Files
clang-p2996/mlir/test/lib/Dialect/Test/TestPatterns.cpp
River Riddle 0e360744f3 [mlir][DialectConversion] Cache type conversions and add a few useful helpers
It is quite common for the same type to be converted many types throughout the conversion process, and there isn't any good reason why we aren't caching that result. Especially given that we currently use identity conversion to signify legality. This revision also adds a few additional helpers to TypeConverter.

Differential Revision: https://reviews.llvm.org/D81679
2020-06-15 15:57:43 -07:00

726 lines
28 KiB
C++

//===- TestPatterns.cpp - Test dialect pattern driver ---------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "TestDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
#include "mlir/IR/PatternMatch.h"
#include "mlir/Pass/Pass.h"
#include "mlir/Transforms/DialectConversion.h"
#include "mlir/Transforms/FoldUtils.h"
using namespace mlir;
// Native function for testing NativeCodeCall
static Value chooseOperand(Value input1, Value input2, BoolAttr choice) {
return choice.getValue() ? input1 : input2;
}
static void createOpI(PatternRewriter &rewriter, Value input) {
rewriter.create<OpI>(rewriter.getUnknownLoc(), input);
}
static void handleNoResultOp(PatternRewriter &rewriter,
OpSymbolBindingNoResult op) {
// Turn the no result op to a one-result op.
rewriter.create<OpSymbolBindingB>(op.getLoc(), op.operand().getType(),
op.operand());
}
namespace {
#include "TestPatterns.inc"
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// Canonicalizer Driver.
//===----------------------------------------------------------------------===//
namespace {
struct FoldingPattern : public RewritePattern {
public:
FoldingPattern(MLIRContext *context)
: RewritePattern(TestOpInPlaceFoldAnchor::getOperationName(),
/*benefit=*/1, context) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const override {
// Exercice OperationFolder API for a single-result operation that is folded
// upon construction. The operation being created through the folder has an
// in-place folder, and it should be still present in the output.
// Furthermore, the folder should not crash when attempting to recover the
// (unchanged) opeation result.
OperationFolder folder(op->getContext());
Value result = folder.create<TestOpInPlaceFold>(
rewriter, op->getLoc(), rewriter.getIntegerType(32), op->getOperand(0),
rewriter.getI32IntegerAttr(0));
assert(result);
rewriter.replaceOp(op, result);
return success();
}
};
struct TestPatternDriver : public PassWrapper<TestPatternDriver, FunctionPass> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
// Verify named pattern is generated with expected name.
patterns.insert<FoldingPattern, TestNamedPatternRule>(&getContext());
applyPatternsAndFoldGreedily(getFunction(), patterns);
}
};
} // end anonymous namespace
//===----------------------------------------------------------------------===//
// ReturnType Driver.
//===----------------------------------------------------------------------===//
namespace {
// Generate ops for each instance where the type can be successfully inferred.
template <typename OpTy>
static void invokeCreateWithInferredReturnType(Operation *op) {
auto *context = op->getContext();
auto fop = op->getParentOfType<FuncOp>();
auto location = UnknownLoc::get(context);
OpBuilder b(op);
b.setInsertionPointAfter(op);
// Use permutations of 2 args as operands.
assert(fop.getNumArguments() >= 2);
for (int i = 0, e = fop.getNumArguments(); i < e; ++i) {
for (int j = 0; j < e; ++j) {
std::array<Value, 2> values = {{fop.getArgument(i), fop.getArgument(j)}};
SmallVector<Type, 2> inferredReturnTypes;
if (succeeded(OpTy::inferReturnTypes(
context, llvm::None, values, op->getAttrDictionary(),
op->getRegions(), inferredReturnTypes))) {
OperationState state(location, OpTy::getOperationName());
// TODO(jpienaar): Expand to regions.
