Files
clang-p2996/mlir/test/Dialect/SparseTensor/roundtrip_encoding.mlir
Peiming Liu b9589545c4 [mlir][sparse] introduce a new compressed(hi) dimension level type
`compressed(hi)` is similar to `compressed`, but instead of reusing the previous position high as the current position low, it uses a pair of positions for each sparse index.

The patch only introduces the definition (syntax) but does not provide codegen implementation.

Reviewed By: aartbik

Differential Revision: https://reviews.llvm.org/D148664
2023-04-18 23:26:11 +00:00

133 lines
4.6 KiB
MLIR

// RUN: mlir-opt %s -split-input-file | mlir-opt | FileCheck %s
// CHECK-LABEL: func private @sparse_1d_tensor(
// CHECK-SAME: tensor<32xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed" ] }>>)
func.func private @sparse_1d_tensor(tensor<32xf64, #sparse_tensor.encoding<{ dimLevelType = ["compressed"] }>>)
// -----
#CSR = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "compressed" ],
dimOrdering = affine_map<(i,j) -> (i,j)>,
posWidth = 64,
crdWidth = 64
}>
// CHECK-LABEL: func private @sparse_csr(
// CHECK-SAME: tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], posWidth = 64, crdWidth = 64 }>>)
func.func private @sparse_csr(tensor<?x?xf32, #CSR>)
// -----
#CSC = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "compressed" ],
dimOrdering = affine_map<(i,j) -> (j,i)>,
posWidth = 0,
crdWidth = 0
}>
// CHECK-LABEL: func private @sparse_csc(
// CHECK-SAME: tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)> }>>)
func.func private @sparse_csc(tensor<?x?xf32, #CSC>)
// -----
#DCSC = #sparse_tensor.encoding<{
dimLevelType = [ "compressed", "compressed" ],
dimOrdering = affine_map<(i,j) -> (j,i)>,
posWidth = 0,
crdWidth = 64
}>
// CHECK-LABEL: func private @sparse_dcsc(
// CHECK-SAME: tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed" ], dimOrdering = affine_map<(d0, d1) -> (d1, d0)>, crdWidth = 64 }>>)
func.func private @sparse_dcsc(tensor<?x?xf32, #DCSC>)
// -----
#COO = #sparse_tensor.encoding<{
dimLevelType = [ "compressed-nu-no", "singleton-no" ]
}>
// CHECK-LABEL: func private @sparse_coo(
// CHECK-SAME: tensor<?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "compressed-nu-no", "singleton-no" ] }>>)
func.func private @sparse_coo(tensor<?x?xf32, #COO>)
// -----
#BCOO = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "compressed-hi-nu", "singleton" ]
}>
// CHECK-LABEL: func private @sparse_bcoo(
// CHECK-SAME: tensor<?x?x?xf32, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed-hi-nu", "singleton" ] }>>)
func.func private @sparse_bcoo(tensor<?x?x?xf32, #BCOO>)
// -----
#SortedCOO = #sparse_tensor.encoding<{
dimLevelType = [ "compressed-nu", "singleton" ]
}>
// CHECK-LABEL: func private @sparse_sorted_coo(
// CHECK-SAME: tensor<10x10xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed-nu", "singleton" ] }>>)
func.func private @sparse_sorted_coo(tensor<10x10xf64, #SortedCOO>)
// -----
#BCSR = #sparse_tensor.encoding<{
dimLevelType = [ "compressed", "compressed", "dense", "dense" ],
dimOrdering = affine_map<(ii, jj, i, j) -> (ii, jj, i, j)>,
higherOrdering = affine_map<(i, j) -> (i floordiv 2, j floordiv 3, i mod 2, j mod 3)>
}>
// CHECK-LABEL: func private @sparse_bcsr(
// CHECK-SAME: tensor<10x60xf64, #sparse_tensor.encoding<{ dimLevelType = [ "compressed", "compressed", "dense", "dense" ], higherOrdering = affine_map<(d0, d1) -> (d0 floordiv 2, d1 floordiv 3, d0 mod 2, d1 mod 3)> }>>
func.func private @sparse_bcsr(tensor<10x60xf64, #BCSR>)
// -----
#ELL = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "dense", "compressed" ],
dimOrdering = affine_map<(ii, i, j) -> (ii, i, j)>,
higherOrdering = affine_map<(i,j)[c] -> (c*4*i, i, j)>
}>
// CHECK-LABEL: func private @sparse_ell(
// CHECK-SAME: tensor<?x?xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "dense", "compressed" ], higherOrdering = affine_map<(d0, d1)[s0] -> (d0 * (s0 * 4), d0, d1)> }>>
func.func private @sparse_ell(tensor<?x?xf64, #ELL>)
// -----
#CSR_SLICE = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "compressed" ],
slice = [ (1, 4, 1), (1, 4, 2) ]
}>
// CHECK-LABEL: func private @sparse_slice(
// CHECK-SAME: tensor<?x?xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], slice = [ (1, 4, 1), (1, 4, 2) ] }>>
func.func private @sparse_slice(tensor<?x?xf64, #CSR_SLICE>)
// -----
#CSR_SLICE = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "compressed" ],
slice = [ (1, 4, 1), (1, 4, 2) ]
}>
// CHECK-LABEL: func private @sparse_slice(
// CHECK-SAME: tensor<?x?xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], slice = [ (1, 4, 1), (1, 4, 2) ] }>>
func.func private @sparse_slice(tensor<?x?xf64, #CSR_SLICE>)
// -----
#CSR_SLICE = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "compressed" ],
slice = [ (1, ?, 1), (?, 4, 2) ]
}>
// CHECK-LABEL: func private @sparse_slice(
// CHECK-SAME: tensor<?x?xf64, #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ], slice = [ (1, ?, 1), (?, 4, 2) ] }>>
func.func private @sparse_slice(tensor<?x?xf64, #CSR_SLICE>)