Files
clang-p2996/mlir/lib/Conversion/GPUCommon/GPUToLLVMConversion.cpp
Markus Böck 0e5aeae6f5 [mlir][GPUToLLVM] Add support for emitting opaque pointers
Part of https://discourse.llvm.org/t/rfc-switching-the-llvm-dialect-and-dialect-lowerings-to-opaque-pointers/68179

This patch adds the new pass option `use-opaque-pointers` to the GPU to LLVM lowerings (including ROCD and NVVM) and adapts the code to support using opaque pointers in addition to typed pointers.
The required changes mostly boil down to avoiding `getElementType` and specifying base types in GEP and Alloca.

In the future opaque pointers will be the only supported model, hence tests have been ported to using opaque pointers by default. Additional regression tests for typed-pointers have been added to avoid breaking existing clients.

Note: This does not yet port the `GpuToVulkan` passes.

Differential Revision: https://reviews.llvm.org/D144448
2023-02-21 20:46:33 +01:00

942 lines
39 KiB
C++

//===- ConvertLaunchFuncToGpuRuntimeCalls.cpp - MLIR GPU lowering passes --===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a pass to convert gpu.launch_func op into a sequence of
// GPU runtime calls. As most of GPU runtimes does not have a stable published
// ABI, this pass uses a slim runtime layer that builds on top of the public
// API from GPU runtime headers.
//
//===----------------------------------------------------------------------===//
#include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
#include "mlir/Conversion/ArithToLLVM/ArithToLLVM.h"
#include "mlir/Conversion/AsyncToLLVM/AsyncToLLVM.h"
#include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h"
#include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVMPass.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
#include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
#include "mlir/Dialect/Async/IR/Async.h"
#include "mlir/Dialect/GPU/IR/GPUDialect.h"
#include "mlir/Dialect/GPU/Transforms/Passes.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/MemRef/IR/MemRef.h"
#include "mlir/IR/Attributes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/FormatVariadic.h"
namespace mlir {
#define GEN_PASS_DEF_GPUTOLLVMCONVERSIONPASS
#include "mlir/Conversion/Passes.h.inc"
} // namespace mlir
using namespace mlir;
static constexpr const char *kGpuBinaryStorageSuffix = "_gpubin_cst";
namespace {
class GpuToLLVMConversionPass
: public impl::GpuToLLVMConversionPassBase<GpuToLLVMConversionPass> {
public:
using Base::Base;
// Run the dialect converter on the module.
void runOnOperation() override;
};
struct FunctionCallBuilder {
FunctionCallBuilder(StringRef functionName, Type returnType,
ArrayRef<Type> argumentTypes)
: functionName(functionName),
functionType(LLVM::LLVMFunctionType::get(returnType, argumentTypes)) {}
LLVM::CallOp create(Location loc, OpBuilder &builder,
ArrayRef<Value> arguments) const;
StringRef functionName;
LLVM::LLVMFunctionType functionType;
};
template <typename OpTy>
class ConvertOpToGpuRuntimeCallPattern : public ConvertOpToLLVMPattern<OpTy> {
public:
explicit ConvertOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToLLVMPattern<OpTy>(typeConverter) {}
protected:
Value getNumElements(ConversionPatternRewriter &rewriter, Location loc,
MemRefType type, MemRefDescriptor desc) const {
return type.hasStaticShape()
? ConvertToLLVMPattern::createIndexConstant(
rewriter, loc, type.getNumElements())
// For identity maps (verified by caller), the number of
// elements is stride[0] * size[0].