OpTy::build(b, state, values, op->getAttrs());
(void)b.createOperation(state);
}
}
}
}
static void reifyReturnShape(Operation *op) {
OpBuilder b(op);
// Use permutations of 2 args as operands.
auto shapedOp = cast<OpWithShapedTypeInferTypeInterfaceOp>(op);
SmallVector<Value, 2> shapes;
if (failed(shapedOp.reifyReturnTypeShapes(b, shapes)))
return;
for (auto it : llvm::enumerate(shapes))
op->emitRemark() << "value " << it.index() << ": "
<< it.value().getDefiningOp();
}
struct TestReturnTypeDriver
: public PassWrapper<TestReturnTypeDriver, FunctionPass> {
void runOnFunction() override {
if (getFunction().getName() == "testCreateFunctions") {
std::vector<Operation *> ops;
// Collect ops to avoid triggering on inserted ops.
for (auto &op : getFunction().getBody().front())
ops.push_back(&op);
// Generate test patterns for each, but skip terminator.
for (auto *op : llvm::makeArrayRef(ops).drop_back()) {
// Test create method of each of the Op classes below. The resultant
// output would be in reverse order underneath `op` from which
// the attributes and regions are used.
invokeCreateWithInferredReturnType<OpWithInferTypeInterfaceOp>(op);
invokeCreateWithInferredReturnType<
OpWithShapedTypeInferTypeInterfaceOp>(op);
};
return;
}
if (getFunction().getName() == "testReifyFunctions") {
std::vector<Operation *> ops;
// Collect ops to avoid triggering on inserted ops.
for (auto &op : getFunction().getBody().front())
if (isa<OpWithShapedTypeInferTypeInterfaceOp>(op))
ops.push_back(&op);
// Generate test patterns for each, but skip terminator.
for (auto *op : ops)
reifyReturnShape(op);
}
}
};
} // end anonymous namespace
namespace {
struct TestDerivedAttributeDriver
: public PassWrapper<TestDerivedAttributeDriver, FunctionPass> {
void runOnFunction() override;
};
} // end anonymous namespace
void TestDerivedAttributeDriver::runOnFunction() {
getFunction().walk([](DerivedAttributeOpInterface dOp) {
auto dAttr = dOp.materializeDerivedAttributes();
if (!dAttr)
return;
for (auto d : dAttr)
dOp.emitRemark() << d.first << " = " << d.second;
});
}
//===----------------------------------------------------------------------===//
// Legalization Driver.
//===----------------------------------------------------------------------===//
namespace {
//===----------------------------------------------------------------------===//
// Region-Block Rewrite Testing
/// This pattern is a simple pattern that inlines the first region of a given
/// operation into the parent region.
struct TestRegionRewriteBlockMovement : public ConversionPattern {
TestRegionRewriteBlockMovement(MLIRContext *ctx)
: ConversionPattern("test.region", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Inline this region into the parent region.
auto &parentRegion = *op->getParentRegion();
if (op->getAttr("legalizer.should_clone"))
rewriter.cloneRegionBefore(op->getRegion(0), parentRegion,
parentRegion.end());
else
rewriter.inlineRegionBefore(op->getRegion(0), parentRegion,
parentRegion.end());
// Drop this operation.
rewriter.eraseOp(op);
return success();
}
};
/// This pattern is a simple pattern that generates a region containing an
/// illegal operation.
struct TestRegionRewriteUndo : public RewritePattern {
TestRegionRewriteUndo(MLIRContext *ctx)
: RewritePattern("test.region_builder", 1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
// Create the region operation with an entry block containing arguments.
OperationState newRegion(op->getLoc(), "test.region");
newRegion.addRegion();
auto *regionOp = rewriter.createOperation(newRegion);
auto *entryBlock = rewriter.createBlock(&regionOp->getRegion(0));
entryBlock->addArgument(rewriter.getIntegerType(64));
// Add an explicitly illegal operation to ensure the conversion fails.
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getIntegerType(32));
rewriter.create<TestValidOp>(op->getLoc(), ArrayRef<Value>());
// Drop this operation.
rewriter.eraseOp(op);
return success();
}
};
/// A simple pattern that creates a block at the end of the parent region of the
/// matched operation.
struct TestCreateBlock : public RewritePattern {
TestCreateBlock(MLIRContext *ctx)
: RewritePattern("test.create_block", /*benefit=*/1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
Region &region = *op->getParentRegion();
Type i32Type = rewriter.getIntegerType(32);
rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
rewriter.create<TerminatorOp>(op->getLoc());
rewriter.replaceOp(op, {});
return success();
}
};
/// A simple pattern that creates a block containing an invalid operaiton in
/// order to trigger the block creation undo mechanism.
