Refactor of the llvm-tblgen source into: - a "Basic" library, which contains the bare minimum utilities to build `llvm-min-tablegen` - a "Common" library which contains all of the helpers for TableGen backends. Such helpers can be shared by more than one backend, and even unit tested (e.g. CodeExpander is, maybe we can add more over time) Fixes #80647
499 lines
18 KiB
C++
499 lines
18 KiB
C++
//===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the DAG Matcher optimizer.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "Basic/SDNodeProperties.h"
|
|
#include "Common/CodeGenDAGPatterns.h"
|
|
#include "Common/DAGISelMatcher.h"
|
|
#include "llvm/ADT/StringSet.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "isel-opt"
|
|
|
|
/// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
|
|
/// into single compound nodes like RecordChild.
|
|
static void ContractNodes(std::unique_ptr<Matcher> &MatcherPtr,
|
|
const CodeGenDAGPatterns &CGP) {
|
|
// If we reached the end of the chain, we're done.
|
|
Matcher *N = MatcherPtr.get();
|
|
if (!N)
|
|
return;
|
|
|
|
// If we have a scope node, walk down all of the children.
|
|
if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
|
|
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
|
|
std::unique_ptr<Matcher> Child(Scope->takeChild(i));
|
|
ContractNodes(Child, CGP);
|
|
Scope->resetChild(i, Child.release());
|
|
}
|
|
return;
|
|
}
|
|
|
|
// If we found a movechild node with a node that comes in a 'foochild' form,
|
|
// transform it.
|
|
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
|
|
Matcher *New = nullptr;
|
|
if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
|
|
if (MC->getChildNo() < 8) // Only have RecordChild0...7
|
|
New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
|
|
RM->getResultNo());
|
|
|
|
if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
|
|
if (MC->getChildNo() < 8 && // Only have CheckChildType0...7
|
|
CT->getResNo() == 0) // CheckChildType checks res #0
|
|
New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
|
|
|
|
if (CheckSameMatcher *CS = dyn_cast<CheckSameMatcher>(MC->getNext()))
|
|
if (MC->getChildNo() < 4) // Only have CheckChildSame0...3
|
|
New = new CheckChildSameMatcher(MC->getChildNo(), CS->getMatchNumber());
|
|
|
|
if (CheckIntegerMatcher *CI = dyn_cast<CheckIntegerMatcher>(MC->getNext()))
|
|
if (MC->getChildNo() < 5) // Only have CheckChildInteger0...4
|
|
New = new CheckChildIntegerMatcher(MC->getChildNo(), CI->getValue());
|
|
|
|
if (auto *CCC = dyn_cast<CheckCondCodeMatcher>(MC->getNext()))
|
|
if (MC->getChildNo() == 2) // Only have CheckChild2CondCode
|
|
New = new CheckChild2CondCodeMatcher(CCC->getCondCodeName());
|
|
|
|
if (New) {
|
|
// Insert the new node.
|
|
New->setNext(MatcherPtr.release());
|
|
MatcherPtr.reset(New);
|
|
// Remove the old one.
|
|
MC->setNext(MC->getNext()->takeNext());
|
|
return ContractNodes(MatcherPtr, CGP);
|
|
}
|
|
}
|
|
|
|
// Zap movechild -> moveparent.
|
|
if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
|
|
if (MoveParentMatcher *MP = dyn_cast<MoveParentMatcher>(MC->getNext())) {
|
|
MatcherPtr.reset(MP->takeNext());
|
|
return ContractNodes(MatcherPtr, CGP);
|
|
}
|
|
|
|
// Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
|
|
if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
|
|
if (CompleteMatchMatcher *CM =
|
|
dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
|
|
// We can only use MorphNodeTo if the result values match up.
|
|
unsigned RootResultFirst = EN->getFirstResultSlot();
|
|
bool ResultsMatch = true;
|
|
for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
|
|
if (CM->getResult(i) != RootResultFirst + i)
|
|
ResultsMatch = false;
|
|
|
|
// If the selected node defines a subset of the glue/chain results, we
|
|
// can't use MorphNodeTo. For example, we can't use MorphNodeTo if the
|
|
// matched pattern has a chain but the root node doesn't.