: rewriter.create<LLVM::MulOp>(loc,
desc.stride(rewriter, loc, 0),
desc.size(rewriter, loc, 0));
}
MLIRContext *context = &this->getTypeConverter()->getContext();
Type llvmVoidType = LLVM::LLVMVoidType::get(context);
LLVM::LLVMPointerType llvmPointerType =
this->getTypeConverter()->getPointerType(IntegerType::get(context, 8));
Type llvmPointerPointerType =
this->getTypeConverter()->getPointerType(llvmPointerType);
Type llvmInt8Type = IntegerType::get(context, 8);
Type llvmInt32Type = IntegerType::get(context, 32);
Type llvmInt64Type = IntegerType::get(context, 64);
Type llvmIntPtrType = IntegerType::get(
context, this->getTypeConverter()->getPointerBitwidth(0));
FunctionCallBuilder moduleLoadCallBuilder = {
"mgpuModuleLoad",
llvmPointerType /* void *module */,
{llvmPointerType /* void *cubin */}};
FunctionCallBuilder moduleUnloadCallBuilder = {
"mgpuModuleUnload", llvmVoidType, {llvmPointerType /* void *module */}};
FunctionCallBuilder moduleGetFunctionCallBuilder = {
"mgpuModuleGetFunction",
llvmPointerType /* void *function */,
{
llvmPointerType, /* void *module */
llvmPointerType /* char *name */
}};
FunctionCallBuilder launchKernelCallBuilder = {
"mgpuLaunchKernel",
llvmVoidType,
{
llvmPointerType, /* void* f */
llvmIntPtrType, /* intptr_t gridXDim */
llvmIntPtrType, /* intptr_t gridyDim */
llvmIntPtrType, /* intptr_t gridZDim */
llvmIntPtrType, /* intptr_t blockXDim */
llvmIntPtrType, /* intptr_t blockYDim */
llvmIntPtrType, /* intptr_t blockZDim */
llvmInt32Type, /* unsigned int sharedMemBytes */
llvmPointerType, /* void *hstream */
llvmPointerPointerType, /* void **kernelParams */
llvmPointerPointerType /* void **extra */
}};
FunctionCallBuilder streamCreateCallBuilder = {
"mgpuStreamCreate", llvmPointerType /* void *stream */, {}};
FunctionCallBuilder streamDestroyCallBuilder = {
"mgpuStreamDestroy", llvmVoidType, {llvmPointerType /* void *stream */}};
FunctionCallBuilder streamSynchronizeCallBuilder = {
"mgpuStreamSynchronize",
llvmVoidType,
{llvmPointerType /* void *stream */}};
FunctionCallBuilder streamWaitEventCallBuilder = {
"mgpuStreamWaitEvent",
llvmVoidType,
{llvmPointerType /* void *stream */, llvmPointerType /* void *event */}};
FunctionCallBuilder eventCreateCallBuilder = {
"mgpuEventCreate", llvmPointerType /* void *event */, {}};
FunctionCallBuilder eventDestroyCallBuilder = {
"mgpuEventDestroy", llvmVoidType, {llvmPointerType /* void *event */}};
FunctionCallBuilder eventSynchronizeCallBuilder = {
"mgpuEventSynchronize",
llvmVoidType,
{llvmPointerType /* void *event */}};
FunctionCallBuilder eventRecordCallBuilder = {
"mgpuEventRecord",
llvmVoidType,
{llvmPointerType /* void *event */, llvmPointerType /* void *stream */}};
FunctionCallBuilder hostRegisterCallBuilder = {
"mgpuMemHostRegisterMemRef",
llvmVoidType,
{llvmIntPtrType /* intptr_t rank */,
llvmPointerType /* void *memrefDesc */,
llvmIntPtrType /* intptr_t elementSizeBytes */}};
FunctionCallBuilder allocCallBuilder = {
"mgpuMemAlloc",
llvmPointerType /* void * */,
{llvmIntPtrType /* intptr_t sizeBytes */,
llvmPointerType /* void *stream */}};
FunctionCallBuilder deallocCallBuilder = {
"mgpuMemFree",
llvmVoidType,
{llvmPointerType /* void *ptr */, llvmPointerType /* void *stream */}};
FunctionCallBuilder memcpyCallBuilder = {
"mgpuMemcpy",
llvmVoidType,
{llvmPointerType /* void *dst */, llvmPointerType /* void *src */,
llvmIntPtrType /* intptr_t sizeBytes */,
llvmPointerType /* void *stream */}};
FunctionCallBuilder memsetCallBuilder = {
"mgpuMemset32",
llvmVoidType,
{llvmPointerType /* void *dst */, llvmInt32Type /* unsigned int value */,
llvmIntPtrType /* intptr_t sizeBytes */,
llvmPointerType /* void *stream */}};
FunctionCallBuilder setDefaultDeviceCallBuilder = {
"mgpuSetDefaultDevice",
llvmVoidType,
{llvmInt32Type /* uint32_t devIndex */}};
};
/// A rewrite pattern to convert gpu.host_register operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertHostRegisterOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp> {
public:
ConvertHostRegisterOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::HostRegisterOp hostRegisterOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.alloc operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertAllocOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::AllocOp> {
public:
ConvertAllocOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::AllocOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::AllocOp allocOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.dealloc operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertDeallocOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::DeallocOp> {
public:
ConvertDeallocOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::DeallocOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::DeallocOp deallocOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
class ConvertAsyncYieldToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<async::YieldOp> {
public:
ConvertAsyncYieldToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<async::YieldOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(async::YieldOp yieldOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.wait operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertWaitOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp> {
public:
ConvertWaitOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::WaitOp waitOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.wait async operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertWaitAsyncOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp> {
public:
ConvertWaitAsyncOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::WaitOp waitOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite patter to convert gpu.launch_func operations into a sequence of
/// GPU runtime calls. Currently it supports CUDA and ROCm (HIP).