struct TestCreateIllegalBlock : public RewritePattern {
TestCreateIllegalBlock(MLIRContext *ctx)
: RewritePattern("test.create_illegal_block", /*benefit=*/1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
Region &region = *op->getParentRegion();
Type i32Type = rewriter.getIntegerType(32);
rewriter.createBlock(&region, region.end(), {i32Type, i32Type});
// Create an illegal op to ensure the conversion fails.
rewriter.create<ILLegalOpF>(op->getLoc(), i32Type);
rewriter.create<TerminatorOp>(op->getLoc());
rewriter.replaceOp(op, {});
return success();
}
};
/// A simple pattern that tests the undo mechanism when replacing the uses of a
/// block argument.
struct TestUndoBlockArgReplace : public ConversionPattern {
TestUndoBlockArgReplace(MLIRContext *ctx)
: ConversionPattern("test.undo_block_arg_replace", /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
auto illegalOp =
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
rewriter.replaceUsesOfBlockArgument(op->getRegion(0).front().getArgument(0),
illegalOp);
rewriter.updateRootInPlace(op, [] {});
return success();
}
};
/// A rewrite pattern that tests the undo mechanism when erasing a block.
struct TestUndoBlockErase : public ConversionPattern {
TestUndoBlockErase(MLIRContext *ctx)
: ConversionPattern("test.undo_block_erase", /*benefit=*/1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
Block *secondBlock = &*std::next(op->getRegion(0).begin());
rewriter.setInsertionPointToStart(secondBlock);
rewriter.create<ILLegalOpF>(op->getLoc(), rewriter.getF32Type());
rewriter.eraseBlock(secondBlock);
rewriter.updateRootInPlace(op, [] {});
return success();
}
};
//===----------------------------------------------------------------------===//
// Type-Conversion Rewrite Testing
/// This patterns erases a region operation that has had a type conversion.
struct TestDropOpSignatureConversion : public ConversionPattern {
TestDropOpSignatureConversion(MLIRContext *ctx, TypeConverter &converter)
: ConversionPattern("test.drop_region_op", 1, ctx), converter(converter) {
}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
Region &region = op->getRegion(0);
Block *entry = &region.front();
// Convert the original entry arguments.
TypeConverter::SignatureConversion result(entry->getNumArguments());
if (failed(
converter.convertSignatureArgs(entry->getArgumentTypes(), result)))
return failure();
// Convert the region signature and just drop the operation.
rewriter.applySignatureConversion(&region, result);
rewriter.eraseOp(op);
return success();
}
/// The type converter to use when rewriting the signature.
TypeConverter &converter;
};
/// This pattern simply updates the operands of the given operation.
struct TestPassthroughInvalidOp : public ConversionPattern {
TestPassthroughInvalidOp(MLIRContext *ctx)
: ConversionPattern("test.invalid", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
rewriter.replaceOpWithNewOp<TestValidOp>(op, llvm::None, operands,
llvm::None);
return success();
}
};
/// This pattern handles the case of a split return value.
struct TestSplitReturnType : public ConversionPattern {
TestSplitReturnType(MLIRContext *ctx)
: ConversionPattern("test.return", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Check for a return of F32.
if (op->getNumOperands() != 1 || !op->getOperand(0).getType().isF32())
return failure();
// Check if the first operation is a cast operation, if it is we use the
// results directly.
auto *defOp = operands[0].getDefiningOp();
if (auto packerOp = llvm::dyn_cast_or_null<TestCastOp>(defOp)) {
rewriter.replaceOpWithNewOp<TestReturnOp>(op, packerOp.getOperands());
return success();
}
// Otherwise, fail to match.
return failure();
}
};
//===----------------------------------------------------------------------===//
// Multi-Level Type-Conversion Rewrite Testing
struct TestChangeProducerTypeI32ToF32 : public ConversionPattern {
TestChangeProducerTypeI32ToF32(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is I32, change the type to F32.
if (!Type(*op->result_type_begin()).isSignlessInteger(32))
return failure();
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF32Type());
return success();
}
};
struct TestChangeProducerTypeF32ToF64 : public ConversionPattern {
TestChangeProducerTypeF32ToF64(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// If the type is F32, change the type to F64.
