Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_binary.mlir
Cullen Rhodes baafc74ab0 [mlir][test][Integration] Refactor Arm emulator configuration
The logic enabling the Arm SVE (and now SME) integration tests for
various dialects, that may run under emulation, is now duplicated in
several places.

This patch moves the configuration to the top-level MLIR integration
tests Lit config and renames the '%lli' substitution in contexts where
it will run exclusively (ArmSVE, ArmSME) on AArch64 (and possibly under
emulation) to '%lli_aarch64_cmd', and '%lli_host_or_aarch64_cmd' for
contexts where it may run AArch64 (also possibly under emulation). The
latter is for integration tests that have target-specific and
target-agnostic codepaths such as SparseTensor, which supports scalable
vectors.

The two substitutions have the same effect but the names are different to
convey this information. The '%lli_aarch64_cmd' substitution could be
used in the SparseTensor tests but that would be a misnomer if the host
were x86 and the MLIR_RUN_SVE_TESTS=OFF.

The reason for renaming the '%lli' substitution is to not prevent running other
target-specific integration tests at the same time, since the same substitution
'%lli' is used for lli in other integration tests:

  * mlir/test/Integration/Dialect/Vector/CPU/X86Vector              - (AVX emulation via Intel SDE)
  * mlir/test/Integration/Dialect/Vector/CPU/AMX                    - (AMX emulation via Intel SDE)
  * mlir/test/Integration/Dialect/LLVMIR/CPU/test-vp-intrinsic.mlir - (RISCV emulation via QEMU if supported, native otherwise)

and substituting '%lli' at the top-level with Arm specific logic would override
this.

Reviewed By: awarzynski

Differential Revision: https://reviews.llvm.org/D148929
2023-04-26 09:57:43 +00:00

582 lines
25 KiB
MLIR

// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true"
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation and vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=2 reassociate-fp-reductions=true enable-index-optimizations=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
#SparseVector = #sparse_tensor.encoding<{dimLevelType = ["compressed"]}>
#DCSR = #sparse_tensor.encoding<{dimLevelType = ["compressed", "compressed"]}>
//
// Traits for tensor operations.
//
#trait_vec_scale = {
indexing_maps = [
affine_map<(i) -> (i)>, // a (in)
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"]
}
#trait_vec_op = {
indexing_maps = [
affine_map<(i) -> (i)>, // a (in)
affine_map<(i) -> (i)>, // b (in)
affine_map<(i) -> (i)> // x (out)
],
iterator_types = ["parallel"]
}
#trait_mat_op = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A (in)
affine_map<(i,j) -> (i,j)>, // B (in)
affine_map<(i,j) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel"],
doc = "X(i,j) = A(i,j) OP B(i,j)"
}
//
// Contains test cases for the sparse_tensor.binary operator (different cases when left/right/overlap
// is empty/identity, etc).
//
module {
// Creates a new sparse vector using the minimum values from two input sparse vectors.
// When there is no overlap, include the present value in the output.
func.func @vector_min(%arga: tensor<?xi32, #SparseVector>,
%argb: tensor<?xi32, #SparseVector>) -> tensor<?xi32, #SparseVector> {
%c = arith.constant 0 : index
%d = tensor.dim %arga, %c : tensor<?xi32, #SparseVector>
%xv = bufferization.alloc_tensor(%d) : tensor<?xi32, #SparseVector>
%0 = linalg.generic #trait_vec_op
ins(%arga, %argb: tensor<?xi32, #SparseVector>, tensor<?xi32, #SparseVector>)
outs(%xv: tensor<?xi32, #SparseVector>) {
^bb(%a: i32, %b: i32, %x: i32):
%1 = sparse_tensor.binary %a, %b : i32, i32 to i32
overlap={
^bb0(%a0: i32, %b0: i32):
%2 = arith.minsi %a0, %b0: i32
sparse_tensor.yield %2 : i32
}
left=identity
right=identity
linalg.yield %1 : i32
} -> tensor<?xi32, #SparseVector>
return %0 : tensor<?xi32, #SparseVector>
}
// Creates a new sparse vector by multiplying a sparse vector with a dense vector.
