Files
clang-p2996/mlir/lib/Dialect/NVGPU/Transforms/OptimizeSharedMemory.cpp
Tres Popp 5550c82189 [mlir] Move casting calls from methods to function calls
The MLIR classes Type/Attribute/Operation/Op/Value support
cast/dyn_cast/isa/dyn_cast_or_null functionality through llvm's doCast
functionality in addition to defining methods with the same name.
This change begins the migration of uses of the method to the
corresponding function call as has been decided as more consistent.

Note that there still exist classes that only define methods directly,
such as AffineExpr, and this does not include work currently to support
a functional cast/isa call.

Caveats include:
- This clang-tidy script probably has more problems.
- This only touches C++ code, so nothing that is being generated.

Context:
- https://mlir.llvm.org/deprecation/ at "Use the free function variants
  for dyn_cast/cast/isa/…"
- Original discussion at https://discourse.llvm.org/t/preferred-casting-style-going-forward/68443

Implementation:
This first patch was created with the following steps. The intention is
to only do automated changes at first, so I waste less time if it's
reverted, and so the first mass change is more clear as an example to
other teams that will need to follow similar steps.

Steps are described per line, as comments are removed by git:
0. Retrieve the change from the following to build clang-tidy with an
   additional check:
   https://github.com/llvm/llvm-project/compare/main...tpopp:llvm-project:tidy-cast-check
1. Build clang-tidy
2. Run clang-tidy over your entire codebase while disabling all checks
   and enabling the one relevant one. Run on all header files also.
3. Delete .inc files that were also modified, so the next build rebuilds
   them to a pure state.
4. Some changes have been deleted for the following reasons:
   - Some files had a variable also named cast
   - Some files had not included a header file that defines the cast
     functions
   - Some files are definitions of the classes that have the casting
     methods, so the code still refers to the method instead of the
     function without adding a prefix or removing the method declaration
     at the same time.

```
ninja -C $BUILD_DIR clang-tidy

run-clang-tidy -clang-tidy-binary=$BUILD_DIR/bin/clang-tidy -checks='-*,misc-cast-functions'\
               -header-filter=mlir/ mlir/* -fix

rm -rf $BUILD_DIR/tools/mlir/**/*.inc

git restore mlir/lib/IR mlir/lib/Dialect/DLTI/DLTI.cpp\
            mlir/lib/Dialect/Complex/IR/ComplexDialect.cpp\
            mlir/lib/**/IR/\
            mlir/lib/Dialect/SparseTensor/Transforms/SparseVectorization.cpp\
            mlir/lib/Dialect/Vector/Transforms/LowerVectorMultiReduction.cpp\
            mlir/test/lib/Dialect/Test/TestTypes.cpp\
            mlir/test/lib/Dialect/Transform/TestTransformDialectExtension.cpp\
            mlir/test/lib/Dialect/Test/TestAttributes.cpp\
            mlir/unittests/TableGen/EnumsGenTest.cpp\
            mlir/test/python/lib/PythonTestCAPI.cpp\
            mlir/include/mlir/IR/
```

Differential Revision: https://reviews.llvm.org/D150123
2023-05-12 11:21:25 +02:00

