.has_value()});
return result;
}
/// All function arguments are writable. It is the responsibility of the
/// CallOp to insert buffer copies where necessary.
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
func::CallOp callOp = cast<func::CallOp>(op);
unsigned numResults = callOp.getNumResults();
unsigned numOperands = callOp->getNumOperands();
FuncOp funcOp = getCalledFunction(callOp);
assert(funcOp && "expected CallOp to a FuncOp");
FunctionType funcType = funcOp.getFunctionType();
// Result types of the bufferized CallOp.
SmallVector<Type> resultTypes;
// Replacement values for the existing CallOp. These are usually the results
// of the bufferized CallOp, unless a tensor result folds onto an operand.
SmallVector<Value> replacementValues(numResults, Value());
// For non-tensor results: A mapping from return val indices of the old
// CallOp to return val indices of the bufferized CallOp.
SmallVector<std::optional<unsigned>> retValMapping(numResults,
std::nullopt);
// Operands of the bufferized CallOp.
SmallVector<Value> newOperands(numOperands, Value());
// 1. Compute the result types of the new CallOp.
for (const auto &it : llvm::enumerate(callOp.getResultTypes())) {
unsigned returnValIdx = it.index();
Type returnType = it.value();
if (!isa<TensorType>(returnType)) {
// Non-tensor values are returned.
retValMapping[returnValIdx] = resultTypes.size();
resultTypes.push_back(returnType);
continue;
}
// Returning a memref.
retValMapping[returnValIdx] = resultTypes.size();
resultTypes.push_back(funcType.getResult(resultTypes.size()));
}
// 2. Rewrite tensor operands as memrefs based on `bufferizedFuncType`.
for (OpOperand &opOperand : callOp->getOpOperands()) {
unsigned idx = opOperand.getOperandNumber();
Value tensorOperand = opOperand.get();
// Non-tensor operands are just copied.
if (!isa<TensorType>(tensorOperand.getType())) {
newOperands[idx] = tensorOperand;
continue;
}
// Retrieve buffers for tensor operands.
Value buffer = newOperands[idx];
if (!buffer) {
FailureOr<Value> maybeBuffer =
getBuffer(rewriter, opOperand.get(), options);
if (failed(maybeBuffer))
return failure();
buffer = *maybeBuffer;
}
// Caller / callee type mismatch is handled with a CastOp.
auto memRefType = funcType.getInput(idx);
// Since we don't yet have a clear layout story, to_memref may
// conservatively turn tensors into more dynamic memref than necessary.
// If the memref type of the callee fails, introduce an extra memref.cast
// that will either canonicalize away or fail compilation until we can do
// something better.
if (buffer.getType() != memRefType) {
assert(
memref::CastOp::areCastCompatible(buffer.getType(), memRefType) &&
"CallOp::bufferize: cast incompatible");
Value castBuffer = rewriter.create<memref::CastOp>(callOp.getLoc(),
memRefType, buffer);
buffer = castBuffer;
}
newOperands[idx] = buffer;
}
// 3. Create the new CallOp.
Operation *newCallOp = rewriter.create<func::CallOp>(
callOp.getLoc(), funcOp.getSymName(), resultTypes, newOperands);
newCallOp->setAttrs(callOp->getAttrs());
// Get replacement values.
for (unsigned i = 0; i < replacementValues.size(); ++i) {
if (replacementValues[i])
continue;
replacementValues[i] = newCallOp->getResult(*retValMapping[i]);
}
// 4. Replace the old op with the new op.
replaceOpWithBufferizedValues(rewriter, callOp, replacementValues);
return success();
}
};
struct ReturnOpInterface
: public BufferizableOpInterface::ExternalModel<ReturnOpInterface,
func::ReturnOp> {
bool bufferizesToMemoryRead(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return true;
}
bool bufferizesToMemoryWrite(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return false;
}
AliasingOpResultList getAliasingOpResults(Operation *op, OpOperand &opOperand,
const AnalysisState &state) const {
return {};
}
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
#ifndef NDEBUG
auto returnOp = cast<func::ReturnOp>(op);
assert(isa<FuncOp>(returnOp->getParentOp()) &&
"only support FuncOp parent for ReturnOp");
#endif // NDEBUG
// ReturnOps are bufferized as part of FuncOps.
return success();
}
};
struct FuncOpInterface
: public BufferizableOpInterface::ExternalModel<FuncOpInterface, FuncOp> {
/// Rewrite function bbArgs and return values into buffer form. This function
/// bufferizes the function signature and the ReturnOp. When the entire
/// function body has been bufferized, function return types can be switched
/// to more concise memref types as part of `foldMemRefCasts`.
///
/// All function bbArgs are writable unless they are explicitly marked as
/// read-only. Callers must insert copies when needed.