// When there is no overlap, leave the result empty.
func.func @vector_mul(%arga: tensor<?xf64, #SparseVector>,
%argb: tensor<?xf64>) -> tensor<?xf64, #SparseVector> {
%c = arith.constant 0 : index
%d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
%xv = bufferization.alloc_tensor(%d) : tensor<?xf64, #SparseVector>
%0 = linalg.generic #trait_vec_op
ins(%arga, %argb: tensor<?xf64, #SparseVector>, tensor<?xf64>)
outs(%xv: tensor<?xf64, #SparseVector>) {
^bb(%a: f64, %b: f64, %x: f64):
%1 = sparse_tensor.binary %a, %b : f64, f64 to f64
overlap={
^bb0(%a0: f64, %b0: f64):
%ret = arith.mulf %a0, %b0 : f64
sparse_tensor.yield %ret : f64
}
left={}
right={}
linalg.yield %1 : f64
} -> tensor<?xf64, #SparseVector>
return %0 : tensor<?xf64, #SparseVector>
}
// Take a set difference of two sparse vectors. The result will include only those
// sparse elements present in the first, but not the second vector.
func.func @vector_setdiff(%arga: tensor<?xf64, #SparseVector>,
%argb: tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector> {
%c = arith.constant 0 : index
%d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
%xv = bufferization.alloc_tensor(%d) : tensor<?xf64, #SparseVector>
%0 = linalg.generic #trait_vec_op
ins(%arga, %argb: tensor<?xf64, #SparseVector>, tensor<?xf64, #SparseVector>)
outs(%xv: tensor<?xf64, #SparseVector>) {
^bb(%a: f64, %b: f64, %x: f64):
%1 = sparse_tensor.binary %a, %b : f64, f64 to f64
overlap={}
left=identity
right={}
linalg.yield %1 : f64
} -> tensor<?xf64, #SparseVector>
return %0 : tensor<?xf64, #SparseVector>
}
// Return the index of each entry
func.func @vector_index(%arga: tensor<?xf64, #SparseVector>) -> tensor<?xi32, #SparseVector> {
%c = arith.constant 0 : index
%d = tensor.dim %arga, %c : tensor<?xf64, #SparseVector>
%xv = bufferization.alloc_tensor(%d) : tensor<?xi32, #SparseVector>
%0 = linalg.generic #trait_vec_scale
ins(%arga: tensor<?xf64, #SparseVector>)
outs(%xv: tensor<?xi32, #SparseVector>) {
^bb(%a: f64, %x: i32):
%idx = linalg.index 0 : index
%1 = sparse_tensor.binary %a, %idx : f64, index to i32
overlap={
^bb0(%x0: f64, %i: index):
%ret = arith.index_cast %i : index to i32
sparse_tensor.yield %ret : i32
}
left={}
right={}
linalg.yield %1 : i32
} -> tensor<?xi32, #SparseVector>
return %0 : tensor<?xi32, #SparseVector>
}
// Adds two sparse matrices when they intersect. Where they don't intersect,
// negate the 2nd argument's values; ignore 1st argument-only values.
func.func @matrix_intersect(%arga: tensor<?x?xf64, #DCSR>,
%argb: tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #DCSR>
%d1 = tensor.dim %arga, %c1 : tensor<?x?xf64, #DCSR>
%xv = bufferization.alloc_tensor(%d0, %d1) : tensor<?x?xf64, #DCSR>
%0 = linalg.generic #trait_mat_op
ins(%arga, %argb: tensor<?x?xf64, #DCSR>, tensor<?x?xf64, #DCSR>)
outs(%xv: tensor<?x?xf64, #DCSR>) {
^bb(%a: f64, %b: f64, %x: f64):
%1 = sparse_tensor.binary %a, %b: f64, f64 to f64
overlap={
^bb0(%x0: f64, %y0: f64):
%ret = arith.addf %x0, %y0 : f64
sparse_tensor.yield %ret : f64
}
left={}
right={
^bb0(%x1: f64):
%lret = arith.negf %x1 : f64
sparse_tensor.yield %lret : f64
}
linalg.yield %1 : f64
} -> tensor<?x?xf64, #DCSR>
return %0 : tensor<?x?xf64, #DCSR>
}
// Tensor addition (use semi-ring binary operation).
