The MLIR classes Type/Attribute/Operation/Op/Value support cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast functionality in addition to defining methods with the same name. This change begins the migration of uses of the method to the corresponding function call as has been decided as more consistent. Note that there still exist classes that only define methods directly, such as AffineExpr, and this does not include work currently to support a functional cast/isa call. Caveats include: - This clang-tidy script probably has more problems. - This only touches C++ code, so nothing that is being generated. Context: - https://mlir.llvm.org/deprecation/ at "Use the free function variants for dyn_cast/cast/isa/…" - Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443 Implementation: This first patch was created with the following steps. The intention is to only do automated changes at first, so I waste less time if it's reverted, and so the first mass change is more clear as an example to other teams that will need to follow similar steps. Steps are described per line, as comments are removed by git: 0. Retrieve the change from the following to build clang-tidy with an additional check: https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check 1. Build clang-tidy 2. Run clang-tidy over your entire codebase while disabling all checks and enabling the one relevant one. Run on all header files also. 3. Delete .inc files that were also modified, so the next build rebuilds them to a pure state. 4. Some changes have been deleted for the following reasons: - Some files had a variable also named cast - Some files had not included a header file that defines the cast functions - Some files are definitions of the classes that have the casting methods, so the code still refers to the method instead of the function without adding a prefix or removing the method declaration at the same time. ``` ninja -C $BUILD_DIR clang-tidy run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\ -header-filter=mlir/ mlir/* -fix rm -rf $BUILD_DIR/tools/mlir/**/*.inc git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\ mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\ mlir/lib/**/IR/\ mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\ mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\ mlir/test/lib/Dialect/Test/TestTypes.cpp\ mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\ mlir/test/lib/Dialect/Test/TestAttributes.cpp\ mlir/unittests/TableGen/EnumsGenTest.cpp\ mlir/test/python/lib/PythonTestCAPI.cpp\ mlir/include/mlir/IR/ ``` Differential Revision: https://reviews.llvm.org/D150123
422 lines
17 KiB
C++
422 lines
17 KiB
C++
//===- AllReduceLowering.cpp - Implementation of all-reduce lowering ------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements in-dialect lowering of the all-reduce op to a block of
|
|
// simpler instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/Arith/IR/Arith.h"
|
|
#include "mlir/Dialect/ControlFlow/IR/ControlFlowOps.h"
|
|
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
|
|
#include "mlir/Dialect/GPU/Transforms/Passes.h"
|
|
#include "mlir/Dialect/MemRef/IR/MemRef.h"
|
|
#include "mlir/IR/Builders.h"
|
|
#include "mlir/IR/IRMapping.h"
|
|
#include "mlir/IR/PatternMatch.h"
|
|
#include "mlir/Pass/Pass.h"
|
|
|
|
using namespace mlir;
|
|
|
|
namespace {
|
|
|
|
struct GpuAllReduceRewriter {
|
|
using AccumulatorFactory = std::function<Value(Value, Value)>;
|
|
|
|
GpuAllReduceRewriter(gpu::GPUFuncOp funcOp, gpu::AllReduceOp reduceOp,
|
|
PatternRewriter &rewriter)
|
|
: funcOp(funcOp), reduceOp(reduceOp), rewriter(rewriter),
|
|
loc(reduceOp.getLoc()), valueType(reduceOp.getValue().getType()),
|
|
indexType(IndexType::get(reduceOp.getContext())),
|
|
int32Type(IntegerType::get(reduceOp.getContext(), /*width=*/32)) {}
|
|
|
|
/// Creates an all_reduce across the workgroup.
|
|
///
|
|
/// First reduce the elements within a subgroup. The first invocation of each
|
|
/// subgroup writes the intermediate result to workgroup memory. After
|
|
/// synchronizing the workgroup, the first subgroup reduces the values from
|
|
/// workgroup memory. The result is broadcasted to all invocations through
|
|
/// workgroup memory.