|
|
const PatternToMatch &Pattern = CM->getPattern();
|
|
|
|
if (!EN->hasChain() &&
|
|
Pattern.getSrcPattern().NodeHasProperty(SDNPHasChain, CGP))
|
|
ResultsMatch = false;
|
|
|
|
// If the matched node has glue and the output root doesn't, we can't
|
|
// use MorphNodeTo.
|
|
//
|
|
// NOTE: Strictly speaking, we don't have to check for glue here
|
|
// because the code in the pattern generator doesn't handle it right. We
|
|
// do it anyway for thoroughness.
|
|
if (!EN->hasOutGlue() &&
|
|
Pattern.getSrcPattern().NodeHasProperty(SDNPOutGlue, CGP))
|
|
ResultsMatch = false;
|
|
|
|
#if 0
|
|
// If the root result node defines more results than the source root node
|
|
// *and* has a chain or glue input, then we can't match it because it
|
|
// would end up replacing the extra result with the chain/glue.
|
|
if ((EN->hasGlue() || EN->hasChain()) &&
|
|
EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
|
|
ResultMatch = false;
|
|
#endif
|
|
|
|
if (ResultsMatch) {
|
|
const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
|
|
const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
|
|
MatcherPtr.reset(new MorphNodeToMatcher(
|
|
EN->getInstruction(), VTs, Operands, EN->hasChain(),
|
|
EN->hasInGlue(), EN->hasOutGlue(), EN->hasMemRefs(),
|
|
EN->getNumFixedArityOperands(), Pattern));
|
|
return;
|
|
}
|
|
|
|
// FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
|
|
// variants.
|
|
}
|
|
|
|
ContractNodes(N->getNextPtr(), CGP);
|
|
|
|
// If we have a CheckType/CheckChildType/Record node followed by a
|
|
// CheckOpcode, invert the two nodes. We prefer to do structural checks
|
|
// before type checks, as this opens opportunities for factoring on targets
|
|
// like X86 where many operations are valid on multiple types.
|
|
if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
|
|
isa<RecordMatcher>(N)) &&
|
|
isa<CheckOpcodeMatcher>(N->getNext())) {
|
|
// Unlink the two nodes from the list.
|
|
Matcher *CheckType = MatcherPtr.release();
|
|
Matcher *CheckOpcode = CheckType->takeNext();
|
|
Matcher *Tail = CheckOpcode->takeNext();
|
|
|
|
// Relink them.
|
|
MatcherPtr.reset(CheckOpcode);
|
|
CheckOpcode->setNext(CheckType);
|
|
CheckType->setNext(Tail);
|
|
return ContractNodes(MatcherPtr, CGP);
|
|
}
|
|
|
|
// If we have a MoveParent followed by a MoveChild, we convert it to
|
|
// MoveSibling.
|
|
if (auto *MP = dyn_cast<MoveParentMatcher>(N)) {
|
|
if (auto *MC = dyn_cast<MoveChildMatcher>(MP->getNext())) {
|
|
auto *MS = new MoveSiblingMatcher(MC->getChildNo());
|
|
MS->setNext(MC->takeNext());
|
|
MatcherPtr.reset(MS);
|
|
return ContractNodes(MatcherPtr, CGP);
|
|
}
|
|
if (auto *RC = dyn_cast<RecordChildMatcher>(MP->getNext())) {
|
|
if (auto *MC = dyn_cast<MoveChildMatcher>(RC->getNext())) {
|
|
if (RC->getChildNo() == MC->getChildNo()) {
|
|
auto *MS = new MoveSiblingMatcher(MC->getChildNo());
|
|
auto *RM = new RecordMatcher(RC->getWhatFor(), RC->getResultNo());
|
|
// Insert the new node.
|
|
RM->setNext(MC->takeNext());
|
|
MS->setNext(RM);
|
|
MatcherPtr.reset(MS);
|
|
return ContractNodes(MatcherPtr, CGP);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
|
|
/// specified kind. Return null if we didn't find one otherwise return the
|
|
/// matcher.
|
|
static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
|
|
for (; M; M = M->getNext())
|
|
if (M->getKind() == Kind)
|
|
return M;
|
|
return nullptr;
|
|
}
|
|
|
|
/// FactorNodes - Turn matches like this:
|
|
/// Scope
|
|
/// OPC_CheckType i32
|
|
/// ABC
|
|
/// OPC_CheckType i32
|
|
/// XYZ
|
|
/// into:
|
|
/// OPC_CheckType i32
|
|
/// Scope
|
|
/// ABC
|
|
/// XYZ
|
|
///
|
|
static void FactorNodes(std::unique_ptr<Matcher> &InputMatcherPtr) {
|
|
// Look for a push node. Iterates instead of recurses to reduce stack usage.