func.func @add_tensor_1(%A: tensor<4x4xf64, #DCSR>,
%B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> {
%C = bufferization.alloc_tensor() : tensor<4x4xf64, #DCSR>
%0 = linalg.generic #trait_mat_op
ins(%A, %B: tensor<4x4xf64, #DCSR>,
tensor<4x4xf64, #DCSR>)
outs(%C: tensor<4x4xf64, #DCSR>) {
^bb0(%a: f64, %b: f64, %c: f64) :
%result = sparse_tensor.binary %a, %b : f64, f64 to f64
overlap={
^bb0(%x: f64, %y: f64):
%ret = arith.addf %x, %y : f64
sparse_tensor.yield %ret : f64
}
left=identity
right=identity
linalg.yield %result : f64
} -> tensor<4x4xf64, #DCSR>
return %0 : tensor<4x4xf64, #DCSR>
}
// Same as @add_tensor_1, but use sparse_tensor.yield instead of identity to yield value.
func.func @add_tensor_2(%A: tensor<4x4xf64, #DCSR>,
%B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> {
%C = bufferization.alloc_tensor() : tensor<4x4xf64, #DCSR>
%0 = linalg.generic #trait_mat_op
ins(%A, %B: tensor<4x4xf64, #DCSR>,
tensor<4x4xf64, #DCSR>)
outs(%C: tensor<4x4xf64, #DCSR>) {
^bb0(%a: f64, %b: f64, %c: f64) :
%result = sparse_tensor.binary %a, %b : f64, f64 to f64
overlap={
^bb0(%x: f64, %y: f64):
%ret = arith.addf %x, %y : f64
sparse_tensor.yield %ret : f64
}
left={
^bb0(%x: f64):
sparse_tensor.yield %x : f64
}
right={
^bb0(%y: f64):
sparse_tensor.yield %y : f64
}
linalg.yield %result : f64
} -> tensor<4x4xf64, #DCSR>
return %0 : tensor<4x4xf64, #DCSR>
}
// Performs triangular add/sub operation (using semi-ring binary op).
func.func @triangular(%A: tensor<4x4xf64, #DCSR>,
%B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> {
%C = bufferization.alloc_tensor() : tensor<4x4xf64, #DCSR>
%0 = linalg.generic #trait_mat_op
ins(%A, %B: tensor<4x4xf64, #DCSR>,
tensor<4x4xf64, #DCSR>)
outs(%C: tensor<4x4xf64, #DCSR>) {
^bb0(%a: f64, %b: f64, %c: f64) :
%row = linalg.index 0 : index
%col = linalg.index 1 : index
%result = sparse_tensor.binary %a, %b : f64, f64 to f64
overlap={
^bb0(%x: f64, %y: f64):
%cmp = arith.cmpi "uge", %col, %row : index
%upperTriangleResult = arith.addf %x, %y : f64
%lowerTriangleResult = arith.subf %x, %y : f64
%ret = arith.select %cmp, %upperTriangleResult, %lowerTriangleResult : f64
sparse_tensor.yield %ret : f64
}
left=identity
right={
^bb0(%y: f64):
%cmp = arith.cmpi "uge", %col, %row : index
%lowerTriangleResult = arith.negf %y : f64
%ret = arith.select %cmp, %y, %lowerTriangleResult : f64
sparse_tensor.yield %ret : f64
}
linalg.yield %result : f64
} -> tensor<4x4xf64, #DCSR>
return %0 : tensor<4x4xf64, #DCSR>
}
// Perform sub operation (using semi-ring binary op) with a constant threshold.
func.func @sub_with_thres(%A: tensor<4x4xf64, #DCSR>,
%B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> {
%C = bufferization.alloc_tensor() : tensor<4x4xf64, #DCSR>
// Defines out-block constant bounds.
%thres_out_up = arith.constant 2.0 : f64
%thres_out_lo = arith.constant -2.0 : f64
%0 = linalg.generic #trait_mat_op
ins(%A, %B: tensor<4x4xf64, #DCSR>,
tensor<4x4xf64, #DCSR>)
outs(%C: tensor<4x4xf64, #DCSR>) {
^bb0(%a: f64, %b: f64, %c: f64) :
%result = sparse_tensor.binary %a, %b : f64, f64 to f64
overlap={
^bb0(%x: f64, %y: f64):
// Defines in-block constant bounds.