if (!Type(*op->result_type_begin()).isF32())
return rewriter.notifyMatchFailure(op, "expected single f32 operand");
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getF64Type());
return success();
}
};
struct TestChangeProducerTypeF32ToInvalid : public ConversionPattern {
TestChangeProducerTypeF32ToInvalid(MLIRContext *ctx)
: ConversionPattern("test.type_producer", 10, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Always convert to B16, even though it is not a legal type. This tests
// that values are unmapped correctly.
rewriter.replaceOpWithNewOp<TestTypeProducerOp>(op, rewriter.getBF16Type());
return success();
}
};
struct TestUpdateConsumerType : public ConversionPattern {
TestUpdateConsumerType(MLIRContext *ctx)
: ConversionPattern("test.type_consumer", 1, ctx) {}
LogicalResult
matchAndRewrite(Operation *op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const final {
// Verify that the incoming operand has been successfully remapped to F64.
if (!operands[0].getType().isF64())
return failure();
rewriter.replaceOpWithNewOp<TestTypeConsumerOp>(op, operands[0]);
return success();
}
};
//===----------------------------------------------------------------------===//
// Non-Root Replacement Rewrite Testing
/// This pattern generates an invalid operation, but replaces it before the
/// pattern is finished. This checks that we don't need to legalize the
/// temporary op.
struct TestNonRootReplacement : public RewritePattern {
TestNonRootReplacement(MLIRContext *ctx)
: RewritePattern("test.replace_non_root", 1, ctx) {}
LogicalResult matchAndRewrite(Operation *op,
PatternRewriter &rewriter) const final {
auto resultType = *op->result_type_begin();
auto illegalOp = rewriter.create<ILLegalOpF>(op->getLoc(), resultType);
auto legalOp = rewriter.create<LegalOpB>(op->getLoc(), resultType);
rewriter.replaceOp(illegalOp, {legalOp});
rewriter.replaceOp(op, {illegalOp});
return success();
}
};
//===----------------------------------------------------------------------===//
// Recursive Rewrite Testing
/// This pattern is applied to the same operation multiple times, but has a
/// bounded recursion.
struct TestBoundedRecursiveRewrite
: public OpRewritePattern<TestRecursiveRewriteOp> {
using OpRewritePattern<TestRecursiveRewriteOp>::OpRewritePattern;
LogicalResult matchAndRewrite(TestRecursiveRewriteOp op,
PatternRewriter &rewriter) const final {
// Decrement the depth of the op in-place.
rewriter.updateRootInPlace(op, [&] {
op.setAttr("depth",
rewriter.getI64IntegerAttr(op.depth().getSExtValue() - 1));
});
return success();
}
/// The conversion target handles bounding the recursion of this pattern.
bool hasBoundedRewriteRecursion() const final { return true; }
};
struct TestNestedOpCreationUndoRewrite
: public OpRewritePattern<IllegalOpWithRegionAnchor> {
using OpRewritePattern<IllegalOpWithRegionAnchor>::OpRewritePattern;
LogicalResult matchAndRewrite(IllegalOpWithRegionAnchor op,
PatternRewriter &rewriter) const final {
// rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
rewriter.replaceOpWithNewOp<IllegalOpWithRegion>(op);
return success();
};
};
} // namespace
namespace {
struct TestTypeConverter : public TypeConverter {
using TypeConverter::TypeConverter;
TestTypeConverter() {
addConversion(convertType);
addMaterialization(materializeCast);
addMaterialization(materializeOneToOneCast);
}
static LogicalResult convertType(Type t, SmallVectorImpl<Type> &results) {
// Drop I16 types.
if (t.isSignlessInteger(16))
return success();
// Convert I64 to F64.
if (t.isSignlessInteger(64)) {
results.push_back(FloatType::getF64(t.getContext()));
return success();
}
// Convert I42 to I43.
if (t.isInteger(42)) {
results.push_back(IntegerType::get(43, t.getContext()));
return success();
}
// Split F32 into F16,F16.
if (t.isF32()) {
results.assign(2, FloatType::getF16(t.getContext()));
return success();
}
// Otherwise, convert the type directly.
results.push_back(t);
return success();
}
/// Hook for materializing a conversion. This is necessary because we generate
/// 1->N type mappings.