276 lines
10 KiB
C++

//===- OptimizeSharedMemory.cpp - MLIR NVGPU pass implementation ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements transforms to optimize accesses to shared memory.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/NVGPU/Passes.h"
#include "mlir/Dialect/Arith/IR/Arith.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h"
#include "mlir/Dialect/NVGPU/Transforms/Transforms.h"
#include "mlir/Dialect/Vector/IR/VectorOps.h"
#include "mlir/Interfaces/SideEffectInterfaces.h"
#include "mlir/Support/LogicalResult.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/MathExtras.h"
namespace mlir {
namespace nvgpu {
#define GEN_PASS_DEF_OPTIMIZESHAREDMEMORY
#include "mlir/Dialect/NVGPU/Passes.h.inc"
} // namespace nvgpu
} // namespace mlir
using namespace mlir;
using namespace mlir::nvgpu;
/// The size of a shared memory line according to NV documentation.
constexpr int64_t kSharedMemoryLineSizeBytes = 128;
/// We optimize for 128bit accesses, but this can be made an argument in the
/// future.
constexpr int64_t kDefaultVectorSizeBits = 128;
/// Uses `srcIndexValue` to permute `tgtIndexValue` via
/// `result = xor(floordiv(srcIdxVal,permuteEveryN),
/// floordiv(tgtIdxVal,vectorSize)))
/// + tgtIdxVal % vectorSize`
/// This is done using an optimized sequence of `arith` operations.
static Value permuteVectorOffset(OpBuilder &b, Location loc,
ArrayRef<Value> indices, MemRefType memrefTy,
int64_t srcDim, int64_t tgtDim) {
// Adjust the src index to change how often the permutation changes
// if necessary.
Value src = indices[srcDim];
// We only want to permute every N iterations of the target dim where N is
// ceil(sharedMemoryLineSizeBytes / dimSizeBytes(tgtDim)).
const int64_t permuteEveryN = std::max<int64_t>(
1, kSharedMemoryLineSizeBytes / ((memrefTy.getDimSize(tgtDim) *
memrefTy.getElementTypeBitWidth()) /
8));
// clang-format off
// Index bit representation (b0 = least significant bit) for dim(1)
// of a `memref<?x?xDT>` is as follows:
// N := log2(128/elementSizeBits)
// M := log2(dimSize(1))
// then
// bits[0:N] = sub-vector element offset
// bits[N:M] = vector index
// clang-format on
int64_t n =
llvm::Log2_64(kDefaultVectorSizeBits / memrefTy.getElementTypeBitWidth());
int64_t m = llvm::Log2_64(memrefTy.getDimSize(tgtDim));
// Capture bits[0:(M-N)] of src by first creating a (M-N) mask.
int64_t mask = (1LL << (m - n)) - 1;
if (permuteEveryN > 1)
mask = mask << llvm::Log2_64(permuteEveryN);
Value srcBits = b.create<arith::ConstantIndexOp>(loc, mask);
srcBits = b.create<arith::AndIOp>(loc, src, srcBits);
// Use the src bits to permute the target bits b[N:M] containing the
// vector offset.
if (permuteEveryN > 1) {
int64_t shlBits = n - llvm::Log2_64(permuteEveryN);
if (shlBits > 0) {
Value finalShiftVal = b.create<arith::ConstantIndexOp>(loc, shlBits);
srcBits = b.createOrFold<arith::ShLIOp>(loc, srcBits, finalShiftVal);
} else if (shlBits < 0) {
Value finalShiftVal = b.create<arith::ConstantIndexOp>(loc, -1 * shlBits);
srcBits = b.createOrFold<arith::ShRUIOp>(loc, srcBits, finalShiftVal);
}
} else {
Value finalShiftVal = b.create<arith::ConstantIndexOp>(loc, n);
srcBits = b.createOrFold<arith::ShLIOp>(loc, srcBits, finalShiftVal);
}
Value permutedVectorIdx =
b.create<arith::XOrIOp>(loc, indices[tgtDim], srcBits);
return permutedVectorIdx;
}
static void transformIndices(OpBuilder &builder, Location loc,
SmallVector<Value, 4> &indices,
MemRefType memrefTy, int64_t srcDim,
int64_t tgtDim) {
indices[tgtDim] =
permuteVectorOffset(builder, loc, indices, memrefTy, srcDim, tgtDim);
}
Operation::operand_range getIndices(Operation *op) {
if (auto ldmatrixOp = dyn_cast<LdMatrixOp>(op))
return ldmatrixOp.getIndices();
if (auto copyOp = dyn_cast<DeviceAsyncCopyOp>(op))
return copyOp.getDstIndices();
if (auto loadOp = dyn_cast<memref::LoadOp>(op))
return loadOp.getIndices();
if (auto storeOp = dyn_cast<memref::StoreOp>(op))
return storeOp.getIndices();
if (auto vectorReadOp = dyn_cast<vector::LoadOp>(op))
return vectorReadOp.getIndices();
if (auto vectorStoreOp = dyn_cast<vector::StoreOp>(op))
return vectorStoreOp.getIndices();
llvm_unreachable("unsupported op type");
}
void setIndices(Operation *op, ArrayRef<Value> indices) {
if (auto ldmatrixOp = dyn_cast<LdMatrixOp>(op))
return ldmatrixOp.getIndicesMutable().assign(indices);
if (auto copyOp = dyn_cast<DeviceAsyncCopyOp>(op))
return copyOp.getDstIndicesMutable().assign(indices);
if (auto loadOp = dyn_cast<memref::LoadOp>(op))
return loadOp.getIndicesMutable().assign(indices);