%thres_up = arith.constant 1.0 : f64
%thres_lo = arith.constant -1.0 : f64
%result = arith.subf %x, %y : f64
%cmp = arith.cmpf "oge", %result, %thres_up : f64
%tmp = arith.select %cmp, %thres_up, %result : f64
%cmp1 = arith.cmpf "ole", %tmp, %thres_lo : f64
%ret = arith.select %cmp1, %thres_lo, %tmp : f64
sparse_tensor.yield %ret : f64
}
left={
^bb0(%x: f64):
// Uses out-block constant bounds.
%cmp = arith.cmpf "oge", %x, %thres_out_up : f64
%tmp = arith.select %cmp, %thres_out_up, %x : f64
%cmp1 = arith.cmpf "ole", %tmp, %thres_out_lo : f64
%ret = arith.select %cmp1, %thres_out_lo, %tmp : f64
sparse_tensor.yield %ret : f64
}
right={
^bb0(%y: f64):
%ny = arith.negf %y : f64
%cmp = arith.cmpf "oge", %ny, %thres_out_up : f64
%tmp = arith.select %cmp, %thres_out_up, %ny : f64
%cmp1 = arith.cmpf "ole", %tmp, %thres_out_lo : f64
%ret = arith.select %cmp1, %thres_out_lo, %tmp : f64
sparse_tensor.yield %ret : f64
}
linalg.yield %result : f64
} -> tensor<4x4xf64, #DCSR>
return %0 : tensor<4x4xf64, #DCSR>
}
// Performs isEqual only on intersecting elements.
func.func @intersect_equal(%A: tensor<4x4xf64, #DCSR>,
%B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR> {
%C = bufferization.alloc_tensor() : tensor<4x4xi8, #DCSR>
%0 = linalg.generic #trait_mat_op
ins(%A, %B: tensor<4x4xf64, #DCSR>,
tensor<4x4xf64, #DCSR>)
outs(%C: tensor<4x4xi8, #DCSR>) {
^bb0(%a: f64, %b: f64, %c: i8) :
%result = sparse_tensor.binary %a, %b : f64, f64 to i8
overlap={
^bb0(%x: f64, %y: f64):
%cmp = arith.cmpf "oeq", %x, %y : f64
%ret = arith.extui %cmp : i1 to i8
sparse_tensor.yield %ret : i8
}
left={}
right={}
linalg.yield %result : i8
} -> tensor<4x4xi8, #DCSR>
return %0 : tensor<4x4xi8, #DCSR>
}
// Keeps values on left, negate value on right, ignore value when overlapping.
func.func @only_left_right(%A: tensor<4x4xf64, #DCSR>,
%B: tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR> {
%C = bufferization.alloc_tensor() : tensor<4x4xf64, #DCSR>
%0 = linalg.generic #trait_mat_op
ins(%A, %B: tensor<4x4xf64, #DCSR>,
tensor<4x4xf64, #DCSR>)
outs(%C: tensor<4x4xf64, #DCSR>) {
^bb0(%a: f64, %b: f64, %c: f64) :
%result = sparse_tensor.binary %a, %b : f64, f64 to f64
overlap={}
left=identity
right={
^bb0(%y: f64):
%ret = arith.negf %y : f64
sparse_tensor.yield %ret : f64
}
linalg.yield %result : f64
} -> tensor<4x4xf64, #DCSR>
return %0 : tensor<4x4xf64, #DCSR>
}
//
// Utility functions to dump the value of a tensor.
//
func.func @dump_vec(%arg0: tensor<?xf64, #SparseVector>) {
// Dump the values array to verify only sparse contents are stored.
%c0 = arith.constant 0 : index
%d0 = arith.constant 0.0 : f64
%0 = sparse_tensor.values %arg0 : tensor<?xf64, #SparseVector> to memref<?xf64>
%1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<16xf64>
vector.print %1 : vector<16xf64>
// Dump the dense vector to verify structure is correct.
%dv = sparse_tensor.convert %arg0 : tensor<?xf64, #SparseVector> to tensor<?xf64>
%3 = vector.transfer_read %dv[%c0], %d0: tensor<?xf64>, vector<32xf64>
vector.print %3 : vector<32xf64>
return
}
func.func @dump_vec_i32(%arg0: tensor<?xi32, #SparseVector>) {
// Dump the values array to verify only sparse contents are stored.
