173 lines
5.0 KiB
MLIR
173 lines
5.0 KiB
MLIR
// DEFINE: %{option} = enable-runtime-library=false
|
|
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
|
|
// DEFINE: %{run} = mlir-cpu-runner \
|
|
// DEFINE: -e entry -entry-point-result=void \
|
|
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
|
|
// DEFINE: FileCheck %s
|
|
//
|
|
// RUN: %{compile} | %{run}
|
|
//
|
|
|
|
// Do the same run, but now with direct IR generation and, if available, VLA
|
|
// vectorization.
|
|
// REDEFINE: %{option} = "enable-runtime-library=false vl=4 enable-arm-sve=%ENABLE_VLA"
|
|
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
|
|
// REDEFINE: --entry-function=entry_lli \
|
|
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
|
|
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
|
|
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
|
|
// REDEFINE: FileCheck %s
|
|
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
|
|
|
|
// TODO: Pack only support CodeGen Path
|
|
|
|
#SortedCOO = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "compressed-nu", "singleton" ]
|
|
}>
|
|
|
|
#SortedCOOI32 = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "compressed-nu", "singleton" ],
|
|
posWidth = 32,
|
|
crdWidth = 32
|
|
}>
|
|
|
|
#BCOO = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "dense", "compressed-hi-nu", "singleton" ]
|
|
}>
|
|
|
|
module {
|
|
//
|
|
// Main driver.
|
|
//
|
|
func.func @entry() {
|
|
%c0 = arith.constant 0 : index
|
|
%f0 = arith.constant 0.0 : f64
|
|
%i0 = arith.constant 0 : i32
|
|
//
|
|
// Initialize a 3-dim dense tensor.
|
|
//
|
|
%data = arith.constant dense<
|
|
[ 1.0, 2.0, 3.0]
|
|
> : tensor<3xf64>
|
|
|
|
%index = arith.constant dense<
|
|
[[ 1, 2],
|
|
[ 5, 6],
|
|
[ 7, 8]]
|
|
> : tensor<3x2xindex>
|
|
|
|
%index32 = arith.constant dense<
|
|
[[ 1, 2],
|
|
[ 5, 6],
|
|
[ 7, 8]]
|
|
> : tensor<3x2xi32>
|
|
|
|
%s4 = sparse_tensor.pack %data, %index : tensor<3xf64>, tensor<3x2xindex>
|
|
to tensor<10x10xf64, #SortedCOO>
|
|
%s5= sparse_tensor.pack %data, %index32 : tensor<3xf64>, tensor<3x2xi32>
|
|
to tensor<10x10xf64, #SortedCOOI32>
|
|
|
|
%bdata = arith.constant dense<
|
|
[[ 1.0, 2.0, 3.0],
|
|
[ 4.0, 5.0, 0.0]]
|
|
> : tensor<2x3xf64>
|
|
|
|
%bindex = arith.constant dense<
|
|
[[[ 1, 2],
|
|
[ 5, 6],
|
|
[ 7, 8]],
|
|
[[ 2, 3],
|
|
[ 4, 2],
|
|
[ 10, 10]]]
|
|
> : tensor<2x3x2xindex>
|
|
%bs = sparse_tensor.pack %bdata, %bindex batched_lvls = 1 :
|
|
tensor<2x3xf64>, tensor<2x3x2xindex> to tensor<2x10x10xf64, #BCOO>
|
|
|
|
// CHECK:1
|
|
// CHECK-NEXT:2
|
|
// CHECK-NEXT:1
|
|
//
|
|
// CHECK-NEXT:5
|
|
// CHECK-NEXT:6
|
|
// CHECK-NEXT:2
|
|
//
|
|
// CHECK-NEXT:7
|
|
// CHECK-NEXT:8
|
|
// CHECK-NEXT:3
|
|
sparse_tensor.foreach in %s4 : tensor<10x10xf64, #SortedCOO> do {
|
|
^bb0(%1: index, %2: index, %v: f64) :
|
|
vector.print %1: index
|
|
vector.print %2: index
|
|
vector.print %v: f64
|
|
}
|
|
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:2
|
|
// CHECK-NEXT:1
|
|
//
|
|
// CHECK-NEXT:5
|
|
// CHECK-NEXT:6
|
|
// CHECK-NEXT:2
|
|
//
|
|
// CHECK-NEXT:7
|
|
// CHECK-NEXT:8
|
|
// CHECK-NEXT:3
|
|
sparse_tensor.foreach in %s5 : tensor<10x10xf64, #SortedCOOI32> do {
|
|
^bb0(%1: index, %2: index, %v: f64) :
|
|
vector.print %1: index
|
|
vector.print %2: index
|
|
vector.print %v: f64
|
|
}
|
|
|
|
// CHECK-NEXT:1
|
|
// CHECK-NEXT:2
|
|
// CHECK-NEXT:3
|
|
//
|
|
// CHECK-NEXT:4
|
|
// CHECK-NEXT:5
|
|
//
|
|
// Make sure the trailing zeros are not traversed.
