Files
clang-p2996/polly/lib/CodeGen/IslAst.cpp
Johannes Doerfert 7e6424ba5a Create a dependence struct to hold dependence information for a SCoP.
The new Dependences struct in the DependenceInfo holds all information
  that was formerly part of the DependenceInfo. It also provides the
  same interface for the user to access this information.

  This is another step to a more general ScopPass interface that does
  allow multiple SCoPs to be "in flight".

llvm-svn: 231327
2015-03-05 00:43:48 +00:00

584 lines
20 KiB
C++

//===- IslAst.cpp - isl code generator interface --------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The isl code generator interface takes a Scop and generates a isl_ast. This
// ist_ast can either be returned directly or it can be pretty printed to
// stdout.
//
// A typical isl_ast output looks like this:
//
// for (c2 = max(0, ceild(n + m, 2); c2 <= min(511, floord(5 * n, 3)); c2++) {
// bb2(c2);
// }
//
//===----------------------------------------------------------------------===//
#include "polly/CodeGen/CodeGeneration.h"
#include "polly/CodeGen/IslAst.h"
#include "polly/DependenceInfo.h"
#include "polly/LinkAllPasses.h"
#include "polly/Options.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Support/Debug.h"
#include "isl/union_map.h"
#include "isl/list.h"
#include "isl/ast_build.h"
#include "isl/set.h"
#include "isl/map.h"
#include "isl/aff.h"
#define DEBUG_TYPE "polly-ast"
using namespace llvm;
using namespace polly;
using IslAstUserPayload = IslAstInfo::IslAstUserPayload;
static cl::opt<bool>
PollyParallel("polly-parallel",
cl::desc("Generate thread parallel code (isl codegen only)"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> PollyParallelForce(
"polly-parallel-force",
cl::desc(
"Force generation of thread parallel code ignoring any cost model"),
cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
static cl::opt<bool> UseContext("polly-ast-use-context",
cl::desc("Use context"), cl::Hidden,
cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<bool> DetectParallel("polly-ast-detect-parallel",
cl::desc("Detect parallelism"), cl::Hidden,
cl::init(false), cl::ZeroOrMore,
cl::cat(PollyCategory));
static cl::opt<bool> NoEarlyExit(
"polly-no-early-exit",
cl::desc("Do not exit early if no benefit of the Polly version was found."),
cl::Hidden, cl::init(false), cl::ZeroOrMore, cl::cat(PollyCategory));
namespace polly {
class IslAst {
public:
IslAst(Scop *Scop, const Dependences &D);
~IslAst();
/// Print a source code representation of the program.
void pprint(llvm::raw_ostream &OS);
__isl_give isl_ast_node *getAst();
/// @brief Get the run-time conditions for the Scop.
__isl_give isl_ast_expr *getRunCondition();
private:
Scop *S;
isl_ast_node *Root;
isl_ast_expr *RunCondition;
void buildRunCondition(__isl_keep isl_ast_build *Build);
};
} // End namespace polly.
/// @brief Free an IslAstUserPayload object pointed to by @p Ptr
static void freeIslAstUserPayload(void *Ptr) {
delete ((IslAstInfo::IslAstUserPayload *)Ptr);
}
IslAstInfo::IslAstUserPayload::~IslAstUserPayload() {
isl_ast_build_free(Build);
isl_pw_aff_free(MinimalDependenceDistance);
}
/// @brief Temporary information used when building the ast.
struct AstBuildUserInfo {
/// @brief Construct and initialize the helper struct for AST creation.
AstBuildUserInfo()
: Deps(nullptr), InParallelFor(false), LastForNodeId(nullptr) {}
/// @brief The dependence information used for the parallelism check.
const Dependences *Deps;
/// @brief Flag to indicate that we are inside a parallel for node.
bool InParallelFor;
/// @brief The last iterator id created for the current SCoP.
isl_id *LastForNodeId;
};
/// @brief Print a string @p str in a single line using @p Printer.
static isl_printer *printLine(__isl_take isl_printer *Printer,
const std::string &str,
__isl_keep isl_pw_aff *PWA = nullptr) {
Printer = isl_printer_start_line(Printer);
Printer = isl_printer_print_str(Printer, str.c_str());
if (PWA)
Printer = isl_printer_print_pw_aff(Printer, PWA);
return isl_printer_end_line(Printer);
}
/// @brief Return all broken reductions as a string of clauses (OpenMP style).
