Files
clang-p2996/flang/test/Lower/OpenMP/atomic-write.f90
Krzysztof Parzyszek 141d390dcb [flang][OpenMP] Overhaul implementation of ATOMIC construct (#137852)
The parser will accept a wide variety of illegal attempts at forming an
ATOMIC construct, leaving it to the semantic analysis to diagnose any
issues. This consolidates the analysis into one place and allows us to
produce more informative diagnostics.

The parser's outcome will be parser::OpenMPAtomicConstruct object
holding the directive, parser::Body, and an optional end-directive. The
prior variety of OmpAtomicXyz classes, as well as OmpAtomicClause have
been removed. READ, WRITE, etc. are now proper clauses.

The semantic analysis consistently operates on "evaluation"
representations, mainly evaluate::Expr (as SomeExpr) and
evaluate::Assignment. The results of the semantic analysis are stored in
a mutable member of the OpenMPAtomicConstruct node. This follows a
precedent of having `typedExpr` member in parser::Expr, for example.
This allows the lowering code to avoid duplicated handling of AST nodes.

Using a BLOCK construct containing multiple statements for an ATOMIC
construct that requires multiple statements is now allowed. In fact, any
nesting of such BLOCK constructs is allowed.

This implementation will parse, and perform semantic checks for both
conditional-update and conditional-update-capture, although no MLIR will
be generated for those. Instead, a TODO error will be issues prior to
lowering.

The allowed forms of the ATOMIC construct were based on the OpenMP 6.0
spec.
2025-06-11 10:05:34 -05:00