if (auto storeOp = dyn_cast<memref::StoreOp>(op))
return storeOp.getIndicesMutable().assign(indices);
if (auto vectorReadOp = dyn_cast<vector::LoadOp>(op))
return vectorReadOp.getIndicesMutable().assign(indices);
if (auto vectorStoreOp = dyn_cast<vector::StoreOp>(op))
return vectorStoreOp.getIndicesMutable().assign(indices);
llvm_unreachable("unsupported op type");
}
/// Return all operations within `parentOp` that read from or write to
/// `shmMemRef`.
static LogicalResult
getShmReadAndWriteOps(Operation *parentOp, Value shmMemRef,
SmallVector<Operation *, 16> &readOps,
SmallVector<Operation *, 16> &writeOps) {
parentOp->walk([&](Operation *op) {
MemoryEffectOpInterface iface = dyn_cast<MemoryEffectOpInterface>(op);
if (!iface)
return;
std::optional<MemoryEffects::EffectInstance> effect =
iface.getEffectOnValue<MemoryEffects::Read>(shmMemRef);
if (effect) {
readOps.push_back(op);
return;
}
effect = iface.getEffectOnValue<MemoryEffects::Write>(shmMemRef);
if (effect)
writeOps.push_back(op);
});
// Restrict to a supported set of ops. We also require at least 2D access,
// although this could be relaxed.
if (llvm::any_of(readOps, [](Operation *op) {
return !isa<memref::LoadOp, vector::LoadOp, nvgpu::LdMatrixOp>(op) ||
getIndices(op).size() < 2;
}))
return failure();
if (llvm::any_of(writeOps, [](Operation *op) {
return !isa<memref::StoreOp, vector::StoreOp, nvgpu::DeviceAsyncCopyOp>(
op) ||
getIndices(op).size() < 2;
}))
return failure();
return success();
}
mlir::LogicalResult
mlir::nvgpu::optimizeSharedMemoryReadsAndWrites(Operation *parentOp,
Value memrefValue) {
auto memRefType = dyn_cast<MemRefType>(memrefValue.getType());
if (!memRefType || !NVGPUDialect::hasSharedMemoryAddressSpace(memRefType))
return failure();
// Abort if the given value has any sub-views; we do not do any alias
// analysis.
bool hasSubView = false;
parentOp->walk([&](memref::SubViewOp subView) { hasSubView = true; });
if (hasSubView)
return failure();
// Check if this is necessary given the assumption of 128b accesses:
// If dim[rank-1] is small enough to fit 8 rows in a 128B line.
const int64_t rowSize = memRefType.getDimSize(memRefType.getRank() - 1);
const int64_t rowsPerLine =
(8 * kSharedMemoryLineSizeBytes / memRefType.getElementTypeBitWidth()) /
rowSize;
const int64_t threadGroupSize =
1LL << (7 - llvm::Log2_64(kDefaultVectorSizeBits / 8));
if (rowsPerLine >= threadGroupSize)
return failure();
// Get sets of operations within the function that read/write to shared
// memory.
SmallVector<Operation *, 16> shmReadOps;
SmallVector<Operation *, 16> shmWriteOps;
if (failed(getShmReadAndWriteOps(parentOp, memrefValue, shmReadOps,
shmWriteOps)))
return failure();
if (shmReadOps.empty() || shmWriteOps.empty())
return failure();
OpBuilder builder(parentOp->getContext());
int64_t tgtDim = memRefType.getRank() - 1;
int64_t srcDim = memRefType.getRank() - 2;
// Transform indices for the ops writing to shared memory.
while (!shmWriteOps.empty()) {
Operation *shmWriteOp = shmWriteOps.back();
shmWriteOps.pop_back();
builder.setInsertionPoint(shmWriteOp);
auto indices = getIndices(shmWriteOp);
SmallVector<Value, 4> transformedIndices(indices.begin(), indices.end());
transformIndices(builder, shmWriteOp->getLoc(), transformedIndices,
memRefType, srcDim, tgtDim);
setIndices(shmWriteOp, transformedIndices);
}
// Transform indices for the ops reading from shared memory.
while (!shmReadOps.empty()) {
Operation *shmReadOp = shmReadOps.back();
shmReadOps.pop_back();
builder.setInsertionPoint(shmReadOp);
auto indices = getIndices(shmReadOp);
SmallVector<Value, 4> transformedIndices(indices.begin(), indices.end());
transformIndices(builder, shmReadOp->getLoc(), transformedIndices,
memRefType, srcDim, tgtDim);
setIndices(shmReadOp, transformedIndices);
}
return success();
}
namespace {
class OptimizeSharedMemoryPass
: public nvgpu::impl::OptimizeSharedMemoryBase<OptimizeSharedMemoryPass> {
public:
OptimizeSharedMemoryPass() = default;
void runOnOperation() override {
Operation *op = getOperation();
SmallVector<memref::AllocOp> shmAllocOps;
op->walk([&](memref::AllocOp allocOp) {
if (!NVGPUDialect::hasSharedMemoryAddressSpace(allocOp.getType()))
return;
shmAllocOps.push_back(allocOp);
});
for (auto allocOp : shmAllocOps) {
if (failed(optimizeSharedMemoryReadsAndWrites(getOperation(),
allocOp.getMemref())))
return;
}
}
};
} // namespace
std::unique_ptr<Pass> mlir::nvgpu::createOptimizeSharedMemoryPass() {
return std::make_unique<OptimizeSharedMemoryPass>();
}