static const std::string getBrokenReductionsStr(__isl_keep isl_ast_node *Node) {
IslAstInfo::MemoryAccessSet *BrokenReductions;
std::string str;
BrokenReductions = IslAstInfo::getBrokenReductions(Node);
if (!BrokenReductions || BrokenReductions->empty())
return "";
// Map each type of reduction to a comma separated list of the base addresses.
std::map<MemoryAccess::ReductionType, std::string> Clauses;
for (MemoryAccess *MA : *BrokenReductions)
if (MA->isWrite())
Clauses[MA->getReductionType()] +=
", " + MA->getBaseAddr()->getName().str();
// Now print the reductions sorted by type. Each type will cause a clause
// like: reduction (+ : sum0, sum1, sum2)
for (const auto &ReductionClause : Clauses) {
str += " reduction (";
str += MemoryAccess::getReductionOperatorStr(ReductionClause.first);
// Remove the first two symbols (", ") to make the output look pretty.
str += " : " + ReductionClause.second.substr(2) + ")";
}
return str;
}
/// @brief Callback executed for each for node in the ast in order to print it.
static isl_printer *cbPrintFor(__isl_take isl_printer *Printer,
__isl_take isl_ast_print_options *Options,
__isl_keep isl_ast_node *Node, void *) {
isl_pw_aff *DD = IslAstInfo::getMinimalDependenceDistance(Node);
const std::string BrokenReductionsStr = getBrokenReductionsStr(Node);
const std::string KnownParallelStr = "#pragma known-parallel";
const std::string DepDisPragmaStr = "#pragma minimal dependence distance: ";
const std::string SimdPragmaStr = "#pragma simd";
const std::string OmpPragmaStr = "#pragma omp parallel for";
if (DD)
Printer = printLine(Printer, DepDisPragmaStr, DD);
if (IslAstInfo::isInnermostParallel(Node))
Printer = printLine(Printer, SimdPragmaStr + BrokenReductionsStr);
if (IslAstInfo::isExecutedInParallel(Node))
Printer = printLine(Printer, OmpPragmaStr);
else if (IslAstInfo::isOutermostParallel(Node))
Printer = printLine(Printer, KnownParallelStr + BrokenReductionsStr);
isl_pw_aff_free(DD);
return isl_ast_node_for_print(Node, Printer, Options);
}
/// @brief Check if the current scheduling dimension is parallel
///
/// In case the dimension is parallel we also check if any reduction
/// dependences is broken when we exploit this parallelism. If so,
/// @p IsReductionParallel will be set to true. The reduction dependences we use
/// to check are actually the union of the transitive closure of the initial
/// reduction dependences together with their reveresal. Even though these
/// dependences connect all iterations with each other (thus they are cyclic)
/// we can perform the parallelism check as we are only interested in a zero
/// (or non-zero) dependence distance on the dimension in question.
static bool astScheduleDimIsParallel(__isl_keep isl_ast_build *Build,
const Dependences *D,
IslAstUserPayload *NodeInfo) {
if (!D->hasValidDependences())
return false;
isl_union_map *Schedule = isl_ast_build_get_schedule(Build);
isl_union_map *Deps = D->getDependences(
Dependences::TYPE_RAW | Dependences::TYPE_WAW | Dependences::TYPE_WAR);
if (!D->isParallel(Schedule, Deps, &NodeInfo->MinimalDependenceDistance) &&
!isl_union_map_free(Schedule))
return false;
isl_union_map *RedDeps = D->getDependences(Dependences::TYPE_TC_RED);
if (!D->isParallel(Schedule, RedDeps))
NodeInfo->IsReductionParallel = true;
if (!NodeInfo->IsReductionParallel && !isl_union_map_free(Schedule))
return true;
// Annotate reduction parallel nodes with the memory accesses which caused the
// reduction dependences parallel execution of the node conflicts with.
for (const auto &MaRedPair : D->getReductionDependences()) {
if (!MaRedPair.second)
continue;
RedDeps = isl_union_map_from_map(isl_map_copy(MaRedPair.second));
if (!D->isParallel(Schedule, RedDeps))
NodeInfo->BrokenReductions.insert(MaRedPair.first);
}
isl_union_map_free(Schedule);
return true;
}
// This method is executed before the construction of a for node. It creates
// an isl_id that is used to annotate the subsequently generated ast for nodes.