///
/// In essence, a gpu.launch_func operations gets compiled into the following
/// sequence of runtime calls:
///
/// * moduleLoad -- loads the module given the cubin / hsaco data
/// * moduleGetFunction -- gets a handle to the actual kernel function
/// * getStreamHelper -- initializes a new compute stream on GPU
/// * launchKernel -- launches the kernel on a stream
/// * streamSynchronize -- waits for operations on the stream to finish
///
/// Intermediate data structures are allocated on the stack.
class ConvertLaunchFuncOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp> {
public:
ConvertLaunchFuncOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter,
StringRef gpuBinaryAnnotation,
bool kernelBarePtrCallConv)
: ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp>(typeConverter),
gpuBinaryAnnotation(gpuBinaryAnnotation),
kernelBarePtrCallConv(kernelBarePtrCallConv) {}
private:
Value generateParamsArray(gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
OpBuilder &builder) const;
Value generateKernelNameConstant(StringRef moduleName, StringRef name,
Location loc, OpBuilder &builder) const;
LogicalResult
matchAndRewrite(gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
llvm::SmallString<32> gpuBinaryAnnotation;
bool kernelBarePtrCallConv;
};
class EraseGpuModuleOpPattern : public OpRewritePattern<gpu::GPUModuleOp> {
using OpRewritePattern<gpu::GPUModuleOp>::OpRewritePattern;
LogicalResult matchAndRewrite(gpu::GPUModuleOp op,
PatternRewriter &rewriter) const override {
// GPU kernel modules are no longer necessary since we have a global
// constant with the CUBIN, or HSACO data.
rewriter.eraseOp(op);
return success();
}
};
/// A rewrite pattern to convert gpu.memcpy operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertMemcpyOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::MemcpyOp> {
public:
ConvertMemcpyOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::MemcpyOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::MemcpyOp memcpyOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.memset operations into a GPU runtime
/// call. Currently it supports CUDA and ROCm (HIP).
class ConvertMemsetOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::MemsetOp> {
public:
ConvertMemsetOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::MemsetOp>(typeConverter) {}
private:
LogicalResult
matchAndRewrite(gpu::MemsetOp memsetOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
/// A rewrite pattern to convert gpu.set_default_device to a GPU runtime call.
/// Currently supports CUDA and ROCm (HIP)
class ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern
: public ConvertOpToGpuRuntimeCallPattern<gpu::SetDefaultDeviceOp> {
public:
ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern(
LLVMTypeConverter &typeConverter)
: ConvertOpToGpuRuntimeCallPattern<gpu::SetDefaultDeviceOp>(
typeConverter) {}
LogicalResult
matchAndRewrite(gpu::SetDefaultDeviceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override;
};
} // namespace
void GpuToLLVMConversionPass::runOnOperation() {
LowerToLLVMOptions options(&getContext());
options.useOpaquePointers = useOpaquePointers;
LLVMTypeConverter converter(&getContext(), options);
RewritePatternSet patterns(&getContext());
LLVMConversionTarget target(getContext());
target.addIllegalDialect<gpu::GPUDialect>();
mlir::arith::populateArithToLLVMConversionPatterns(converter, patterns);
mlir::cf::populateControlFlowToLLVMConversionPatterns(converter, patterns);
populateVectorToLLVMConversionPatterns(converter, patterns);
populateFinalizeMemRefToLLVMConversionPatterns(converter, patterns);
populateFuncToLLVMConversionPatterns(converter, patterns);
populateAsyncStructuralTypeConversionsAndLegality(converter, patterns,
target);
populateGpuToLLVMConversionPatterns(converter, patterns, gpuBinaryAnnotation,
kernelBarePtrCallConv);
if (failed(
applyPartialConversion(getOperation(), target, std::move(patterns))))
signalPassFailure();
}
LLVM::CallOp FunctionCallBuilder::create(Location loc, OpBuilder &builder,
ArrayRef<Value> arguments) const {
auto module = builder.getBlock()->getParent()->getParentOfType<ModuleOp>();
auto function = [&] {
if (auto function = module.lookupSymbol<LLVM::LLVMFuncOp>(functionName))
return function;
return OpBuilder::atBlockEnd(module.getBody())
.create<LLVM::LLVMFuncOp>(loc, functionName, functionType);
}();
return builder.create<LLVM::CallOp>(loc, function, arguments);
}
// Returns whether all operands are of LLVM type.