%c0 = arith.constant 0 : index
%d0 = arith.constant 0 : i32
%0 = sparse_tensor.values %arg0 : tensor<?xi32, #SparseVector> to memref<?xi32>
%1 = vector.transfer_read %0[%c0], %d0: memref<?xi32>, vector<24xi32>
vector.print %1 : vector<24xi32>
// Dump the dense vector to verify structure is correct.
%dv = sparse_tensor.convert %arg0 : tensor<?xi32, #SparseVector> to tensor<?xi32>
%3 = vector.transfer_read %dv[%c0], %d0: tensor<?xi32>, vector<32xi32>
vector.print %3 : vector<32xi32>
return
}
func.func @dump_mat(%arg0: tensor<?x?xf64, #DCSR>) {
%d0 = arith.constant 0.0 : f64
%c0 = arith.constant 0 : index
%dm = sparse_tensor.convert %arg0 : tensor<?x?xf64, #DCSR> to tensor<?x?xf64>
%1 = vector.transfer_read %dm[%c0, %c0], %d0: tensor<?x?xf64>, vector<4x8xf64>
vector.print %1 : vector<4x8xf64>
return
}
func.func @dump_mat_4x4(%A: tensor<4x4xf64, #DCSR>) {
%c0 = arith.constant 0 : index
%du = arith.constant 0.0 : f64
%c = sparse_tensor.convert %A : tensor<4x4xf64, #DCSR> to tensor<4x4xf64>
%v = vector.transfer_read %c[%c0, %c0], %du: tensor<4x4xf64>, vector<4x4xf64>
vector.print %v : vector<4x4xf64>
%1 = sparse_tensor.values %A : tensor<4x4xf64, #DCSR> to memref<?xf64>
%2 = vector.transfer_read %1[%c0], %du: memref<?xf64>, vector<16xf64>
vector.print %2 : vector<16xf64>
return
}
func.func @dump_mat_4x4_i8(%A: tensor<4x4xi8, #DCSR>) {
%c0 = arith.constant 0 : index
%du = arith.constant 0 : i8
%c = sparse_tensor.convert %A : tensor<4x4xi8, #DCSR> to tensor<4x4xi8>
%v = vector.transfer_read %c[%c0, %c0], %du: tensor<4x4xi8>, vector<4x4xi8>
vector.print %v : vector<4x4xi8>
%1 = sparse_tensor.values %A : tensor<4x4xi8, #DCSR> to memref<?xi8>
%2 = vector.transfer_read %1[%c0], %du: memref<?xi8>, vector<16xi8>
vector.print %2 : vector<16xi8>
return
}
// Driver method to call and verify kernels.
func.func @entry() {
%c0 = arith.constant 0 : index
// Setup sparse vectors.
%v1 = arith.constant sparse<
[ [0], [3], [11], [17], [20], [21], [28], [29], [31] ],
[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ]
> : tensor<32xf64>
%v2 = arith.constant sparse<
[ [1], [3], [4], [10], [16], [18], [21], [28], [29], [31] ],
[11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0 ]
> : tensor<32xf64>
%v3 = arith.constant dense<
[0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.,
0., 1., 2., 3., 4., 5., 6., 7., 8., 9., 0., 1.]
> : tensor<32xf64>
%v1_si = arith.fptosi %v1 : tensor<32xf64> to tensor<32xi32>
%v2_si = arith.fptosi %v2 : tensor<32xf64> to tensor<32xi32>
%sv1 = sparse_tensor.convert %v1 : tensor<32xf64> to tensor<?xf64, #SparseVector>
%sv2 = sparse_tensor.convert %v2 : tensor<32xf64> to tensor<?xf64, #SparseVector>
%sv1_si = sparse_tensor.convert %v1_si : tensor<32xi32> to tensor<?xi32, #SparseVector>
%sv2_si = sparse_tensor.convert %v2_si : tensor<32xi32> to tensor<?xi32, #SparseVector>
%dv3 = tensor.cast %v3 : tensor<32xf64> to tensor<?xf64>
// Setup sparse matrices.