//
// In this function we also run the following analyses:
//
// - Detection of openmp parallel loops
//
static __isl_give isl_id *astBuildBeforeFor(__isl_keep isl_ast_build *Build,
void *User) {
AstBuildUserInfo *BuildInfo = (AstBuildUserInfo *)User;
IslAstUserPayload *Payload = new IslAstUserPayload();
isl_id *Id = isl_id_alloc(isl_ast_build_get_ctx(Build), "", Payload);
Id = isl_id_set_free_user(Id, freeIslAstUserPayload);
BuildInfo->LastForNodeId = Id;
// Test for parallelism only if we are not already inside a parallel loop
if (!BuildInfo->InParallelFor)
BuildInfo->InParallelFor = Payload->IsOutermostParallel =
astScheduleDimIsParallel(Build, BuildInfo->Deps, Payload);
return Id;
}
// This method is executed after the construction of a for node.
//
// It performs the following actions:
//
// - Reset the 'InParallelFor' flag, as soon as we leave a for node,
// that is marked as openmp parallel.
//
static __isl_give isl_ast_node *
astBuildAfterFor(__isl_take isl_ast_node *Node, __isl_keep isl_ast_build *Build,
void *User) {
isl_id *Id = isl_ast_node_get_annotation(Node);
assert(Id && "Post order visit assumes annotated for nodes");
IslAstUserPayload *Payload = (IslAstUserPayload *)isl_id_get_user(Id);
assert(Payload && "Post order visit assumes annotated for nodes");
AstBuildUserInfo *BuildInfo = (AstBuildUserInfo *)User;
assert(!Payload->Build && "Build environment already set");
Payload->Build = isl_ast_build_copy(Build);
Payload->IsInnermost = (Id == BuildInfo->LastForNodeId);
// Innermost loops that are surrounded by parallel loops have not yet been
// tested for parallelism. Test them here to ensure we check all innermost
// loops for parallelism.
if (Payload->IsInnermost && BuildInfo->InParallelFor) {
if (Payload->IsOutermostParallel)
Payload->IsInnermostParallel = true;
else
Payload->IsInnermostParallel =
astScheduleDimIsParallel(Build, BuildInfo->Deps, Payload);
}
if (Payload->IsOutermostParallel)
BuildInfo->InParallelFor = false;
isl_id_free(Id);
return Node;
}
static __isl_give isl_ast_node *AtEachDomain(__isl_take isl_ast_node *Node,
__isl_keep isl_ast_build *Build,
void *User) {
assert(!isl_ast_node_get_annotation(Node) && "Node already annotated");
IslAstUserPayload *Payload = new IslAstUserPayload();
isl_id *Id = isl_id_alloc(isl_ast_build_get_ctx(Build), "", Payload);
Id = isl_id_set_free_user(Id, freeIslAstUserPayload);
Payload->Build = isl_ast_build_copy(Build);
return isl_ast_node_set_annotation(Node, Id);
}
void IslAst::buildRunCondition(__isl_keep isl_ast_build *Build) {
// The conditions that need to be checked at run-time for this scop are
// available as an isl_set in the AssumedContext from which we can directly
// derive a run-time condition.
RunCondition = isl_ast_build_expr_from_set(Build, S->getAssumedContext());
// Create the alias checks from the minimal/maximal accesses in each alias
// group. This operation is by construction quadratic in the number of
// elements in each alias group.