static LogicalResult areAllLLVMTypes(Operation *op, ValueRange operands,
ConversionPatternRewriter &rewriter) {
if (!llvm::all_of(operands, [](Value value) {
return LLVM::isCompatibleType(value.getType());
}))
return rewriter.notifyMatchFailure(
op, "Cannot convert if operands aren't of LLVM type.");
return success();
}
static LogicalResult
isAsyncWithOneDependency(ConversionPatternRewriter &rewriter,
gpu::AsyncOpInterface op) {
if (op.getAsyncDependencies().size() != 1)
return rewriter.notifyMatchFailure(
op, "Can only convert with exactly one async dependency.");
if (!op.getAsyncToken())
return rewriter.notifyMatchFailure(op, "Can convert only async version.");
return success();
}
LogicalResult ConvertHostRegisterOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::HostRegisterOp hostRegisterOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto *op = hostRegisterOp.getOperation();
if (failed(areAllLLVMTypes(op, adaptor.getOperands(), rewriter)))
return failure();
Location loc = op->getLoc();
auto memRefType = hostRegisterOp.getValue().getType();
auto elementType = memRefType.cast<UnrankedMemRefType>().getElementType();
auto elementSize = getSizeInBytes(loc, elementType, rewriter);
auto arguments = getTypeConverter()->promoteOperands(
loc, op->getOperands(), adaptor.getOperands(), rewriter);
arguments.push_back(elementSize);
hostRegisterCallBuilder.create(loc, rewriter, arguments);
rewriter.eraseOp(op);
return success();
}
LogicalResult ConvertAllocOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::AllocOp allocOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (adaptor.getHostShared())
return rewriter.notifyMatchFailure(
allocOp, "host_shared allocation is not supported");
MemRefType memRefType = allocOp.getType();
if (failed(areAllLLVMTypes(allocOp, adaptor.getOperands(), rewriter)) ||
!isConvertibleAndHasIdentityMaps(memRefType) ||
failed(isAsyncWithOneDependency(rewriter, allocOp)))
return failure();
auto loc = allocOp.getLoc();
// Get shape of the memref as values: static sizes are constant
// values and dynamic sizes are passed to 'alloc' as operands.
SmallVector<Value, 4> shape;
SmallVector<Value, 4> strides;
Value sizeBytes;
getMemRefDescriptorSizes(loc, memRefType, adaptor.getDynamicSizes(), rewriter,
shape, strides, sizeBytes);
// Allocate the underlying buffer and store a pointer to it in the MemRef
// descriptor.
Type elementPtrType = this->getElementPtrType(memRefType);
auto stream = adaptor.getAsyncDependencies().front();
Value allocatedPtr =
allocCallBuilder.create(loc, rewriter, {sizeBytes, stream}).getResult();
if (!getTypeConverter()->useOpaquePointers())
allocatedPtr =
rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, allocatedPtr);
// No alignment.
Value alignedPtr = allocatedPtr;
// Create the MemRef descriptor.
auto memRefDescriptor = this->createMemRefDescriptor(
loc, memRefType, allocatedPtr, alignedPtr, shape, strides, rewriter);
rewriter.replaceOp(allocOp, {memRefDescriptor, stream});
return success();
}
LogicalResult ConvertDeallocOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::DeallocOp deallocOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(deallocOp, adaptor.getOperands(), rewriter)) ||
failed(isAsyncWithOneDependency(rewriter, deallocOp)))
return failure();
Location loc = deallocOp.getLoc();
Value pointer =
MemRefDescriptor(adaptor.getMemref()).allocatedPtr(rewriter, loc);
if (!getTypeConverter()->useOpaquePointers())
pointer = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pointer);
Value stream = adaptor.getAsyncDependencies().front();
deallocCallBuilder.create(loc, rewriter, {pointer, stream});
rewriter.replaceOp(deallocOp, {stream});
return success();
}
static bool isGpuAsyncTokenType(Value value) {
return value.getType().isa<gpu::AsyncTokenType>();
}
// Converts !gpu.async.token operands of `async.yield` to runtime calls. The
// !gpu.async.token are lowered to stream within the async.execute region, but
// are passed as events between them. For each !gpu.async.token operand, we
// create an event and record it on the stream.