%m1 = arith.constant sparse<
[ [0,0], [0,1], [1,7], [2,2], [2,4], [2,7], [3,0], [3,2], [3,3] ],
[ 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0 ]
> : tensor<4x8xf64>
%m2 = arith.constant sparse<
[ [0,0], [0,7], [1,0], [1,6], [2,1], [2,7] ],
[6.0, 5.0, 4.0, 3.0, 2.0, 1.0 ]
> : tensor<4x8xf64>
%sm1 = sparse_tensor.convert %m1 : tensor<4x8xf64> to tensor<?x?xf64, #DCSR>
%sm2 = sparse_tensor.convert %m2 : tensor<4x8xf64> to tensor<?x?xf64, #DCSR>
%m3 = arith.constant dense<
[ [ 1.0, 0.0, 3.0, 0.0],
[ 0.0, 2.0, 0.0, 0.0],
[ 0.0, 0.0, 0.0, 4.0],
[ 3.0, 4.0, 0.0, 0.0] ]> : tensor<4x4xf64>
%m4 = arith.constant dense<
[ [ 1.0, 0.0, 1.0, 1.0],
[ 0.0, 0.5, 0.0, 0.0],
[ 1.0, 5.0, 2.0, 0.0],
[ 2.0, 0.0, 0.0, 0.0] ]> : tensor<4x4xf64>
%sm3 = sparse_tensor.convert %m3 : tensor<4x4xf64> to tensor<4x4xf64, #DCSR>
%sm4 = sparse_tensor.convert %m4 : tensor<4x4xf64> to tensor<4x4xf64, #DCSR>
// Call sparse vector kernels.
%0 = call @vector_min(%sv1_si, %sv2_si)
: (tensor<?xi32, #SparseVector>,
tensor<?xi32, #SparseVector>) -> tensor<?xi32, #SparseVector>
%1 = call @vector_mul(%sv1, %dv3)
: (tensor<?xf64, #SparseVector>,
tensor<?xf64>) -> tensor<?xf64, #SparseVector>
%2 = call @vector_setdiff(%sv1, %sv2)
: (tensor<?xf64, #SparseVector>,
tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector>
%3 = call @vector_index(%sv1)
: (tensor<?xf64, #SparseVector>) -> tensor<?xi32, #SparseVector>
// Call sparse matrix kernels.
%5 = call @matrix_intersect(%sm1, %sm2)
: (tensor<?x?xf64, #DCSR>, tensor<?x?xf64, #DCSR>) -> tensor<?x?xf64, #DCSR>
%6 = call @add_tensor_1(%sm3, %sm4)
: (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR>
%7 = call @add_tensor_2(%sm3, %sm4)
: (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR>
%8 = call @triangular(%sm3, %sm4)
: (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR>
%9 = call @sub_with_thres(%sm3, %sm4)
: (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR>
%10 = call @intersect_equal(%sm3, %sm4)
: (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xi8, #DCSR>
%11 = call @only_left_right(%sm3, %sm4)
: (tensor<4x4xf64, #DCSR>, tensor<4x4xf64, #DCSR>) -> tensor<4x4xf64, #DCSR>
//
// Verify the results.
//
// CHECK: ( 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 )
// CHECK-NEXT: ( 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 11, 0, 12, 13, 0, 0, 0, 0, 0, 14, 0, 0, 0, 0, 0, 15, 0, 16, 0, 0, 17, 0, 0, 0, 0, 0, 0, 18, 19, 0, 20 )
// CHECK-NEXT: ( 1, 11, 2, 13, 14, 3, 15, 4, 16, 5, 6, 7, 8, 9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 1, 11, 0, 2, 13, 0, 0, 0, 0, 0, 14, 3, 0, 0, 0, 0, 15, 4, 16, 0, 5, 6, 0, 0, 0, 0, 0, 0, 7, 8, 0, 9 )
// CHECK-NEXT: ( 0, 6, 3, 28, 0, 6, 56, 72, 9, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 28, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 56, 72, 0, 9 )
// CHECK-NEXT: ( 1, 3, 4, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, 0, 0, 0, 0, 0, 4, 0, 0, 5, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 3, 11, 17, 20, 21, 28, 29, 31, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 0, 0, 3, 0, 0, 0, 0, 0, 0, 0, 11, 0, 0, 0, 0, 0, 17, 0, 0, 20, 21, 0, 0, 0, 0, 0, 0, 28, 29, 0, 31 )