isl_ast_expr *NonAliasGroup, *MinExpr, *MaxExpr;
for (const Scop::MinMaxVectorTy *MinMaxAccesses : S->getAliasGroups()) {
auto AccEnd = MinMaxAccesses->end();
for (auto AccIt0 = MinMaxAccesses->begin(); AccIt0 != AccEnd; ++AccIt0) {
for (auto AccIt1 = AccIt0 + 1; AccIt1 != AccEnd; ++AccIt1) {
MinExpr =
isl_ast_expr_address_of(isl_ast_build_access_from_pw_multi_aff(
Build, isl_pw_multi_aff_copy(AccIt0->first)));
MaxExpr =
isl_ast_expr_address_of(isl_ast_build_access_from_pw_multi_aff(
Build, isl_pw_multi_aff_copy(AccIt1->second)));
NonAliasGroup = isl_ast_expr_le(MaxExpr, MinExpr);
MinExpr =
isl_ast_expr_address_of(isl_ast_build_access_from_pw_multi_aff(
Build, isl_pw_multi_aff_copy(AccIt1->first)));
MaxExpr =
isl_ast_expr_address_of(isl_ast_build_access_from_pw_multi_aff(
Build, isl_pw_multi_aff_copy(AccIt0->second)));
NonAliasGroup =
isl_ast_expr_or(NonAliasGroup, isl_ast_expr_le(MaxExpr, MinExpr));
RunCondition = isl_ast_expr_and(RunCondition, NonAliasGroup);
}
}
}
}
/// @brief Simple cost analysis for a given SCoP
///
/// TODO: Improve this analysis and extract it to make it usable in other
/// places too.
/// In order to improve the cost model we could either keep track of
/// performed optimizations (e.g., tiling) or compute properties on the
/// original as well as optimized SCoP (e.g., #stride-one-accesses).
static bool benefitsFromPolly(Scop *Scop, bool PerformParallelTest) {
// First check the user choice.
if (NoEarlyExit)
return true;
// Check if nothing interesting happened.
if (!PerformParallelTest && !Scop->isOptimized() &&
Scop->getAliasGroups().empty())
return false;
// The default assumption is that Polly improves the code.
return true;
}
IslAst::IslAst(Scop *Scop, const Dependences &D)
: S(Scop), Root(nullptr), RunCondition(nullptr) {
bool PerformParallelTest = PollyParallel || DetectParallel ||
PollyVectorizerChoice != VECTORIZER_NONE;
// Skip AST and code generation if there was no benefit achieved.
if (!benefitsFromPolly(Scop, PerformParallelTest))
return;
isl_ctx *Ctx = S->getIslCtx();
isl_options_set_ast_build_atomic_upper_bound(Ctx, true);
isl_ast_build *Build;
AstBuildUserInfo BuildInfo;
if (UseContext)
Build = isl_ast_build_from_context(S->getContext());
else
Build = isl_ast_build_from_context(isl_set_universe(S->getParamSpace()));
Build = isl_ast_build_set_at_each_domain(Build, AtEachDomain, nullptr);
isl_union_map *Schedule =
isl_union_map_intersect_domain(S->getSchedule(), S->getDomains());
if (PerformParallelTest) {
BuildInfo.Deps = &D;
BuildInfo.InParallelFor = 0;
Build = isl_ast_build_set_before_each_for(Build, &astBuildBeforeFor,
&BuildInfo);
Build =
isl_ast_build_set_after_each_for(Build, &astBuildAfterFor, &BuildInfo);
}
buildRunCondition(Build);
Root = isl_ast_build_ast_from_schedule(Build, Schedule);
isl_ast_build_free(Build);
}
IslAst::~IslAst() {
isl_ast_node_free(Root);
isl_ast_expr_free(RunCondition);
}
__isl_give isl_ast_node *IslAst::getAst() { return isl_ast_node_copy(Root); }
__isl_give isl_ast_expr *IslAst::getRunCondition() {
return isl_ast_expr_copy(RunCondition);
}
void IslAstInfo::releaseMemory() {
if (Ast) {
delete Ast;
Ast = nullptr;
}
}
bool IslAstInfo::runOnScop(Scop &Scop) {
if (Ast)
delete Ast;
S = &Scop;
const Dependences &D = getAnalysis<DependenceInfo>().getDependences();
Ast = new IslAst(&Scop, D);
DEBUG(printScop(dbgs(), Scop));
return false;
}
__isl_give isl_ast_node *IslAstInfo::getAst() const { return Ast->getAst(); }
__isl_give isl_ast_expr *IslAstInfo::getRunCondition() const {
return Ast->getRunCondition();
}
IslAstUserPayload *IslAstInfo::getNodePayload(__isl_keep isl_ast_node *Node) {
isl_id *Id = isl_ast_node_get_annotation(Node);
if (!Id)
return nullptr;
IslAstUserPayload *Payload = (IslAstUserPayload *)isl_id_get_user(Id);
isl_id_free(Id);
return Payload;
}
bool IslAstInfo::isInnermost(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload && Payload->IsInnermost;
}
bool IslAstInfo::isParallel(__isl_keep isl_ast_node *Node) {
return IslAstInfo::isInnermostParallel(Node) ||
IslAstInfo::isOutermostParallel(Node);
}
bool IslAstInfo::isInnermostParallel(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload && Payload->IsInnermostParallel;
}
bool IslAstInfo::isOutermostParallel(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload && Payload->IsOutermostParallel;
}
bool IslAstInfo::isReductionParallel(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload && Payload->IsReductionParallel;
}
bool IslAstInfo::isExecutedInParallel(__isl_keep isl_ast_node *Node) {
if (!PollyParallel)
return false;
// Do not parallelize innermost loops.