LogicalResult ConvertAsyncYieldToGpuRuntimeCallPattern::matchAndRewrite(
async::YieldOp yieldOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (llvm::none_of(yieldOp.getOperands(), isGpuAsyncTokenType))
return rewriter.notifyMatchFailure(yieldOp, "no gpu async token operand");
Location loc = yieldOp.getLoc();
SmallVector<Value, 4> newOperands(adaptor.getOperands());
llvm::SmallDenseSet<Value> streams;
for (auto &operand : yieldOp->getOpOperands()) {
if (!isGpuAsyncTokenType(operand.get()))
continue;
auto idx = operand.getOperandNumber();
auto stream = adaptor.getOperands()[idx];
auto event = eventCreateCallBuilder.create(loc, rewriter, {}).getResult();
eventRecordCallBuilder.create(loc, rewriter, {event, stream});
newOperands[idx] = event;
streams.insert(stream);
}
for (auto stream : streams)
streamDestroyCallBuilder.create(loc, rewriter, {stream});
rewriter.updateRootInPlace(yieldOp,
[&] { yieldOp->setOperands(newOperands); });
return success();
}
// Returns whether `value` is the result of an LLVM::CallOp to `functionName`.
static bool isDefinedByCallTo(Value value, StringRef functionName) {
assert(value.getType().isa<LLVM::LLVMPointerType>());
if (auto defOp = value.getDefiningOp<LLVM::CallOp>())
return defOp.getCallee()->equals(functionName);
return false;
}
// Converts `gpu.wait` to runtime calls. The converted op synchronizes the host
// with the stream/event operands. The operands are destroyed. That is, it
// assumes that it is not used afterwards or elsewhere. Otherwise we will get a
// runtime error. Eventually, we should guarantee this property.
LogicalResult ConvertWaitOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::WaitOp waitOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (waitOp.getAsyncToken())
return rewriter.notifyMatchFailure(waitOp, "Cannot convert async op.");
Location loc = waitOp.getLoc();
for (auto operand : adaptor.getOperands()) {
if (isDefinedByCallTo(operand, streamCreateCallBuilder.functionName)) {
// The converted operand's definition created a stream.
streamSynchronizeCallBuilder.create(loc, rewriter, {operand});
streamDestroyCallBuilder.create(loc, rewriter, {operand});
} else {
// Otherwise the converted operand is an event. This assumes that we use
// events in control flow code as well.
eventSynchronizeCallBuilder.create(loc, rewriter, {operand});
eventDestroyCallBuilder.create(loc, rewriter, {operand});
}
}
rewriter.eraseOp(waitOp);
return success();
}
// Converts `gpu.wait async` to runtime calls. The converted op creates a new
// stream that is synchronized with stream/event operands. The operands are
// destroyed. That is, it assumes that it is not used afterwards or elsewhere.
// Otherwise we will get a runtime error. Eventually, we should guarantee this
// property.
LogicalResult ConvertWaitAsyncOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::WaitOp waitOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (!waitOp.getAsyncToken())
return rewriter.notifyMatchFailure(waitOp, "Can only convert async op.");
Location loc = waitOp.getLoc();
auto insertionPoint = rewriter.saveInsertionPoint();
SmallVector<Value, 1> events;
for (auto pair :
llvm::zip(waitOp.getAsyncDependencies(), adaptor.getOperands())) {
auto operand = std::get<1>(pair);
if (isDefinedByCallTo(operand, streamCreateCallBuilder.functionName)) {
// The converted operand's definition created a stream. Insert an event
// into the stream just after the last use of the original token operand.
auto *defOp = std::get<0>(pair).getDefiningOp();
rewriter.setInsertionPointAfter(defOp);
auto event = eventCreateCallBuilder.create(loc, rewriter, {}).getResult();
eventRecordCallBuilder.create(loc, rewriter, {event, operand});
events.push_back(event);
} else {
// Otherwise the converted operand is an event. This assumes that we use
// events in control flow code as well.
events.push_back(operand);
}
}
rewriter.restoreInsertionPoint(insertionPoint);
auto stream = streamCreateCallBuilder.create(loc, rewriter, {}).getResult();
for (auto event : events)
streamWaitEventCallBuilder.create(loc, rewriter, {stream, event});
for (auto event : events)
eventDestroyCallBuilder.create(loc, rewriter, {event});
rewriter.replaceOp(waitOp, {stream});
return success();
}
// Creates a struct containing all kernel parameters on the stack and returns
// an array of type-erased pointers to the fields of the struct. The array can
// then be passed to the CUDA / ROCm (HIP) kernel launch calls.