LogicalResult bufferize(Operation *op, RewriterBase &rewriter,
const BufferizationOptions &options) const {
auto funcOp = cast<FuncOp>(op);
FunctionType funcType = funcOp.getFunctionType();
// Construct the bufferized function type.
SmallVector<Type> argTypes;
for (const auto &it : llvm::enumerate(funcType.getInputs())) {
Type argType = it.value();
if (auto tensorType = dyn_cast<TensorType>(argType)) {
argTypes.push_back(
getBufferizedFunctionArgType(funcOp, it.index(), options));
continue;
}
argTypes.push_back(argType);
}
// Bodiless functions are assumed opaque and we cannot know the
// bufferization contract they want to enforce. As a consequence, only
// support functions that don't return any tensors atm.
if (funcOp.getBody().empty()) {
SmallVector<Type> retTypes;
for (Type resultType : funcType.getResults()) {
if (isa<TensorType>(resultType))
return funcOp->emitError() << "cannot bufferize bodiless function "
<< "that returns a tensor";
retTypes.push_back(resultType);
}
funcOp.setType(FunctionType::get(op->getContext(), argTypes, retTypes));
return success();
}
// TODO: Support functions with multiple returns.
func::ReturnOp returnOp = getAssumedUniqueReturnOp(funcOp);
assert(returnOp && "expected func with single return op");
Location loc = returnOp.getLoc();
// 1. Rewrite the bbArgs. Turn every tensor bbArg into a memref bbArg.
Block &frontBlock = funcOp.getBody().front();
for (BlockArgument &bbArg : frontBlock.getArguments()) {
auto tensorType = dyn_cast<TensorType>(bbArg.getType());
// Non-tensor types stay the same.
if (!tensorType)
continue;
// Collect all uses of the bbArg.
SmallVector<OpOperand *> bbArgUses;
for (OpOperand &use : bbArg.getUses())
bbArgUses.push_back(&use);
// Change the bbArg type to memref.
Type memrefType =
getBufferizedFunctionArgType(funcOp, bbArg.getArgNumber(), options);
bbArg.setType(memrefType);
// Replace all uses of the original tensor bbArg.
rewriter.setInsertionPointToStart(&frontBlock);
if (!bbArgUses.empty()) {
// Insert to_tensor because the remaining function body has not been
// bufferized yet.
Value toTensorOp =
rewriter.create<bufferization::ToTensorOp>(funcOp.getLoc(), bbArg);
for (OpOperand *use : bbArgUses)
use->set(toTensorOp);
}
}
// 2. For each result, keep track of which inplace argument it reuses.
SmallVector<Value> returnValues;
for (OpOperand &returnOperand : returnOp->getOpOperands()) {
Value returnVal = returnOperand.get();
auto tensorType = dyn_cast<TensorType>(returnVal.getType());
rewriter.setInsertionPoint(returnOp);
// If not a tensor type just forward it.
if (!tensorType) {
returnValues.push_back(returnVal);
continue;
}
// Note: If `inferFunctionResultLayout = true`, cast are later folded
// away.
BaseMemRefType resultType = options.functionArgTypeConverterFn(
tensorType, *options.defaultMemorySpace, funcOp, options);
Value toMemrefOp = rewriter.create<bufferization::ToMemrefOp>(
loc, resultType, returnVal);
returnValues.push_back(toMemrefOp);
}
// 3. Rewrite the terminator without the in-place bufferizable values.
returnOp.getOperandsMutable().assign(returnValues);
// 4. Rewrite the FuncOp type to buffer form.
funcOp.setType(FunctionType::get(op->getContext(), argTypes,
ValueRange(returnValues).getTypes()));
return success();
}
/// Return `true` if the given function argument is writable.
bool isWritable(Operation *op, Value value,
const AnalysisState &state) const {
auto funcOp = cast<FuncOp>(op);
BlockArgument bbArg = dyn_cast<BlockArgument>(value);
assert(bbArg && "expected BlockArgument");
// "bufferization.writable" overrides other writability decisions. This is
// currently used for testing only.
if (BoolAttr writable = funcOp.getArgAttrOfType<BoolAttr>(
bbArg.getArgNumber(), BufferizationDialect::kWritableAttrName))
return writable.getValue();
// All function arguments are writable by default.
return true;
}
};
} // namespace func_ext
} // namespace bufferization
} // namespace mlir
void mlir::bufferization::func_ext::
registerBufferizableOpInterfaceExternalModels(DialectRegistry &registry) {
registry.addExtension(+[](MLIRContext *ctx, func::FuncDialect *dialect) {
func::CallOp::attachInterface<func_ext::CallOpInterface>(*ctx);
func::FuncOp::attachInterface<func_ext::FuncOpInterface>(*ctx);
func::ReturnOp::attachInterface<func_ext::ReturnOpInterface>(*ctx);
});
}