|
|
///
|
|
/// %subgroup_reduce = `createSubgroupReduce(%operand)`
|
|
/// cf.cond_br %is_first_lane, ^then1, ^continue1
|
|
/// ^then1:
|
|
/// store %subgroup_reduce, %workgroup_buffer[%subgroup_id]
|
|
/// cf.br ^continue1
|
|
/// ^continue1:
|
|
/// gpu.barrier
|
|
/// %is_valid_subgroup = arith.cmpi "slt" %invocation_idx, %num_subgroups
|
|
/// cf.cond_br %is_valid_subgroup, ^then2, ^continue2
|
|
/// ^then2:
|
|
/// %partial_reduce = load %workgroup_buffer[%invocation_idx]
|
|
/// %all_reduce = `createSubgroupReduce(%partial_reduce)`
|
|
/// store %all_reduce, %workgroup_buffer[%zero]
|
|
/// llvm.br ^continue2
|
|
/// ^continue2:
|
|
/// gpu.barrier
|
|
/// %result = load %workgroup_buffer[%zero]
|
|
/// return %result
|
|
///
|
|
void rewrite() {
|
|
rewriter.setInsertionPoint(reduceOp);
|
|
|
|
// Compute linear invocation index and workgroup size.
|
|
Value dimX = getDimOp<gpu::BlockDimOp>(gpu::Dimension::x);
|
|
Value dimY = getDimOp<gpu::BlockDimOp>(gpu::Dimension::y);
|
|
Value dimZ = getDimOp<gpu::BlockDimOp>(gpu::Dimension::z);
|
|
Value tidX = getDimOp<gpu::ThreadIdOp>(gpu::Dimension::x);
|
|
Value tidY = getDimOp<gpu::ThreadIdOp>(gpu::Dimension::y);
|
|
Value tidZ = getDimOp<gpu::ThreadIdOp>(gpu::Dimension::z);
|
|
Value tmp1 = create<arith::MulIOp>(int32Type, tidZ, dimY);
|
|
Value tmp2 = create<arith::AddIOp>(int32Type, tmp1, tidY);
|
|
Value tmp3 = create<arith::MulIOp>(int32Type, tmp2, dimX);
|
|
Value tmp4 = create<arith::MulIOp>(int32Type, dimX, dimY);
|
|
Value invocationIdx = create<arith::AddIOp>(int32Type, tmp3, tidX);
|
|
Value workgroupSize = create<arith::MulIOp>(int32Type, tmp4, dimZ);
|
|
|
|
// Compute lane id (invocation id withing the subgroup).
|
|
Value subgroupMask =
|
|
create<arith::ConstantIntOp>(kSubgroupSize - 1, int32Type);
|
|
Value laneId = create<arith::AndIOp>(invocationIdx, subgroupMask);
|
|
Value isFirstLane =
|
|
create<arith::CmpIOp>(arith::CmpIPredicate::eq, laneId,
|
|
create<arith::ConstantIntOp>(0, int32Type));
|
|
|
|
Value numThreadsWithSmallerSubgroupId =
|
|
create<arith::SubIOp>(invocationIdx, laneId);
|
|
// The number of active invocations starting from the current subgroup.
|
|
// The consumers do not require the value to be clamped to the size of the
|
|
// subgroup.
|
|
Value activeWidth =
|
|
create<arith::SubIOp>(workgroupSize, numThreadsWithSmallerSubgroupId);
|
|
|
|
// Create factory for op which accumulates to values.
|
|
AccumulatorFactory accumFactory = getFactory();
|
|
assert(accumFactory && "failed to create accumulator factory");
|
|
|
|
// Reduce elements within each subgroup to produce the intermediate results.
|
|
Value subgroupReduce = createSubgroupReduce(
|
|
activeWidth, laneId, reduceOp.getValue(), accumFactory);
|
|
|
|
// Add workgroup buffer to parent function for intermediate result.