// The generated code is essentially as follows:
//
// %struct = alloca(sizeof(struct { Parameters... }))
// %array = alloca(NumParameters * sizeof(void *))
// for (i : [0, NumParameters))
// %fieldPtr = llvm.getelementptr %struct[0, i]
// llvm.store parameters[i], %fieldPtr
// %elementPtr = llvm.getelementptr %array[i]
// llvm.store %fieldPtr, %elementPtr
// return %array
Value ConvertLaunchFuncOpToGpuRuntimeCallPattern::generateParamsArray(
gpu::LaunchFuncOp launchOp, OpAdaptor adaptor, OpBuilder &builder) const {
auto loc = launchOp.getLoc();
auto numKernelOperands = launchOp.getNumKernelOperands();
SmallVector<Value, 4> arguments;
if (kernelBarePtrCallConv) {
// Hack the bare pointer value on just for the argument promotion
LLVMTypeConverter *converter = getTypeConverter();
LowerToLLVMOptions options = converter->getOptions();
LowerToLLVMOptions overrideToMatchKernelOpts = options;
overrideToMatchKernelOpts.useBarePtrCallConv = true;
converter->dangerousSetOptions(overrideToMatchKernelOpts);
arguments = converter->promoteOperands(
loc, launchOp.getOperands().take_back(numKernelOperands),
adaptor.getOperands().take_back(numKernelOperands), builder);
converter->dangerousSetOptions(options);
} else {
arguments = getTypeConverter()->promoteOperands(
loc, launchOp.getOperands().take_back(numKernelOperands),
adaptor.getOperands().take_back(numKernelOperands), builder);
}
auto numArguments = arguments.size();
SmallVector<Type, 4> argumentTypes;
argumentTypes.reserve(numArguments);
for (auto argument : arguments)
argumentTypes.push_back(argument.getType());
auto structType = LLVM::LLVMStructType::getNewIdentified(context, StringRef(),
argumentTypes);
auto one = builder.create<LLVM::ConstantOp>(loc, llvmInt32Type, 1);
auto structPtr = builder.create<LLVM::AllocaOp>(
loc, getTypeConverter()->getPointerType(structType), structType, one,
/*alignment=*/0);
auto arraySize =
builder.create<LLVM::ConstantOp>(loc, llvmInt32Type, numArguments);
auto arrayPtr = builder.create<LLVM::AllocaOp>(
loc, llvmPointerPointerType, llvmPointerType, arraySize, /*alignment=*/0);
for (const auto &en : llvm::enumerate(arguments)) {
Value fieldPtr = builder.create<LLVM::GEPOp>(
loc, getTypeConverter()->getPointerType(argumentTypes[en.index()]),
argumentTypes[en.index()], structPtr,
ArrayRef<LLVM::GEPArg>{0, en.index()});
builder.create<LLVM::StoreOp>(loc, en.value(), fieldPtr);
auto elementPtr = builder.create<LLVM::GEPOp>(
loc, llvmPointerPointerType, llvmPointerType, arrayPtr,
ArrayRef<LLVM::GEPArg>{en.index()});
if (!getTypeConverter()->useOpaquePointers())
fieldPtr =
builder.create<LLVM::BitcastOp>(loc, llvmPointerType, fieldPtr);
builder.create<LLVM::StoreOp>(loc, fieldPtr, elementPtr);
}
return arrayPtr;
}
// Generates an LLVM IR dialect global that contains the name of the given
// kernel function as a C string, and returns a pointer to its beginning.
// The code is essentially:
//
// llvm.global constant @kernel_name("function_name\00")
// func(...) {
// %0 = llvm.addressof @kernel_name
// %1 = llvm.constant (0 : index)
// %2 = llvm.getelementptr %0[%1, %1] : !llvm<"i8*">
// }
Value ConvertLaunchFuncOpToGpuRuntimeCallPattern::generateKernelNameConstant(
StringRef moduleName, StringRef name, Location loc,
OpBuilder &builder) const {
// Make sure the trailing zero is included in the constant.
std::vector<char> kernelName(name.begin(), name.end());
kernelName.push_back('\0');
std::string globalName =
std::string(llvm::formatv("{0}_{1}_kernel_name", moduleName, name));
return LLVM::createGlobalString(
loc, builder, globalName, StringRef(kernelName.data(), kernelName.size()),
LLVM::Linkage::Internal, getTypeConverter()->useOpaquePointers());
}
// Emits LLVM IR to launch a kernel function. Expects the module that contains
// the compiled kernel function as a cubin in the 'nvvm.cubin' attribute, or a
// hsaco in the 'rocdl.hsaco' attribute of the kernel function in the IR.
//
// %0 = call %binarygetter
// %1 = call %moduleLoad(%0)
// %2 = <see generateKernelNameConstant>
// %3 = call %moduleGetFunction(%1, %2)
// %4 = call %streamCreate()
// %5 = <see generateParamsArray>
// call %launchKernel(%3, <launchOp operands 0..5>, 0, %4, %5, nullptr)
// call %streamSynchronize(%4)
// call %streamDestroy(%4)
// call %moduleUnload(%1)
//
// If the op is async, the stream corresponds to the (single) async dependency
// as well as the async token the op produces.