|
|
ScopeMatcher *Scope = nullptr;
|
|
std::unique_ptr<Matcher> *RebindableMatcherPtr = &InputMatcherPtr;
|
|
while (!Scope) {
|
|
// If we reached the end of the chain, we're done.
|
|
Matcher *N = RebindableMatcherPtr->get();
|
|
if (!N)
|
|
return;
|
|
|
|
// If this is not a push node, just scan for one.
|
|
Scope = dyn_cast<ScopeMatcher>(N);
|
|
if (!Scope)
|
|
RebindableMatcherPtr = &(N->getNextPtr());
|
|
}
|
|
std::unique_ptr<Matcher> &MatcherPtr = *RebindableMatcherPtr;
|
|
|
|
// Okay, pull together the children of the scope node into a vector so we can
|
|
// inspect it more easily.
|
|
SmallVector<Matcher *, 32> OptionsToMatch;
|
|
|
|
for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
|
|
// Factor the subexpression.
|
|
std::unique_ptr<Matcher> Child(Scope->takeChild(i));
|
|
FactorNodes(Child);
|
|
|
|
// If the child is a ScopeMatcher we can just merge its contents.
|
|
if (auto *SM = dyn_cast<ScopeMatcher>(Child.get())) {
|
|
for (unsigned j = 0, e = SM->getNumChildren(); j != e; ++j)
|
|
OptionsToMatch.push_back(SM->takeChild(j));
|
|
} else {
|
|
OptionsToMatch.push_back(Child.release());
|
|
}
|
|
}
|
|
|
|
// Loop over options to match, merging neighboring patterns with identical
|
|
// starting nodes into a shared matcher.
|
|
auto E = OptionsToMatch.end();
|
|
for (auto I = OptionsToMatch.begin(); I != E; ++I) {
|
|
// If there are no other matchers left, there's nothing to merge with.
|
|
auto J = std::next(I);
|
|
if (J == E)
|
|
break;
|
|
|
|
// Remember where we started. We'll use this to move non-equal elements.
|
|
auto K = J;
|
|
|
|
// Find the set of matchers that start with this node.
|
|
Matcher *Optn = *I;
|
|
|
|
// See if the next option starts with the same matcher. If the two
|
|
// neighbors *do* start with the same matcher, we can factor the matcher out
|
|
// of at least these two patterns. See what the maximal set we can merge
|
|
// together is.
|
|
SmallVector<Matcher *, 8> EqualMatchers;
|
|
EqualMatchers.push_back(Optn);
|
|
|
|
// Factor all of the known-equal matchers after this one into the same
|
|
// group.
|
|
while (J != E && (*J)->isEqual(Optn))
|
|
EqualMatchers.push_back(*J++);
|
|
|
|
// If we found a non-equal matcher, see if it is contradictory with the
|
|
// current node. If so, we know that the ordering relation between the
|
|
// current sets of nodes and this node don't matter. Look past it to see if
|
|
// we can merge anything else into this matching group.
|
|
while (J != E) {
|
|
Matcher *ScanMatcher = *J;
|
|
|
|
// If we found an entry that matches out matcher, merge it into the set to
|
|
// handle.
|
|
if (Optn->isEqual(ScanMatcher)) {
|
|
// It is equal after all, add the option to EqualMatchers.
|
|
EqualMatchers.push_back(ScanMatcher);
|
|
++J;
|
|
continue;
|
|
}
|
|
|
|
// If the option we're checking for contradicts the start of the list,
|
|
// move it earlier in OptionsToMatch for the next iteration of the outer
|
|
// loop. Then continue searching for equal or contradictory matchers.
|
|
if (Optn->isContradictory(ScanMatcher)) {
|
|
*K++ = *J++;
|
|
continue;
|
|
}
|
|
|
|
// If we're scanning for a simple node, see if it occurs later in the
|
|
// sequence. If so, and if we can move it up, it might be contradictory
|
|
// or the same as what we're looking for. If so, reorder it.