|
|
Value buffer = createWorkgroupBuffer();
|
|
|
|
// Write the intermediate results to workgroup memory, using the first lane
|
|
// of each subgroup.
|
|
createPredicatedBlock(isFirstLane, [&] {
|
|
Value subgroupId = getDivideBySubgroupSize(invocationIdx);
|
|
Value index = create<arith::IndexCastOp>(indexType, subgroupId);
|
|
create<memref::StoreOp>(subgroupReduce, buffer, index);
|
|
});
|
|
create<gpu::BarrierOp>();
|
|
|
|
// Compute number of active subgroups.
|
|
Value biasedBlockSize =
|
|
create<arith::AddIOp>(int32Type, workgroupSize, subgroupMask);
|
|
Value numSubgroups = getDivideBySubgroupSize(biasedBlockSize);
|
|
Value isValidSubgroup = create<arith::CmpIOp>(arith::CmpIPredicate::slt,
|
|
invocationIdx, numSubgroups);
|
|
|
|
// Use the first numSubgroups invocations to reduce the intermediate results
|
|
// from workgroup memory. The final result is written to workgroup memory
|
|
// again.
|
|
Value zero = create<arith::ConstantIndexOp>(0);
|
|
createPredicatedBlock(isValidSubgroup, [&] {
|
|
Value index = create<arith::IndexCastOp>(indexType, invocationIdx);
|
|
Value value = create<memref::LoadOp>(valueType, buffer, index);
|
|
Value result =
|
|
createSubgroupReduce(numSubgroups, laneId, value, accumFactory);
|
|
create<memref::StoreOp>(result, buffer, zero);
|
|
});
|
|
|
|
// Synchronize workgroup and load result from workgroup memory.
|
|
create<gpu::BarrierOp>();
|
|
Value result = create<memref::LoadOp>(valueType, buffer, zero);
|
|
|
|
rewriter.replaceOp(reduceOp, result);
|
|
}
|
|
|
|
private:
|
|
// Shortcut to create an op from rewriter using loc as the first argument.
|
|
template <typename T, typename... Args>
|
|
T create(Args... args) {
|
|
return rewriter.create<T>(loc, std::forward<Args>(args)...);
|
|
}
|
|
|
|
// Creates dimension op of type T, with the result casted to int32.
|
|
template <typename T>
|
|
Value getDimOp(gpu::Dimension dimension) {
|
|
Value dim = create<T>(indexType, dimension);
|
|
return create<arith::IndexCastOp>(int32Type, dim);
|
|
}
|
|
|
|
/// Adds type to funcOp's workgroup attributions.
|
|
Value createWorkgroupBuffer() {
|
|
// TODO: Pick a proper location for the attribution.
|
|
auto workgroupMemoryAddressSpace = gpu::AddressSpaceAttr::get(
|
|
funcOp->getContext(), gpu::GPUDialect::getWorkgroupAddressSpace());
|
|
auto bufferType = MemRefType::get({kSubgroupSize}, valueType, AffineMap{},
|
|
workgroupMemoryAddressSpace);
|
|
return funcOp.addWorkgroupAttribution(bufferType, rewriter.getUnknownLoc());
|
|
}
|
|
|
|
/// Returns an accumulator factory using either the op attribute or the body
|
|
/// region.
|
|
AccumulatorFactory getFactory() {
|
|
auto &body = reduceOp.getBody();
|
|
if (!body.empty())
|
|
return getFactory(body);
|
|
auto opAttr = reduceOp.getOp();
|
|
if (opAttr)
|
|
return getFactory(*opAttr);
|
|
return AccumulatorFactory();
|
|
}
|
|
|
|
/// Returns an accumulator factory that clones the body. The body's entry
|
|
/// block is expected to have 2 arguments. The gpu.yield return the
|
|
/// accumulated value of the same type.