|
|
// CHECK-NOT: 0
|
|
sparse_tensor.foreach in %bs : tensor<2x10x10xf64, #BCOO> do {
|
|
^bb0(%0: index, %1: index, %2: index, %v: f64) :
|
|
vector.print %v: f64
|
|
}
|
|
|
|
%d, %i, %n = sparse_tensor.unpack %s5 : tensor<10x10xf64, #SortedCOOI32>
|
|
to tensor<3xf64>, tensor<3x2xi32>, i32
|
|
|
|
// CHECK-NEXT: ( 1, 2, 3 )
|
|
%vd = vector.transfer_read %d[%c0], %f0 : tensor<3xf64>, vector<3xf64>
|
|
vector.print %vd : vector<3xf64>
|
|
|
|
// CHECK-NEXT: ( ( 1, 2 ), ( 5, 6 ), ( 7, 8 ) )
|
|
%vi = vector.transfer_read %i[%c0, %c0], %i0 : tensor<3x2xi32>, vector<3x2xi32>
|
|
vector.print %vi : vector<3x2xi32>
|
|
|
|
// CHECK-NEXT: 3
|
|
vector.print %n : i32
|
|
|
|
|
|
%bd, %bi, %bn = sparse_tensor.unpack %bs batched_lvls=1 :
|
|
tensor<2x10x10xf64, #BCOO> to tensor<2x3xf64>, tensor<2x3x2xindex>, i32
|
|
|
|
// CHECK-NEXT: ( ( 1, 2, 3 ), ( 4, 5, 0 ) )
|
|
%vbd = vector.transfer_read %bd[%c0, %c0], %f0 : tensor<2x3xf64>, vector<2x3xf64>
|
|
vector.print %vbd : vector<2x3xf64>
|
|
|
|
// CHECK-NEXT: ( ( ( 1, 2 ), ( 5, 6 ), ( 7, 8 ) ), ( ( 2, 3 ), ( 4, 2 ), ( 0, 0 ) ) )
|
|
%vbi = vector.transfer_read %bi[%c0, %c0, %c0], %c0 : tensor<2x3x2xindex>, vector<2x3x2xindex>
|
|
vector.print %vbi : vector<2x3x2xindex>
|
|
|
|
// CHECK-NEXT: 3
|
|
vector.print %bn : i32
|
|
|
|
%d1, %i1, %n1 = sparse_tensor.unpack %s4 : tensor<10x10xf64, #SortedCOO>
|
|
to tensor<3xf64>, tensor<3x2xindex>, index
|
|
// FIXME: This should be freed by one-shot-bufferization.
|
|
bufferization.dealloc_tensor %bd : tensor<2x3xf64>
|
|
bufferization.dealloc_tensor %bi : tensor<2x3x2xindex>
|
|
return
|
|
}
|
|
}
|