The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
165 lines
5.9 KiB
C++
165 lines
5.9 KiB
C++
//===- TensorCopyInsertion.cpp - Resolve Bufferization Conflicts w/ Copies ===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Bufferization/Transforms/Passes.h"
|
|
|
|
#include "mlir/Dialect/Bufferization/IR/BufferizableOpInterface.h"
|
|
#include "mlir/Dialect/Bufferization/IR/Bufferization.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Bufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotAnalysis.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/OneShotModuleBufferize.h"
|
|
#include "mlir/Dialect/Bufferization/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/Func/IR/FuncOps.h"
|
|
|
|
namespace mlir {
|
|
namespace bufferization {
|
|
#define GEN_PASS_DEF_TENSORCOPYINSERTION
|
|
#include "mlir/Dialect/Bufferization/Transforms/Passes.h.inc"
|
|
} // namespace bufferization
|
|
} // namespace mlir
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::bufferization;
|
|
|
|
/// Resolve all operands that are also used inside of repetitive regions of the
|
|
/// same op. Such cases are not fully supported by One-Shot Bufferize.
|
|
///
|
|
/// E.g.:
|
|
/// %r = scf.for ... iter_args(%t = %tensor) -> tensor<?xf32> {
|
|
/// "some_use"(%tensor)
|
|
/// ...
|
|
/// }
|
|
///
|
|
/// Is converted to:
|
|
/// %tensor_copy = bufferization.alloc_tensor copy(%tensor)
|
|
/// %r = scf.for ... iter_args(%t = %tensor) -> tensor<?xf32> {
|
|
/// "some_use"(%tensor_copy)
|
|
/// ...
|
|
/// }
|
|
static void
|
|
resolveUsesInRepetitiveRegions(Operation *op,
|
|
const BufferizationOptions &options) {
|
|
IRRewriter rewriter(op->getContext());
|
|
AnalysisState state(options);
|
|
|
|
// Look for repetitive ops (loops).
|
|
op->walk([&](BufferizableOpInterface bufferizableOp) {
|
|
// Skip filtered ops.
|
|
if (!options.isOpAllowed(bufferizableOp.getOperation()))
|
|
return WalkResult::advance();
|
|
|
|
// Find all operands that are also used inside of a repetitive region of
|
|
// this op.
|
|
for (OpOperand &opOperand : bufferizableOp->getOpOperands()) {
|
|
Value operand = opOperand.get();
|
|
// Skip non-tensor operands.
|
|
if (!isa<TensorType>(operand.getType()))
|
|
continue;
|
|
// Skip operands that do not bufferize to memory writes.
|
|
if (!bufferizableOp.bufferizesToMemoryWrite(opOperand, state))
|
|
continue;
|
|
|
|
// Gather all uses inside repetitive regions.
|
|
SmallVector<OpOperand *> usesInsideRegion;
|
|
for (OpOperand &use : operand.getUses()) {
|
|
Operation *owner = use.getOwner();
|
|
if (!bufferizableOp->isProperAncestor(owner))
|
|
continue;
|
|
for (Region &r : bufferizableOp->getRegions()) {
|
|
if (r.findAncestorOpInRegion(*owner) &&
|
|
bufferizableOp.isRepetitiveRegion(r.getRegionNumber())) {
|
|
usesInsideRegion.push_back(&use);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
// Nothing to do if the operand is not used inside a repetitive region.
|
|
if (usesInsideRegion.empty())
|
|
continue;
|
|
|
|
// Insert a tensor copy and replace all uses inside of repetitive regions.
|
|
rewriter.setInsertionPoint(bufferizableOp);
|
|
auto tensorCopy = rewriter.create<AllocTensorOp>(
|
|
bufferizableOp->getLoc(), cast<TensorType>(operand.getType()),
|
|
/*dynamicSizes=*/ValueRange(),
|
|
/*copy=*/operand, /*memory_space=*/IntegerAttr());
|
|
for (OpOperand *use : usesInsideRegion)
|
|
use->set(tensorCopy);
|
|
}
|
|
|
|
return WalkResult::advance();
|
|
});
|
|
}
|
|
|
|
LogicalResult mlir::bufferization::insertTensorCopies(
|
|
Operation *op, const OneShotBufferizationOptions &options,
|
|
BufferizationStatistics *statistics) {
|
|
// Preprocessing: Resolve currently unsupported bufferization cases.
|
|
resolveUsesInRepetitiveRegions(op, options);
|
|
|
|
OneShotAnalysisState state(op, options);
|
|
// Run normal One-Shot Bufferize analysis or One-Shot Module Bufferize
|
|
// analysis depending on whether function boundary bufferization is enabled or
|
|
// not.
|
|
if (options.bufferizeFunctionBoundaries) {
|
|
if (failed(analyzeModuleOp(cast<ModuleOp>(op), state, statistics)))
|
|
return failure();
|
|
} else {
|
|
if (failed(analyzeOp(op, state, statistics)))
|
|
return failure();
|
|
}
|
|
|
|
if (options.testAnalysisOnly)
|
|
return success();
|
|
|
|
return insertTensorCopies(op, state);
|
|
}
|
|
|
|
LogicalResult
|
|
mlir::bufferization::insertTensorCopies(Operation *op,
|
|
const AnalysisState &state) {
|
|
IRRewriter rewriter(op->getContext());
|
|
StringRef escapeAttrName = BufferizationDialect::kEscapeAttrName;
|
|
|
|
WalkResult result = op->walk([&](Operation *op) {
|
|
auto bufferizableOp = state.getOptions().dynCastBufferizableOp(op);
|
|
if (!bufferizableOp)
|
|
return WalkResult::skip();
|
|
|
|
// Find allocations without an `escape` attribute and add the attribute
|
|
// based on analysis results.
|
|
if (!op->hasAttr(escapeAttrName)) {
|
|
SmallVector<bool> escapeAttrValue;
|
|
bool foundTensorResult = false;
|
|
for (OpResult opResult : op->getOpResults()) {
|
|
if (!isa<TensorType>(opResult.getType()) ||
|
|
!bufferizableOp.bufferizesToAllocation(opResult)) {
|
|
escapeAttrValue.push_back(false);
|
|
continue;
|
|
}
|
|
foundTensorResult = true;
|
|
bool escape = !state.getOptions().createDeallocs ||
|
|
state.isTensorYielded(opResult);
|
|
escapeAttrValue.push_back(escape);
|
|
}
|
|
if (foundTensorResult)
|
|
op->setAttr(escapeAttrName, rewriter.getBoolArrayAttr(escapeAttrValue));
|
|
}
|
|
|
|
// Find inplacability conflicts and resolve them. (Typically with explicit
|
|
// tensor copies in the form of AllocTensorOps.)
|
|
rewriter.setInsertionPoint(op);
|
|
if (failed(bufferizableOp.resolveConflicts(rewriter, state)))
|
|
return WalkResult::interrupt();
|
|
|
|
return WalkResult::advance();
|
|
});
|
|
|
|
return failure(result.wasInterrupted());
|
|
}
|