|
|
AccumulatorFactory getFactory(Region &body) {
|
|
return AccumulatorFactory([&](Value lhs, Value rhs) {
|
|
Block *block = rewriter.getInsertionBlock();
|
|
Block *split = rewriter.splitBlock(block, rewriter.getInsertionPoint());
|
|
|
|
// Insert accumulator body between split block.
|
|
IRMapping mapping;
|
|
mapping.map(body.getArgument(0), lhs);
|
|
mapping.map(body.getArgument(1), rhs);
|
|
rewriter.cloneRegionBefore(body, *split->getParent(),
|
|
split->getIterator(), mapping);
|
|
|
|
// Add branch before inserted body, into body.
|
|
block = block->getNextNode();
|
|
create<cf::BranchOp>(block, ValueRange());
|
|
|
|
// Replace all gpu.yield ops with branch out of body.
|
|
for (; block != split; block = block->getNextNode()) {
|
|
Operation *terminator = block->getTerminator();
|
|
if (!isa<gpu::YieldOp>(terminator))
|
|
continue;
|
|
rewriter.setInsertionPointToEnd(block);
|
|
rewriter.replaceOpWithNewOp<cf::BranchOp>(
|
|
terminator, split, ValueRange(terminator->getOperand(0)));
|
|
}
|
|
|
|
// Return accumulator result.
|
|
rewriter.setInsertionPointToStart(split);
|
|
return split->addArgument(lhs.getType(), lhs.getLoc());
|
|
});
|
|
}
|
|
|
|
/// Returns an accumulator factory that creates an op specified by opName.
|
|
AccumulatorFactory getFactory(gpu::AllReduceOperation opName) {
|
|
bool isFloatingPoint = isa<FloatType>(valueType);
|
|
switch (opName) {
|
|
case gpu::AllReduceOperation::ADD:
|
|
return isFloatingPoint ? getFactory<arith::AddFOp>()
|
|
: getFactory<arith::AddIOp>();
|
|
case gpu::AllReduceOperation::MUL:
|
|
return isFloatingPoint ? getFactory<arith::MulFOp>()
|
|
: getFactory<arith::MulIOp>();
|
|
case gpu::AllReduceOperation::AND:
|
|
return getFactory<arith::AndIOp>();
|
|
case gpu::AllReduceOperation::OR:
|
|
return getFactory<arith::OrIOp>();
|
|
case gpu::AllReduceOperation::XOR:
|
|
return getFactory<arith::XOrIOp>();
|
|
case gpu::AllReduceOperation::MAX:
|
|
return isFloatingPoint
|
|
? getCmpFactory<arith::CmpFOp, arith::CmpFPredicate,
|
|
arith::CmpFPredicate::UGT>()
|
|
: getCmpFactory<arith::CmpIOp, arith::CmpIPredicate,
|
|
arith::CmpIPredicate::ugt>();
|
|
case gpu::AllReduceOperation::MIN:
|
|
return isFloatingPoint
|
|
? getCmpFactory<arith::CmpFOp, arith::CmpFPredicate,
|
|
arith::CmpFPredicate::ULT>()
|
|
: getCmpFactory<arith::CmpIOp, arith::CmpIPredicate,
|
|
arith::CmpIPredicate::ult>();
|
|
}
|
|
llvm_unreachable("unknown GPU AllReduceOperation");
|
|
}
|
|
|
|
/// Returns an accumulator factory that creates an op of type T.
|
|
template <typename T>
|
|
AccumulatorFactory getFactory() {
|
|
return [&](Value lhs, Value rhs) {
|
|
return create<T>(lhs.getType(), lhs, rhs);
|
|
};
|
|
}
|
|
|
|
/// Returns an accumulator for comparison such as min, max. T is the type
|
|
/// of the compare op.
|
|
template <typename T, typename PredicateEnum, PredicateEnum predicate>
|
|
AccumulatorFactory getCmpFactory() const {
|
|
return [&](Value lhs, Value rhs) {
|
|
Value cmp = rewriter.create<T>(loc, predicate, lhs, rhs);
|
|
return rewriter.create<arith::SelectOp>(loc, cmp, lhs, rhs);
|
|
};
|
|
}
|
|
|
|
/// Creates an if-block skeleton and calls the two factories to generate the
|
|
/// ops in the `then` and `else` block..