|
|
if (Optn->isSimplePredicateOrRecordNode()) {
|
|
Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
|
|
if (M2 && M2 != ScanMatcher && M2->canMoveBefore(ScanMatcher) &&
|
|
(M2->isEqual(Optn) || M2->isContradictory(Optn))) {
|
|
Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
|
|
M2->setNext(MatcherWithoutM2);
|
|
*J = M2;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// Otherwise, we don't know how to handle this entry, we have to bail.
|
|
break;
|
|
}
|
|
|
|
if (J != E &&
|
|
// Don't print if it's obvious nothing extract could be merged anyway.
|
|
std::next(J) != E) {
|
|
LLVM_DEBUG(errs() << "Couldn't merge this:\n"; Optn->print(errs(), 4);
|
|
errs() << "into this:\n"; (*J)->print(errs(), 4);
|
|
(*std::next(J))->printOne(errs());
|
|
if (std::next(J, 2) != E)(*std::next(J, 2))->printOne(errs());
|
|
errs() << "\n");
|
|
}
|
|
|
|
// If we removed any equal matchers, we may need to slide the rest of the
|
|
// elements down for the next iteration of the outer loop.
|
|
if (J != K) {
|
|
while (J != E)
|
|
*K++ = *J++;
|
|
|
|
// Update end pointer for outer loop.
|
|
E = K;
|
|
}
|
|
|
|
// If we only found one option starting with this matcher, no factoring is
|
|
// possible. Put the Matcher back in OptionsToMatch.
|
|
if (EqualMatchers.size() == 1) {
|
|
*I = EqualMatchers[0];
|
|
continue;
|
|
}
|
|
|
|
// Factor these checks by pulling the first node off each entry and
|
|
// discarding it. Take the first one off the first entry to reuse.
|
|
Matcher *Shared = Optn;
|
|
Optn = Optn->takeNext();
|
|
EqualMatchers[0] = Optn;
|
|
|
|
// Remove and delete the first node from the other matchers we're factoring.
|
|
for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
|
|
Matcher *Tmp = EqualMatchers[i]->takeNext();
|
|
delete EqualMatchers[i];
|
|
EqualMatchers[i] = Tmp;
|
|
assert(!Optn == !Tmp && "Expected all to be null if any are null");
|
|
}
|
|
|
|
if (EqualMatchers[0]) {
|
|
Shared->setNext(new ScopeMatcher(std::move(EqualMatchers)));
|
|
|
|
// Recursively factor the newly created node.
|
|
FactorNodes(Shared->getNextPtr());
|
|
}
|
|
|
|
// Put the new Matcher where we started in OptionsToMatch.
|
|
*I = Shared;
|
|
}
|
|
|
|
// Trim the array to match the updated end.
|
|
if (E != OptionsToMatch.end())
|
|
OptionsToMatch.erase(E, OptionsToMatch.end());
|
|
|
|
// If we're down to a single pattern to match, then we don't need this scope
|
|
// anymore.
|
|
if (OptionsToMatch.size() == 1) {
|
|
MatcherPtr.reset(OptionsToMatch[0]);
|
|
return;
|
|
}
|
|
|
|
if (OptionsToMatch.empty()) {
|
|
MatcherPtr.reset();
|
|
return;
|
|
}
|
|
|
|
// If our factoring failed (didn't achieve anything) see if we can simplify in
|
|
// other ways.
|
|
|
|
// Check to see if all of the leading entries are now opcode checks. If so,
|
|
// we can convert this Scope to be a OpcodeSwitch instead.
|
|
bool AllOpcodeChecks = true, AllTypeChecks = true;
|
|
for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) {
|
|
// Check to see if this breaks a series of CheckOpcodeMatchers.
|
|
if (AllOpcodeChecks && !isa<CheckOpcodeMatcher>(OptionsToMatch[i])) {
|
|
#if 0
|
|
if (i > 3) {
|
|
errs() << "FAILING OPC #" << i << "\n";
|
|
OptionsToMatch[i]->dump();
|
|
}
|
|
#endif
|
|
AllOpcodeChecks = false;
|
|
}
|
|
|
|
// Check to see if this breaks a series of CheckTypeMatcher's.
|
|
if (AllTypeChecks) {
|
|
CheckTypeMatcher *CTM = cast_or_null<CheckTypeMatcher>(
|
|
FindNodeWithKind(OptionsToMatch[i], Matcher::CheckType));
|
|
if (!CTM ||
|
|
// iPTR checks could alias any other case without us knowing, don't
|
|
// bother with them.