// CHECK-NEXT: ( ( 7, 0, 0, 0, 0, 0, 0, -5 ), ( -4, 0, 0, 0, 0, 0, -3, 0 ), ( 0, -2, 0, 0, 0, 0, 0, 7 ), ( 0, 0, 0, 0, 0, 0, 0, 0 ) )
// CHECK-NEXT: ( ( 2, 0, 4, 1 ), ( 0, 2.5, 0, 0 ), ( 1, 5, 2, 4 ), ( 5, 4, 0, 0 ) )
// CHECK-NEXT: ( 2, 4, 1, 2.5, 1, 5, 2, 4, 5, 4, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 2, 0, 4, 1 ), ( 0, 2.5, 0, 0 ), ( 1, 5, 2, 4 ), ( 5, 4, 0, 0 ) )
// CHECK-NEXT: ( 2, 4, 1, 2.5, 1, 5, 2, 4, 5, 4, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 2, 0, 4, 1 ), ( 0, 2.5, 0, 0 ), ( -1, -5, 2, 4 ), ( 1, 4, 0, 0 ) )
// CHECK-NEXT: ( 2, 4, 1, 2.5, -1, -5, 2, 4, 1, 4, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 0, 0, 1, -1 ), ( 0, 1, 0, 0 ), ( -1, -2, -2, 2 ), ( 1, 2, 0, 0 ) )
// CHECK-NEXT: ( 0, 1, -1, 1, -1, -2, -2, 2, 1, 2, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 1, 0, 0, 0 ), ( 0, 0, 0, 0 ), ( 0, 0, 0, 0 ), ( 0, 0, 0, 0 ) )
// CHECK-NEXT: ( 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 0, 0, 0, -1 ), ( 0, 0, 0, 0 ), ( -1, -5, -2, 4 ), ( 0, 4, 0, 0 ) )
// CHECK-NEXT: ( -1, -1, -5, -2, 4, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
//
call @dump_vec(%sv1) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec(%sv2) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec_i32(%0) : (tensor<?xi32, #SparseVector>) -> ()
call @dump_vec(%1) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec(%2) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_vec_i32(%3) : (tensor<?xi32, #SparseVector>) -> ()
call @dump_mat(%5) : (tensor<?x?xf64, #DCSR>) -> ()
call @dump_mat_4x4(%6) : (tensor<4x4xf64, #DCSR>) -> ()
call @dump_mat_4x4(%7) : (tensor<4x4xf64, #DCSR>) -> ()
call @dump_mat_4x4(%8) : (tensor<4x4xf64, #DCSR>) -> ()
call @dump_mat_4x4(%9) : (tensor<4x4xf64, #DCSR>) -> ()
call @dump_mat_4x4_i8(%10) : (tensor<4x4xi8, #DCSR>) -> ()
call @dump_mat_4x4(%11) : (tensor<4x4xf64, #DCSR>) -> ()
// Release the resources.
bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
bufferization.dealloc_tensor %sv2 : tensor<?xf64, #SparseVector>
bufferization.dealloc_tensor %sv1_si : tensor<?xi32, #SparseVector>
bufferization.dealloc_tensor %sv2_si : tensor<?xi32, #SparseVector>
bufferization.dealloc_tensor %sm1 : tensor<?x?xf64, #DCSR>
bufferization.dealloc_tensor %sm2 : tensor<?x?xf64, #DCSR>
bufferization.dealloc_tensor %sm3 : tensor<4x4xf64, #DCSR>
bufferization.dealloc_tensor %sm4 : tensor<4x4xf64, #DCSR>
bufferization.dealloc_tensor %0 : tensor<?xi32, #SparseVector>
bufferization.dealloc_tensor %1 : tensor<?xf64, #SparseVector>
bufferization.dealloc_tensor %2 : tensor<?xf64, #SparseVector>
bufferization.dealloc_tensor %3 : tensor<?xi32, #SparseVector>
bufferization.dealloc_tensor %5 : tensor<?x?xf64, #DCSR>
bufferization.dealloc_tensor %6 : tensor<4x4xf64, #DCSR>
bufferization.dealloc_tensor %7 : tensor<4x4xf64, #DCSR>
bufferization.dealloc_tensor %8 : tensor<4x4xf64, #DCSR>
bufferization.dealloc_tensor %9 : tensor<4x4xf64, #DCSR>
bufferization.dealloc_tensor %10 : tensor<4x4xi8, #DCSR>
bufferization.dealloc_tensor %11 : tensor<4x4xf64, #DCSR>
return
}
}