|
|
///
|
|
/// llvm.cond_br %condition, ^then, ^continue
|
|
/// ^then:
|
|
/// %then_operands = `thenOpsFactory()`
|
|
/// llvm.br ^continue(%then_operands)
|
|
/// ^else:
|
|
/// %else_operands = `elseOpsFactory()`
|
|
/// llvm.br ^continue(%else_operands)
|
|
/// ^continue(%block_operands):
|
|
///
|
|
template <typename ThenOpsFactory, typename ElseOpsFactory>
|
|
void createIf(Value condition, ThenOpsFactory &&thenOpsFactory,
|
|
ElseOpsFactory &&elseOpsFactory) {
|
|
Block *currentBlock = rewriter.getInsertionBlock();
|
|
auto currentPoint = rewriter.getInsertionPoint();
|
|
|
|
Block *thenBlock = rewriter.splitBlock(currentBlock, currentPoint);
|
|
Block *elseBlock = rewriter.splitBlock(thenBlock, thenBlock->begin());
|
|
Block *continueBlock = rewriter.splitBlock(elseBlock, elseBlock->begin());
|
|
|
|
rewriter.setInsertionPointToEnd(currentBlock);
|
|
create<cf::CondBranchOp>(condition, thenBlock,
|
|
/*trueOperands=*/ArrayRef<Value>(), elseBlock,
|
|
/*falseOperands=*/ArrayRef<Value>());
|
|
|
|
rewriter.setInsertionPointToStart(thenBlock);
|
|
auto thenOperands = thenOpsFactory();
|
|
create<cf::BranchOp>(continueBlock, thenOperands);
|
|
|
|
rewriter.setInsertionPointToStart(elseBlock);
|
|
auto elseOperands = elseOpsFactory();
|
|
create<cf::BranchOp>(continueBlock, elseOperands);
|
|
|
|
assert(thenOperands.size() == elseOperands.size());
|
|
rewriter.setInsertionPointToStart(continueBlock);
|
|
for (auto operand : thenOperands)
|
|
continueBlock->addArgument(operand.getType(), operand.getLoc());
|
|
}
|
|
|
|
/// Shortcut for createIf with empty else block and no block operands.
|
|
template <typename Factory>
|
|
void createPredicatedBlock(Value condition, Factory &&predicatedOpsFactory) {
|
|
static_assert(std::is_same<decltype(predicatedOpsFactory()), void>::value,
|
|
"predicatedOpsFactory should not return any value");
|
|
createIf(
|
|
condition,
|
|
[&] {
|
|
predicatedOpsFactory();
|
|
return ArrayRef<Value>();
|
|
},
|
|
[&] { return ArrayRef<Value>(); });
|
|
}
|
|
|
|
/// Creates a reduction across the first activeWidth lanes of a subgroup, or
|
|
/// the entire subgroup if activeWidth is larger than the subgroup width.
|
|
/// The first lane returns the result, all others return values are undefined.
|
|
Value createSubgroupReduce(Value activeWidth, Value laneId, Value operand,
|
|
AccumulatorFactory &accumFactory) {
|
|
Value subgroupSize = create<arith::ConstantIntOp>(kSubgroupSize, int32Type);
|
|
Value isPartialSubgroup = create<arith::CmpIOp>(arith::CmpIPredicate::slt,
|
|
activeWidth, subgroupSize);
|
|
std::array<Type, 2> shuffleType = {valueType, rewriter.getI1Type()};
|
|
|
|
createIf(
|
|
isPartialSubgroup,
|
|
// Generate reduction over a (potentially) partial subgroup.
|
|
[&] {
|
|
Value value = operand;
|
|
// Repeatedly shuffle value from 'laneId ^ i' and accumulate if source
|
|
// lane is within the active range. The accumulated value is available
|
|
// in the first lane.