90 lines
4.5 KiB
Fortran

! REQUIRES: openmp_runtime
! RUN: bbc %openmp_flags -fopenmp-version=50 -emit-hlfir %s -o - | FileCheck %s
! This test checks the lowering of atomic write
!CHECK: func @_QQmain() attributes {fir.bindc_name = "ompatomicwrite"} {
!CHECK: %[[X_REF:.*]] = fir.alloca i32 {bindc_name = "x", uniq_name = "_QFEx"}
!CHECK: %[[X_DECL:.*]]:2 = hlfir.declare %[[X_REF]] {uniq_name = "_QFEx"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
!CHECK: %[[Y_REF:.*]] = fir.alloca i32 {bindc_name = "y", uniq_name = "_QFEy"}
!CHECK: %[[Y_DECL:.*]]:2 = hlfir.declare %[[Y_REF]] {uniq_name = "_QFEy"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
!CHECK: %[[Z_REF:.*]] = fir.alloca i32 {bindc_name = "z", uniq_name = "_QFEz"}
!CHECK: %[[Z_DECL:.*]]:2 = hlfir.declare %[[Z_REF]] {uniq_name = "_QFEz"} : (!fir.ref<i32>) -> (!fir.ref<i32>, !fir.ref<i32>)
!CHECK: %[[C44:.*]] = arith.constant 44 : i32
!CHECK: omp.atomic.write %[[X_DECL:.*]]#0 = %[[C44]] hint(uncontended) memory_order(seq_cst) : !fir.ref<i32>, i32
!CHECK: %[[C7:.*]] = arith.constant 7 : i32
!CHECK: %[[Y_VAL:.*]] = fir.load %[[Y_DECL]]#0 : !fir.ref<i32>
!CHECK: %[[SEVEN_Y_VAL:.*]] = arith.muli %[[C7]], %[[Y_VAL]] : i32
!CHECK: omp.atomic.write %[[X_DECL]]#0 = %[[SEVEN_Y_VAL]] memory_order(relaxed) : !fir.ref<i32>, i32
!CHECK: %[[C10:.*]] = arith.constant 10 : i32
!CHECK: %[[X_VAL:.*]] = fir.load %[[X_DECL]]#0 : !fir.ref<i32>
!CHECK: %[[TEN_X:.*]] = arith.muli %[[C10]], %[[X_VAL]] : i32
!CHECK: %[[Z_VAL:.*]] = fir.load %[[Z_DECL]]#0 : !fir.ref<i32>
!CHECK: %[[C2:.*]] = arith.constant 2 : i32
!CHECK: %[[Z_DIV_2:.*]] = arith.divsi %[[Z_VAL]], %[[C2]] : i32
!CHECK: %[[ADD_RES:.*]] = arith.addi %[[TEN_X]], %[[Z_DIV_2]] : i32
!CHECK: omp.atomic.write %[[Y_DECL]]#0 = %[[ADD_RES]] hint(speculative) memory_order(release) : !fir.ref<i32>, i32
program OmpAtomicWrite
use omp_lib
integer :: x, y, z
!$omp atomic seq_cst write hint(omp_sync_hint_uncontended)
x = 8*4 + 12
!$omp atomic write relaxed
x = 7 * y
!$omp atomic write release hint(omp_sync_hint_speculative)
y = 10*x + z/2
end program OmpAtomicWrite
! Test lowering atomic read for pointer variables.
!CHECK-LABEL: func.func @_QPatomic_write_pointer() {
!CHECK: %[[X_REF:.*]] = fir.alloca !fir.box<!fir.ptr<i32>> {bindc_name = "x", uniq_name = "_QFatomic_write_pointerEx"}
!CHECK: %[[X_DECL:.*]]:2 = hlfir.declare %[[X_REF]] {fortran_attrs = #fir.var_attrs<pointer>, uniq_name = "_QFatomic_write_pointerEx"} : (!fir.ref<!fir.box<!fir.ptr<i32>>>) -> (!fir.ref<!fir.box<!fir.ptr<i32>>>, !fir.ref<!fir.box<!fir.ptr<i32>>>)
!CHECK: %[[X_ADDR_BOX:.*]] = fir.load %[[X_DECL]]#0 : !fir.ref<!fir.box<!fir.ptr<i32>>>
!CHECK: %[[X_POINTEE_ADDR:.*]] = fir.box_addr %[[X_ADDR_BOX]] : (!fir.box<!fir.ptr<i32>>) -> !fir.ptr<i32>
!CHECK: %[[C1:.*]] = arith.constant 1 : i32
!CHECK: omp.atomic.write %[[X_POINTEE_ADDR]] = %[[C1]] : !fir.ptr<i32>, i32
!CHECK: %[[C2:.*]] = arith.constant 2 : i32
!CHECK: %[[X_ADDR_BOX:.*]] = fir.load %[[X_DECL]]#0 : !fir.ref<!fir.box<!fir.ptr<i32>>>
!CHECK: %[[X_POINTEE_ADDR:.*]] = fir.box_addr %[[X_ADDR_BOX]] : (!fir.box<!fir.ptr<i32>>) -> !fir.ptr<i32>
!CHECK: hlfir.assign %[[C2]] to %[[X_POINTEE_ADDR]] : i32, !fir.ptr<i32>
subroutine atomic_write_pointer()
integer, pointer :: x
!$omp atomic write
x = 1
x = 2
end
!CHECK-LABEL: func.func @_QPatomic_write_typed_assign
!CHECK: %[[R2_REF:.*]] = fir.alloca f32 {bindc_name = "r2", uniq_name = "_QFatomic_write_typed_assignEr2"}
!CHECK: %[[R2_DECL:.*]]:2 = hlfir.declare %[[R2_REF]] {uniq_name = "_QFatomic_write_typed_assignEr2"} : (!fir.ref<f32>) -> (!fir.ref<f32>, !fir.ref<f32>)
!CHECK: %[[C0:.*]] = arith.constant 0.000000e+00 : f32
!CHECK: omp.atomic.write %[[R2_DECL]]#0 = %[[C0]] : !fir.ref<f32>, f32
subroutine atomic_write_typed_assign
real :: r2
!$omp atomic write
r2 = 0
end subroutine
!CHECK-LABEL: func.func @_QPatomic_write_logical()
!CHECK: %[[L_REF:.*]] = fir.alloca !fir.logical<4> {bindc_name = "l", uniq_name = "_QFatomic_write_logicalEl"}
!CHECK: %[[L_DECL:.*]]:2 = hlfir.declare %[[L_REF]] {uniq_name = "_QFatomic_write_logicalEl"} : (!fir.ref<!fir.logical<4>>) -> (!fir.ref<!fir.logical<4>>, !fir.ref<!fir.logical<4>>)
!CHECK: %true = arith.constant true
!CHECK: %[[CVT:.*]] = fir.convert %true : (i1) -> !fir.logical<4>
!CHECK: omp.atomic.write %[[L_DECL]]#0 = %[[CVT]] : !fir.ref<!fir.logical<4>>, !fir.logical<4>
subroutine atomic_write_logical
logical :: l
!$omp atomic write
l = .true.
!$omp end atomic
end