LogicalResult ConvertLaunchFuncOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::LaunchFuncOp launchOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
if (failed(areAllLLVMTypes(launchOp, adaptor.getOperands(), rewriter)))
return failure();
if (launchOp.getAsyncDependencies().size() > 1)
return rewriter.notifyMatchFailure(
launchOp, "Cannot convert with more than one async dependency.");
// Fail when the synchronous version of the op has async dependencies. The
// lowering destroys the stream, and we do not want to check that there is no
// use of the stream after this op.
if (!launchOp.getAsyncToken() && !launchOp.getAsyncDependencies().empty())
return rewriter.notifyMatchFailure(
launchOp, "Cannot convert non-async op with async dependencies.");
Location loc = launchOp.getLoc();
// Create an LLVM global with CUBIN extracted from the kernel annotation and
// obtain a pointer to the first byte in it.
auto kernelModule = SymbolTable::lookupNearestSymbolFrom<gpu::GPUModuleOp>(
launchOp, launchOp.getKernelModuleName());
assert(kernelModule && "expected a kernel module");
auto binaryAttr =
kernelModule->getAttrOfType<StringAttr>(gpuBinaryAnnotation);
if (!binaryAttr) {
kernelModule.emitOpError()
<< "missing " << gpuBinaryAnnotation << " attribute";
return failure();
}
SmallString<128> nameBuffer(kernelModule.getName());
nameBuffer.append(kGpuBinaryStorageSuffix);
Value data = LLVM::createGlobalString(
loc, rewriter, nameBuffer.str(), binaryAttr.getValue(),
LLVM::Linkage::Internal, getTypeConverter()->useOpaquePointers());
auto module = moduleLoadCallBuilder.create(loc, rewriter, data);
// Get the function from the module. The name corresponds to the name of
// the kernel function.
auto kernelName = generateKernelNameConstant(
launchOp.getKernelModuleName().getValue(),
launchOp.getKernelName().getValue(), loc, rewriter);
auto function = moduleGetFunctionCallBuilder.create(
loc, rewriter, {module.getResult(), kernelName});
Value zero = rewriter.create<LLVM::ConstantOp>(loc, llvmInt32Type, 0);
Value stream =
adaptor.getAsyncDependencies().empty()
? streamCreateCallBuilder.create(loc, rewriter, {}).getResult()
: adaptor.getAsyncDependencies().front();
// Create array of pointers to kernel arguments.
auto kernelParams = generateParamsArray(launchOp, adaptor, rewriter);
auto nullpointer = rewriter.create<LLVM::NullOp>(loc, llvmPointerPointerType);
Value dynamicSharedMemorySize = launchOp.getDynamicSharedMemorySize()
? launchOp.getDynamicSharedMemorySize()
: zero;
launchKernelCallBuilder.create(
loc, rewriter,
{function.getResult(), adaptor.getGridSizeX(), adaptor.getGridSizeY(),
adaptor.getGridSizeZ(), adaptor.getBlockSizeX(), adaptor.getBlockSizeY(),
adaptor.getBlockSizeZ(), dynamicSharedMemorySize, stream, kernelParams,
/*extra=*/nullpointer});
if (launchOp.getAsyncToken()) {
// Async launch: make dependent ops use the same stream.
rewriter.replaceOp(launchOp, {stream});
} else {
// Synchronize with host and destroy stream. This must be the stream created
// above (with no other uses) because we check that the synchronous version
// does not have any async dependencies.