|
|
for (int i = 1; i < kSubgroupSize; i <<= 1) {
|
|
Value offset = create<arith::ConstantIntOp>(i, int32Type);
|
|
auto shuffleOp = create<gpu::ShuffleOp>(
|
|
shuffleType, value, offset, activeWidth, gpu::ShuffleMode::XOR);
|
|
// Skip the accumulation if the shuffle op read from a lane outside
|
|
// of the active range.
|
|
createIf(
|
|
shuffleOp.getResult(1),
|
|
[&] {
|
|
return SmallVector<Value, 1>{
|
|
accumFactory(value, shuffleOp.getResult(0))};
|
|
},
|
|
[&] { return llvm::ArrayRef(value); });
|
|
value = rewriter.getInsertionBlock()->getArgument(0);
|
|
}
|
|
return SmallVector<Value, 1>{value};
|
|
},
|
|
// Generate a reduction over the entire subgroup. This is a
|
|
// specialization of the above reduction with unconditional
|
|
// accumulation.
|
|
[&] {
|
|
Value value = operand;
|
|
for (int i = 1; i < kSubgroupSize; i <<= 1) {
|
|
Value offset = create<arith::ConstantIntOp>(i, int32Type);
|
|
auto shuffleOp =
|
|
create<gpu::ShuffleOp>(shuffleType, value, offset, subgroupSize,
|
|
gpu::ShuffleMode::XOR);
|
|
value = accumFactory(value, shuffleOp.getResult(0));
|
|
}
|
|
return SmallVector<Value, 1>{value};
|
|
});
|
|
return rewriter.getInsertionBlock()->getArgument(0);
|
|
}
|
|
|
|
/// Returns value divided by the subgroup size (i.e. 32).
|
|
Value getDivideBySubgroupSize(Value value) {
|
|
Value subgroupSize = create<arith::ConstantIntOp>(kSubgroupSize, int32Type);
|
|
return create<arith::DivSIOp>(int32Type, value, subgroupSize);
|
|
}
|
|
|
|
gpu::GPUFuncOp funcOp;
|
|
gpu::AllReduceOp reduceOp;
|
|
PatternRewriter &rewriter;
|
|
|
|
Location loc;
|
|
Type valueType;
|
|
Type indexType;
|
|
IntegerType int32Type;
|
|
|
|
static constexpr int kSubgroupSize = 32;
|
|
};
|
|
|
|
struct GpuAllReduceConversion : public RewritePattern {
|
|
explicit GpuAllReduceConversion(MLIRContext *context)
|
|
: RewritePattern(gpu::GPUFuncOp::getOperationName(), 1, context) {}
|
|
|
|
LogicalResult matchAndRewrite(Operation *op,
|
|
PatternRewriter &rewriter) const override {
|
|
auto funcOp = cast<gpu::GPUFuncOp>(op);
|
|
|
|
SmallVector<gpu::AllReduceOp> reduceOps;
|
|
auto callback = [&](gpu::AllReduceOp reduceOp) -> WalkResult {
|
|
if (!reduceOp.getUniform())
|
|
return WalkResult::interrupt();
|
|
|
|
reduceOps.emplace_back(reduceOp);
|
|
return WalkResult::advance();
|
|
};
|
|
|
|
if (funcOp.walk(callback).wasInterrupted() || reduceOps.empty())
|
|
return rewriter.notifyMatchFailure(
|
|
op, "Non uniform reductions are not supported yet.");
|
|
|
|
for (gpu::AllReduceOp reduceOp : reduceOps)
|
|
GpuAllReduceRewriter(funcOp, reduceOp, rewriter).rewrite();
|
|
|
|
return success();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
void mlir::populateGpuAllReducePatterns(RewritePatternSet &patterns) {
|
|
patterns.add<GpuAllReduceConversion>(patterns.getContext());
|
|
}
|