static Optional<Value> materializeCast(PatternRewriter &rewriter,
Type resultType, ValueRange inputs,
Location loc) {
if (inputs.size() == 1)
return inputs[0];
return rewriter.create<TestCastOp>(loc, resultType, inputs).getResult();
}
/// Materialize the cast for one-to-one conversion from i64 to f64.
static Optional<Value> materializeOneToOneCast(PatternRewriter &rewriter,
IntegerType resultType,
ValueRange inputs,
Location loc) {
if (resultType.getWidth() == 42 && inputs.size() == 1)
return rewriter.create<TestCastOp>(loc, resultType, inputs).getResult();
return llvm::None;
}
};
struct TestLegalizePatternDriver
: public PassWrapper<TestLegalizePatternDriver, OperationPass<ModuleOp>> {
/// The mode of conversion to use with the driver.
enum class ConversionMode { Analysis, Full, Partial };
TestLegalizePatternDriver(ConversionMode mode) : mode(mode) {}
void runOnOperation() override {
TestTypeConverter converter;
mlir::OwningRewritePatternList patterns;
populateWithGenerated(&getContext(), &patterns);
patterns.insert<
TestRegionRewriteBlockMovement, TestRegionRewriteUndo, TestCreateBlock,
TestCreateIllegalBlock, TestUndoBlockArgReplace, TestUndoBlockErase,
TestPassthroughInvalidOp, TestSplitReturnType,
TestChangeProducerTypeI32ToF32, TestChangeProducerTypeF32ToF64,
TestChangeProducerTypeF32ToInvalid, TestUpdateConsumerType,
TestNonRootReplacement, TestBoundedRecursiveRewrite,
TestNestedOpCreationUndoRewrite>(&getContext());
patterns.insert<TestDropOpSignatureConversion>(&getContext(), converter);
mlir::populateFuncOpTypeConversionPattern(patterns, &getContext(),
converter);
mlir::populateCallOpTypeConversionPattern(patterns, &getContext(),
converter);
// Define the conversion target used for the test.
ConversionTarget target(getContext());
target.addLegalOp<ModuleOp, ModuleTerminatorOp>();
target.addLegalOp<LegalOpA, LegalOpB, TestCastOp, TestValidOp,
TerminatorOp>();
target
.addIllegalOp<ILLegalOpF, TestRegionBuilderOp, TestOpWithRegionFold>();
target.addDynamicallyLegalOp<TestReturnOp>([](TestReturnOp op) {
// Don't allow F32 operands.
return llvm::none_of(op.getOperandTypes(),
[](Type type) { return type.isF32(); });
});
target.addDynamicallyLegalOp<FuncOp>(
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
// Expect the type_producer/type_consumer operations to only operate on f64.
target.addDynamicallyLegalOp<TestTypeProducerOp>(
[](TestTypeProducerOp op) { return op.getType().isF64(); });
target.addDynamicallyLegalOp<TestTypeConsumerOp>([](TestTypeConsumerOp op) {
return op.getOperand().getType().isF64();
});
// Check support for marking certain operations as recursively legal.
target.markOpRecursivelyLegal<FuncOp, ModuleOp>([](Operation *op) {
return static_cast<bool>(
op->getAttrOfType<UnitAttr>("test.recursively_legal"));
});
// Mark the bound recursion operation as dynamically legal.
target.addDynamicallyLegalOp<TestRecursiveRewriteOp>(
[](TestRecursiveRewriteOp op) { return op.depth() == 0; });
// Handle a partial conversion.
if (mode == ConversionMode::Partial) {
DenseSet<Operation *> unlegalizedOps;
(void)applyPartialConversion(getOperation(), target, patterns, &converter,
&unlegalizedOps);
// Emit remarks for each legalizable operation.
for (auto *op : unlegalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is not legalizable";
return;
}
// Handle a full conversion.
if (mode == ConversionMode::Full) {
// Check support for marking unknown operations as dynamically legal.
target.markUnknownOpDynamicallyLegal([](Operation *op) {
return (bool)op->getAttrOfType<UnitAttr>("test.dynamically_legal");
});
(void)applyFullConversion(getOperation(), target, patterns, &converter);
return;
}
// Otherwise, handle an analysis conversion.
assert(mode == ConversionMode::Analysis);
// Analyze the convertible operations.
