Files
clang-p2996/lldb/test/API/lang/cpp/namespace/main.cpp
Michael Buch 6cdfa29574 [lldb][ClangExpression] Filter out non-root namespaces in FindNamespace
**Summary**

In a program such as:
```
namespace A {
namespace B {
struct Bar {};
}
}

namespace B {
struct Foo {};
}
```
...LLDB would run into issues such as:
```
(lldb) expr ::B::Foo f
error: expression failed to parse:
error: <user expression 0>:1:6: no type named 'Foo' in namespace 'A::B'
::B::Foo f
~~~~~^
```

This is because the `SymbolFileDWARF::FindNamespace` implementation
will return *any* namespace it finds if the `parent_decl_ctx` provided
is empty. In `FindExternalVisibleDecls` we use this API to find the
namespace that symbol `B` refers to. If `A::B` happened to be the one
that `SymbolFileDWARF::FindNamespace` looked at first, we would try
to find `struct Foo` in `A::B`. Hence the error.

This patch proposes a new `SymbolFileDWARF::FindNamespace` API that
will only find a match for top-level namespaces, which is what
`FindExternalVisibleDecls` is attempting anyway; it just never
accounted for multiple namespaces of the same name.

**Testing**

* Added API test-case

Differential Revision: https://reviews.llvm.org/D147436
2023-04-14 17:11:30 +01:00

145 lines
2.8 KiB
C++

#include <cstdarg>
#include <cstdlib>
#include "ns.h"
namespace {
typedef unsigned int my_uint_t;
int i; // Find the line number for anonymous namespace variable i.
int myanonfunc (int a)
{
return a + a;
}
int
variadic_sum (int arg_count...)
{
int sum = 0;
std::va_list args;
va_start(args, arg_count);
for (int i = 0; i < arg_count; i++)
sum += va_arg(args, int);
va_end(args);
return sum;
}
}
namespace A {
typedef unsigned int uint_t;
namespace B {
typedef unsigned int uint_t;
int j; // Find the line number for named namespace variable j.
int myfunc (int a);
int myfunc2(int a)
{
return a + 2;
}
float myfunc (float f)
{
return f - 2.0;
}
}
}
namespace Y
{
typedef unsigned int uint_t;
using A::B::j;
int foo;
}
using A::B::j; // using declaration
namespace Foo = A::B; // namespace alias
using Foo::myfunc; // using declaration
using namespace Foo; // using directive
namespace A {
namespace B {
using namespace Y;
int k;
}
}
namespace ns1 {
int value = 100;
}
namespace ns2 {
int value = 200;
}
void test_namespace_scopes() {
do {
using namespace ns1;
printf("ns1::value = %d\n", value); // Evaluate ns1::value
} while(0);
do {
using namespace ns2;
printf("ns2::value = %d\n", value); // Evaluate ns2::value
} while(0);
}
int Foo::myfunc(int a)
{
test_namespace_scopes();
::my_uint_t anon_uint = 0;
A::uint_t a_uint = 1;
B::uint_t b_uint = 2;
Y::uint_t y_uint = 3;
i = 3;
j = 4;
printf("::i=%d\n", ::i);
printf("A::B::j=%d\n", A::B::j);
printf("variadic_sum=%d\n", variadic_sum(3, 1, 2, 3));
myanonfunc(3);
return myfunc2(3) + j + i + a + 2 + anon_uint + a_uint + b_uint + y_uint; // Set break point at this line.
}
namespace B {
struct Bar {
int x() { return 42; }
};
Bar bar;
} // namespace B
namespace A::B {
struct Bar {
int y() { return 137; }
};
} // namespace A::B
namespace NS1::NS2 {
struct Foo {
int bar() { return -2; }
};
} // namespace NS1::NS2
namespace NS2 {
struct Foo {
int bar() { return -3; }
};
} // namespace NS2
int
main (int argc, char const *argv[])
{
test_lookup_at_global_scope();
test_lookup_at_file_scope();
A::test_lookup_at_ns_scope();
A::B::test_lookup_at_nested_ns_scope();
A::B::test_lookup_at_nested_ns_scope_after_using();
test_lookup_before_using_directive();
test_lookup_after_using_directive();
::B::Bar bb;
A::B::Bar ab;
return Foo::myfunc(12) + bb.x() + ab.y() + NS1::NS2::Foo{}.bar() +
NS2::Foo{}.bar();
}