|
|
CTM->getType() == MVT::iPTR ||
|
|
// SwitchType only works for result #0.
|
|
CTM->getResNo() != 0 ||
|
|
// If the CheckType isn't at the start of the list, see if we can move
|
|
// it there.
|
|
!CTM->canMoveBefore(OptionsToMatch[i])) {
|
|
#if 0
|
|
if (i > 3 && AllTypeChecks) {
|
|
errs() << "FAILING TYPE #" << i << "\n";
|
|
OptionsToMatch[i]->dump();
|
|
}
|
|
#endif
|
|
AllTypeChecks = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
|
|
if (AllOpcodeChecks) {
|
|
StringSet<> Opcodes;
|
|
SmallVector<std::pair<const SDNodeInfo *, Matcher *>, 8> Cases;
|
|
for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) {
|
|
CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(OptionsToMatch[i]);
|
|
assert(Opcodes.insert(COM->getOpcode().getEnumName()).second &&
|
|
"Duplicate opcodes not factored?");
|
|
Cases.push_back(std::pair(&COM->getOpcode(), COM->takeNext()));
|
|
delete COM;
|
|
}
|
|
|
|
MatcherPtr.reset(new SwitchOpcodeMatcher(std::move(Cases)));
|
|
return;
|
|
}
|
|
|
|
// If all the options are CheckType's, we can form the SwitchType, woot.
|
|
if (AllTypeChecks) {
|
|
DenseMap<unsigned, unsigned> TypeEntry;
|
|
SmallVector<std::pair<MVT::SimpleValueType, Matcher *>, 8> Cases;
|
|
for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i) {
|
|
Matcher *M = FindNodeWithKind(OptionsToMatch[i], Matcher::CheckType);
|
|
assert(M && isa<CheckTypeMatcher>(M) && "Unknown Matcher type");
|
|
|
|
auto *CTM = cast<CheckTypeMatcher>(M);
|
|
Matcher *MatcherWithoutCTM = OptionsToMatch[i]->unlinkNode(CTM);
|
|
MVT::SimpleValueType CTMTy = CTM->getType();
|
|
delete CTM;
|
|
|
|
unsigned &Entry = TypeEntry[CTMTy];
|
|
if (Entry != 0) {
|
|
// If we have unfactored duplicate types, then we should factor them.
|
|
Matcher *PrevMatcher = Cases[Entry - 1].second;
|
|
if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
|
|
SM->setNumChildren(SM->getNumChildren() + 1);
|
|
SM->resetChild(SM->getNumChildren() - 1, MatcherWithoutCTM);
|
|
continue;
|
|
}
|
|
|
|
SmallVector<Matcher *, 2> Entries = {PrevMatcher, MatcherWithoutCTM};
|
|
Cases[Entry - 1].second = new ScopeMatcher(std::move(Entries));
|
|
continue;
|
|
}
|
|
|
|
Entry = Cases.size() + 1;
|
|
Cases.push_back(std::pair(CTMTy, MatcherWithoutCTM));
|
|
}
|
|
|
|
// Make sure we recursively factor any scopes we may have created.
|
|
for (auto &M : Cases) {
|
|
if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(M.second)) {
|
|
std::unique_ptr<Matcher> Scope(SM);
|
|
FactorNodes(Scope);
|
|
M.second = Scope.release();
|
|
assert(M.second && "null matcher");
|
|
}
|
|
}
|
|
|
|
if (Cases.size() != 1) {
|
|
MatcherPtr.reset(new SwitchTypeMatcher(std::move(Cases)));
|
|
} else {
|
|
// If we factored and ended up with one case, create it now.
|
|
MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
|
|
MatcherPtr->setNext(Cases[0].second);
|
|
}
|
|
return;
|
|
}
|
|
|
|
// Reassemble the Scope node with the adjusted children.
|
|
Scope->setNumChildren(OptionsToMatch.size());
|
|
for (unsigned i = 0, e = OptionsToMatch.size(); i != e; ++i)
|
|
Scope->resetChild(i, OptionsToMatch[i]);
|
|
}
|
|
|
|
void llvm::OptimizeMatcher(std::unique_ptr<Matcher> &MatcherPtr,
|
|
const CodeGenDAGPatterns &CGP) {
|
|
ContractNodes(MatcherPtr, CGP);
|
|
FactorNodes(MatcherPtr);
|
|
}
|