//
// Parallelizing innermost loops is often not profitable, especially if
// they have a low number of iterations.
//
// TODO: Decide this based on the number of loop iterations that will be
// executed. This can possibly require run-time checks, which again
// raises the question of both run-time check overhead and code size
// costs.
if (!PollyParallelForce && isInnermost(Node))
return false;
return isOutermostParallel(Node) && !isReductionParallel(Node);
}
isl_union_map *IslAstInfo::getSchedule(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload ? isl_ast_build_get_schedule(Payload->Build) : nullptr;
}
isl_pw_aff *
IslAstInfo::getMinimalDependenceDistance(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload ? isl_pw_aff_copy(Payload->MinimalDependenceDistance)
: nullptr;
}
IslAstInfo::MemoryAccessSet *
IslAstInfo::getBrokenReductions(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload ? &Payload->BrokenReductions : nullptr;
}
isl_ast_build *IslAstInfo::getBuild(__isl_keep isl_ast_node *Node) {
IslAstUserPayload *Payload = getNodePayload(Node);
return Payload ? Payload->Build : nullptr;
}
void IslAstInfo::printScop(raw_ostream &OS, Scop &S) const {
isl_ast_print_options *Options;
isl_ast_node *RootNode = getAst();
Function *F = S.getRegion().getEntry()->getParent();
OS << ":: isl ast :: " << F->getName() << " :: " << S.getRegion().getNameStr()
<< "\n";
if (!RootNode) {
OS << ":: isl ast generation and code generation was skipped!\n\n";
return;
}
isl_ast_expr *RunCondition = getRunCondition();
char *RtCStr, *AstStr;
Options = isl_ast_print_options_alloc(S.getIslCtx());
Options = isl_ast_print_options_set_print_for(Options, cbPrintFor, nullptr);
isl_printer *P = isl_printer_to_str(S.getIslCtx());
P = isl_printer_print_ast_expr(P, RunCondition);
RtCStr = isl_printer_get_str(P);
P = isl_printer_flush(P);
P = isl_printer_indent(P, 4);
P = isl_printer_set_output_format(P, ISL_FORMAT_C);
P = isl_ast_node_print(RootNode, P, Options);
AstStr = isl_printer_get_str(P);
isl_union_map *Schedule =
isl_union_map_intersect_domain(S.getSchedule(), S.getDomains());
DEBUG({
dbgs() << S.getContextStr() << "\n";
dbgs() << stringFromIslObj(Schedule);
});
OS << "\nif (" << RtCStr << ")\n\n";
OS << AstStr << "\n";
OS << "else\n";
OS << " { /* original code */ }\n\n";
isl_ast_expr_free(RunCondition);
isl_union_map_free(Schedule);
isl_ast_node_free(RootNode);
isl_printer_free(P);
}
void IslAstInfo::getAnalysisUsage(AnalysisUsage &AU) const {
// Get the Common analysis usage of ScopPasses.
ScopPass::getAnalysisUsage(AU);
AU.addRequired<ScopInfo>();
AU.addRequired<DependenceInfo>();
}
char IslAstInfo::ID = 0;
Pass *polly::createIslAstInfoPass() { return new IslAstInfo(); }
INITIALIZE_PASS_BEGIN(IslAstInfo, "polly-ast",
"Polly - Generate an AST of the SCoP (isl)", false,
false);
INITIALIZE_PASS_DEPENDENCY(ScopInfo);
INITIALIZE_PASS_DEPENDENCY(DependenceInfo);
INITIALIZE_PASS_END(IslAstInfo, "polly-ast",
"Polly - Generate an AST from the SCoP (isl)", false, false)