Files
clang-p2996/mlir/test/Integration/Dialect/SparseTensor/CPU/sparse_select.mlir
Cullen Rhodes baafc74ab0 [mlir][test][Integration] Refactor Arm emulator configuration
The logic enabling the Arm SVE (and now SME) integration tests for
various dialects, that may run under emulation, is now duplicated in
several places.

This patch moves the configuration to the top-level MLIR integration
tests Lit config and renames the '%lli' substitution in contexts where
it will run exclusively (ArmSVE, ArmSME) on AArch64 (and possibly under
emulation) to '%lli_aarch64_cmd', and '%lli_host_or_aarch64_cmd' for
contexts where it may run AArch64 (also possibly under emulation). The
latter is for integration tests that have target-specific and
target-agnostic codepaths such as SparseTensor, which supports scalable
vectors.

The two substitutions have the same effect but the names are different to
convey this information. The '%lli_aarch64_cmd' substitution could be
used in the SparseTensor tests but that would be a misnomer if the host
were x86 and the MLIR_RUN_SVE_TESTS=OFF.

The reason for renaming the '%lli' substitution is to not prevent running other
target-specific integration tests at the same time, since the same substitution
'%lli' is used for lli in other integration tests:

  * mlir/test/Integration/Dialect/Vector/CPU/X86Vector              - (AVX emulation via Intel SDE)
  * mlir/test/Integration/Dialect/Vector/CPU/AMX                    - (AMX emulation via Intel SDE)
  * mlir/test/Integration/Dialect/LLVMIR/CPU/test-vp-intrinsic.mlir - (RISCV emulation via QEMU if supported, native otherwise)

and substituting '%lli' at the top-level with Arm specific logic would override
this.

Reviewed By: awarzynski

Differential Revision: https://reviews.llvm.org/D148929
2023-04-26 09:57:43 +00:00