streamSynchronizeCallBuilder.create(loc, rewriter, stream);
streamDestroyCallBuilder.create(loc, rewriter, stream);
rewriter.eraseOp(launchOp);
}
moduleUnloadCallBuilder.create(loc, rewriter, module.getResult());
return success();
}
static Value bitAndAddrspaceCast(Location loc,
ConversionPatternRewriter &rewriter,
LLVM::LLVMPointerType destinationType,
Value sourcePtr,
LLVMTypeConverter &typeConverter) {
auto sourceTy = sourcePtr.getType().cast<LLVM::LLVMPointerType>();
if (destinationType.getAddressSpace() != sourceTy.getAddressSpace())
sourcePtr = rewriter.create<LLVM::AddrSpaceCastOp>(
loc,
typeConverter.getPointerType(sourceTy.getElementType(),
destinationType.getAddressSpace()),
sourcePtr);
if (typeConverter.useOpaquePointers())
return sourcePtr;
return rewriter.create<LLVM::BitcastOp>(loc, destinationType, sourcePtr);
}
LogicalResult ConvertMemcpyOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::MemcpyOp memcpyOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto memRefType = memcpyOp.getSrc().getType().cast<MemRefType>();
if (failed(areAllLLVMTypes(memcpyOp, adaptor.getOperands(), rewriter)) ||
!isConvertibleAndHasIdentityMaps(memRefType) ||
failed(isAsyncWithOneDependency(rewriter, memcpyOp)))
return failure();
auto loc = memcpyOp.getLoc();
MemRefDescriptor srcDesc(adaptor.getSrc());
Value numElements = getNumElements(rewriter, loc, memRefType, srcDesc);
Type elementPtrType = getElementPtrType(memRefType);
Value nullPtr = rewriter.create<LLVM::NullOp>(loc, elementPtrType);
Value gepPtr = rewriter.create<LLVM::GEPOp>(
loc, elementPtrType,
typeConverter->convertType(memRefType.getElementType()), nullPtr,
numElements);
auto sizeBytes =
rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gepPtr);
auto src = bitAndAddrspaceCast(loc, rewriter, llvmPointerType,
srcDesc.alignedPtr(rewriter, loc),
*getTypeConverter());
auto dst = bitAndAddrspaceCast(
loc, rewriter, llvmPointerType,
MemRefDescriptor(adaptor.getDst()).alignedPtr(rewriter, loc),
*getTypeConverter());
auto stream = adaptor.getAsyncDependencies().front();
memcpyCallBuilder.create(loc, rewriter, {dst, src, sizeBytes, stream});
rewriter.replaceOp(memcpyOp, {stream});
return success();
}
LogicalResult ConvertMemsetOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::MemsetOp memsetOp, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
auto memRefType = memsetOp.getDst().getType().cast<MemRefType>();
if (failed(areAllLLVMTypes(memsetOp, adaptor.getOperands(), rewriter)) ||
!isConvertibleAndHasIdentityMaps(memRefType) ||
failed(isAsyncWithOneDependency(rewriter, memsetOp)))
return failure();
auto loc = memsetOp.getLoc();
Type valueType = adaptor.getValue().getType();
if (!valueType.isIntOrFloat() || valueType.getIntOrFloatBitWidth() != 32) {
return rewriter.notifyMatchFailure(memsetOp,
"value must be a 32 bit scalar");
}
MemRefDescriptor dstDesc(adaptor.getDst());
Value numElements = getNumElements(rewriter, loc, memRefType, dstDesc);
auto value =
rewriter.create<LLVM::BitcastOp>(loc, llvmInt32Type, adaptor.getValue());
auto dst = bitAndAddrspaceCast(loc, rewriter, llvmPointerType,
dstDesc.alignedPtr(rewriter, loc),
*getTypeConverter());
auto stream = adaptor.getAsyncDependencies().front();
memsetCallBuilder.create(loc, rewriter, {dst, value, numElements, stream});
rewriter.replaceOp(memsetOp, {stream});
return success();
}
LogicalResult ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern::matchAndRewrite(
gpu::SetDefaultDeviceOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {
Location loc = op.getLoc();
setDefaultDeviceCallBuilder.create(loc, rewriter, {adaptor.getDevIndex()});
rewriter.replaceOp(op, {});
return success();
}
void mlir::populateGpuToLLVMConversionPatterns(LLVMTypeConverter &converter,
RewritePatternSet &patterns,
StringRef gpuBinaryAnnotation,
bool kernelBarePtrCallConv) {
converter.addConversion([&converter](gpu::AsyncTokenType type) -> Type {
return converter.getPointerType(
IntegerType::get(&converter.getContext(), 8));
});
patterns.add<ConvertAllocOpToGpuRuntimeCallPattern,
ConvertDeallocOpToGpuRuntimeCallPattern,
ConvertHostRegisterOpToGpuRuntimeCallPattern,
ConvertMemcpyOpToGpuRuntimeCallPattern,
ConvertMemsetOpToGpuRuntimeCallPattern,
ConvertSetDefaultDeviceOpToGpuRuntimeCallPattern,
ConvertWaitAsyncOpToGpuRuntimeCallPattern,
ConvertWaitOpToGpuRuntimeCallPattern,
ConvertAsyncYieldToGpuRuntimeCallPattern>(converter);
patterns.add<ConvertLaunchFuncOpToGpuRuntimeCallPattern>(
converter, gpuBinaryAnnotation, kernelBarePtrCallConv);
patterns.add<EraseGpuModuleOpPattern>(&converter.getContext());
}