DenseSet<Operation *> legalizedOps;
if (failed(applyAnalysisConversion(getOperation(), target, patterns,
legalizedOps, &converter)))
return signalPassFailure();
// Emit remarks for each legalizable operation.
for (auto *op : legalizedOps)
op->emitRemark() << "op '" << op->getName() << "' is legalizable";
}
/// The mode of conversion to use.
ConversionMode mode;
};
} // end anonymous namespace
static llvm::cl::opt<TestLegalizePatternDriver::ConversionMode>
legalizerConversionMode(
"test-legalize-mode",
llvm::cl::desc("The legalization mode to use with the test driver"),
llvm::cl::init(TestLegalizePatternDriver::ConversionMode::Partial),
llvm::cl::values(
clEnumValN(TestLegalizePatternDriver::ConversionMode::Analysis,
"analysis", "Perform an analysis conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Full, "full",
"Perform a full conversion"),
clEnumValN(TestLegalizePatternDriver::ConversionMode::Partial,
"partial", "Perform a partial conversion")));
//===----------------------------------------------------------------------===//
// ConversionPatternRewriter::getRemappedValue testing. This method is used
// to get the remapped value of an original value that was replaced using
// ConversionPatternRewriter.
namespace {
/// Converter that replaces a one-result one-operand OneVResOneVOperandOp1 with
/// a one-operand two-result OneVResOneVOperandOp1 by replicating its original
/// operand twice.
///
/// Example:
/// %1 = test.one_variadic_out_one_variadic_in1"(%0)
/// is replaced with:
/// %1 = test.one_variadic_out_one_variadic_in1"(%0, %0)
struct OneVResOneVOperandOp1Converter
: public OpConversionPattern<OneVResOneVOperandOp1> {
using OpConversionPattern<OneVResOneVOperandOp1>::OpConversionPattern;
LogicalResult
matchAndRewrite(OneVResOneVOperandOp1 op, ArrayRef<Value> operands,
ConversionPatternRewriter &rewriter) const override {
auto origOps = op.getOperands();
assert(std::distance(origOps.begin(), origOps.end()) == 1 &&
"One operand expected");
Value origOp = *origOps.begin();
SmallVector<Value, 2> remappedOperands;
// Replicate the remapped original operand twice. Note that we don't used
// the remapped 'operand' since the goal is testing 'getRemappedValue'.
remappedOperands.push_back(rewriter.getRemappedValue(origOp));
remappedOperands.push_back(rewriter.getRemappedValue(origOp));
rewriter.replaceOpWithNewOp<OneVResOneVOperandOp1>(op, op.getResultTypes(),
remappedOperands);
return success();
}
};
struct TestRemappedValue
: public mlir::PassWrapper<TestRemappedValue, FunctionPass> {
void runOnFunction() override {
mlir::OwningRewritePatternList patterns;
patterns.insert<OneVResOneVOperandOp1Converter>(&getContext());
mlir::ConversionTarget target(getContext());
target.addLegalOp<ModuleOp, ModuleTerminatorOp, FuncOp, TestReturnOp>();
// We make OneVResOneVOperandOp1 legal only when it has more that one
// operand. This will trigger the conversion that will replace one-operand
// OneVResOneVOperandOp1 with two-operand OneVResOneVOperandOp1.
target.addDynamicallyLegalOp<OneVResOneVOperandOp1>(
[](Operation *op) -> bool {
return std::distance(op->operand_begin(), op->operand_end()) > 1;
});
if (failed(mlir::applyFullConversion(getFunction(), target, patterns))) {
signalPassFailure();
}
}
};
} // end anonymous namespace
namespace mlir {
void registerPatternsTestPass() {
mlir::PassRegistration<TestReturnTypeDriver>("test-return-type",
"Run return type functions");
mlir::PassRegistration<TestDerivedAttributeDriver>(
"test-derived-attr", "Run test derived attributes");
mlir::PassRegistration<TestPatternDriver>("test-patterns",
"Run test dialect patterns");
mlir::PassRegistration<TestLegalizePatternDriver>(
"test-legalize-patterns", "Run test dialect legalization patterns", [] {
return std::make_unique<TestLegalizePatternDriver>(
legalizerConversionMode);
});
PassRegistration<TestRemappedValue>(
"test-remapped-value",
"Test public remapped value mechanism in ConversionPatternRewriter");
}
} // namespace mlir