167 lines
6.6 KiB
MLIR

// DEFINE: %{option} = enable-runtime-library=true
// DEFINE: %{compile} = mlir-opt %s --sparse-compiler=%{option}
// DEFINE: %{run} = mlir-cpu-runner \
// DEFINE: -e entry -entry-point-result=void \
// DEFINE: -shared-libs=%mlir_c_runner_utils | \
// DEFINE: FileCheck %s
//
// RUN: %{compile} | %{run}
//
// Do the same run, but now with direct IR generation.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true"
// RUN: %{compile} | %{run}
// Do the same run, but now with direct IR generation and, if available, VLA
// vectorization.
// REDEFINE: %{option} = "enable-runtime-library=false enable-buffer-initialization=true vl=4 enable-arm-sve=%ENABLE_VLA"
// REDEFINE: %{run} = %lli_host_or_aarch64_cmd \
// REDEFINE: --entry-function=entry_lli \
// REDEFINE: --extra-module=%S/Inputs/main_for_lli.ll \
// REDEFINE: %VLA_ARCH_ATTR_OPTIONS \
// REDEFINE: --dlopen=%mlir_native_utils_lib_dir/libmlir_c_runner_utils%shlibext | \
// REDEFINE: FileCheck %s
// RUN: %{compile} | mlir-translate -mlir-to-llvmir | %{run}
#SparseVector = #sparse_tensor.encoding<{dimLevelType = ["compressed"]}>
#CSR = #sparse_tensor.encoding<{dimLevelType = ["dense", "compressed"]}>
#CSC = #sparse_tensor.encoding<{
dimLevelType = [ "dense", "compressed" ],
dimOrdering = affine_map<(i,j) -> (j,i)>
}>
//
// Traits for tensor operations.
//
#trait_vec_select = {
indexing_maps = [
affine_map<(i) -> (i)>, // A
affine_map<(i) -> (i)> // C (out)
],
iterator_types = ["parallel"]
}
#trait_mat_select = {
indexing_maps = [
affine_map<(i,j) -> (i,j)>, // A (in)
affine_map<(i,j) -> (i,j)> // X (out)
],
iterator_types = ["parallel", "parallel"]
}
module {
func.func @vecSelect(%arga: tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector> {
%c0 = arith.constant 0 : index
%cf1 = arith.constant 1.0 : f64
%d0 = tensor.dim %arga, %c0 : tensor<?xf64, #SparseVector>
%xv = bufferization.alloc_tensor(%d0): tensor<?xf64, #SparseVector>
%0 = linalg.generic #trait_vec_select
ins(%arga: tensor<?xf64, #SparseVector>)
outs(%xv: tensor<?xf64, #SparseVector>) {
^bb(%a: f64, %b: f64):
%1 = sparse_tensor.select %a : f64 {
^bb0(%x: f64):
%keep = arith.cmpf "oge", %x, %cf1 : f64
sparse_tensor.yield %keep : i1
}
linalg.yield %1 : f64
} -> tensor<?xf64, #SparseVector>
return %0 : tensor<?xf64, #SparseVector>
}
func.func @matUpperTriangle(%arga: tensor<?x?xf64, #CSR>) -> tensor<?x?xf64, #CSR> {
%c0 = arith.constant 0 : index
%c1 = arith.constant 1 : index
%d0 = tensor.dim %arga, %c0 : tensor<?x?xf64, #CSR>
%d1 = tensor.dim %arga, %c1 : tensor<?x?xf64, #CSR>
%xv = bufferization.alloc_tensor(%d0, %d1): tensor<?x?xf64, #CSR>
%0 = linalg.generic #trait_mat_select
ins(%arga: tensor<?x?xf64, #CSR>)
outs(%xv: tensor<?x?xf64, #CSR>) {
^bb(%a: f64, %b: f64):
%row = linalg.index 0 : index
%col = linalg.index 1 : index
%1 = sparse_tensor.select %a : f64 {
^bb0(%x: f64):
%keep = arith.cmpi "ugt", %col, %row : index
sparse_tensor.yield %keep : i1
}
linalg.yield %1 : f64
} -> tensor<?x?xf64, #CSR>
return %0 : tensor<?x?xf64, #CSR>
}
// Dumps a sparse vector of type f64.
func.func @dump_vec(%arg0: tensor<?xf64, #SparseVector>) {
// Dump the values array to verify only sparse contents are stored.
%c0 = arith.constant 0 : index
%d0 = arith.constant 0.0 : f64
%0 = sparse_tensor.values %arg0 : tensor<?xf64, #SparseVector> to memref<?xf64>
%1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<8xf64>
vector.print %1 : vector<8xf64>
// Dump the dense vector to verify structure is correct.
%dv = sparse_tensor.convert %arg0 : tensor<?xf64, #SparseVector> to tensor<?xf64>
%2 = vector.transfer_read %dv[%c0], %d0: tensor<?xf64>, vector<16xf64>
vector.print %2 : vector<16xf64>
return
}
// Dump a sparse matrix.
func.func @dump_mat(%arg0: tensor<?x?xf64, #CSR>) {
// Dump the values array to verify only sparse contents are stored.
%c0 = arith.constant 0 : index
%d0 = arith.constant 0.0 : f64
%0 = sparse_tensor.values %arg0 : tensor<?x?xf64, #CSR> to memref<?xf64>
%1 = vector.transfer_read %0[%c0], %d0: memref<?xf64>, vector<16xf64>
vector.print %1 : vector<16xf64>
%dm = sparse_tensor.convert %arg0 : tensor<?x?xf64, #CSR> to tensor<?x?xf64>
%2 = vector.transfer_read %dm[%c0, %c0], %d0: tensor<?x?xf64>, vector<5x5xf64>
vector.print %2 : vector<5x5xf64>
return
}
// Driver method to call and verify vector kernels.
func.func @entry() {
%c0 = arith.constant 0 : index
// Setup sparse matrices.
%v1 = arith.constant sparse<
[ [1], [3], [5], [7], [9] ],
[ 1.0, 2.0, -4.0, 0.0, 5.0 ]
> : tensor<10xf64>
%m1 = arith.constant sparse<
[ [0, 3], [1, 4], [2, 1], [2, 3], [3, 3], [3, 4], [4, 2] ],
[ 1., 2., 3., 4., 5., 6., 7.]
> : tensor<5x5xf64>
%sv1 = sparse_tensor.convert %v1 : tensor<10xf64> to tensor<?xf64, #SparseVector>
%sm1 = sparse_tensor.convert %m1 : tensor<5x5xf64> to tensor<?x?xf64, #CSR>
// Call sparse matrix kernels.
%1 = call @vecSelect(%sv1) : (tensor<?xf64, #SparseVector>) -> tensor<?xf64, #SparseVector>
%2 = call @matUpperTriangle(%sm1) : (tensor<?x?xf64, #CSR>) -> tensor<?x?xf64, #CSR>
//
// Verify the results.
//
// CHECK: ( 1, 2, -4, 0, 5, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 0, 2, 0, -4, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 1, 2, 3, 4, 5, 6, 7, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 0, 0, 0, 1, 0 ), ( 0, 0, 0, 0, 2 ), ( 0, 3, 0, 4, 0 ), ( 0, 0, 0, 5, 6 ), ( 0, 0, 7, 0, 0 ) )
// CHECK-NEXT: ( 1, 2, 5, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 0, 1, 0, 2, 0, 0, 0, 0, 0, 5, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( 1, 2, 4, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 )
// CHECK-NEXT: ( ( 0, 0, 0, 1, 0 ), ( 0, 0, 0, 0, 2 ), ( 0, 0, 0, 4, 0 ), ( 0, 0, 0, 0, 6 ), ( 0, 0, 0, 0, 0 ) )
//
call @dump_vec(%sv1) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_mat(%sm1) : (tensor<?x?xf64, #CSR>) -> ()
call @dump_vec(%1) : (tensor<?xf64, #SparseVector>) -> ()
call @dump_mat(%2) : (tensor<?x?xf64, #CSR>) -> ()
// Release the resources.
bufferization.dealloc_tensor %sv1 : tensor<?xf64, #SparseVector>
bufferization.dealloc_tensor %sm1 : tensor<?x?xf64, #CSR>
bufferization.dealloc_tensor %1 : tensor<?xf64, #SparseVector>
bufferization.dealloc_tensor %2 : tensor<?x?xf64, #CSR>
return
}
}