Files
clang-p2996/lldb/source/Plugins/Process/Darwin/NativeThreadListDarwin.cpp
Kate Stone b9c1b51e45 *** This commit represents a complete reformatting of the LLDB source code
*** to conform to clang-format’s LLVM style.  This kind of mass change has
*** two obvious implications:

Firstly, merging this particular commit into a downstream fork may be a huge
effort.  Alternatively, it may be worth merging all changes up to this commit,
performing the same reformatting operation locally, and then discarding the
merge for this particular commit.  The commands used to accomplish this
reformatting were as follows (with current working directory as the root of
the repository):

    find . \( -iname "*.c" -or -iname "*.cpp" -or -iname "*.h" -or -iname "*.mm" \) -exec clang-format -i {} +
    find . -iname "*.py" -exec autopep8 --in-place --aggressive --aggressive {} + ;

The version of clang-format used was 3.9.0, and autopep8 was 1.2.4.

Secondly, “blame” style tools will generally point to this commit instead of
a meaningful prior commit.  There are alternatives available that will attempt
to look through this change and find the appropriate prior commit.  YMMV.

llvm-svn: 280751
2016-09-06 20:57:50 +00:00

699 lines
22 KiB
C++

//===-- NativeThreadListDarwin.cpp ------------------------------------*- C++
//-*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/19/07.
//
//===----------------------------------------------------------------------===//
#include "NativeThreadListDarwin.h"
// C includes
#include <inttypes.h>
#include <mach/vm_map.h>
#include <sys/sysctl.h>
// LLDB includes
#include "lldb/Core/Error.h"
#include "lldb/Core/Log.h"
#include "lldb/Core/Stream.h"
#include "lldb/lldb-enumerations.h"
#include "NativeProcessDarwin.h"
#include "NativeThreadDarwin.h"
using namespace lldb;
using namespace lldb_private;
using namespace lldb_private::process_darwin;
NativeThreadListDarwin::NativeThreadListDarwin()
: m_threads(), m_threads_mutex(), m_is_64_bit(false) {}
NativeThreadListDarwin::~NativeThreadListDarwin() {}
// These methods will be accessed directly from NativeThreadDarwin
#if 0
nub_state_t
NativeThreadListDarwin::GetState(nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetState();
return eStateInvalid;
}
const char *
NativeThreadListDarwin::GetName (nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetName();
return NULL;
}
#endif
// TODO: figure out if we need to add this to NativeThreadDarwin yet.
#if 0
ThreadInfo::QoS
NativeThreadListDarwin::GetRequestedQoS (nub_thread_t tid, nub_addr_t tsd, uint64_t dti_qos_class_index)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetRequestedQoS(tsd, dti_qos_class_index);
return ThreadInfo::QoS();
}
nub_addr_t
NativeThreadListDarwin::GetPThreadT (nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetPThreadT();
return INVALID_NUB_ADDRESS;
}
nub_addr_t
NativeThreadListDarwin::GetDispatchQueueT (nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetDispatchQueueT();
return INVALID_NUB_ADDRESS;
}
nub_addr_t
NativeThreadListDarwin::GetTSDAddressForThread (nub_thread_t tid, uint64_t plo_pthread_tsd_base_address_offset, uint64_t plo_pthread_tsd_base_offset, uint64_t plo_pthread_tsd_entry_size)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetTSDAddressForThread(plo_pthread_tsd_base_address_offset, plo_pthread_tsd_base_offset, plo_pthread_tsd_entry_size);
return INVALID_NUB_ADDRESS;
}
#endif
// TODO implement these
#if 0
nub_thread_t
NativeThreadListDarwin::SetCurrentThread(nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
{
m_current_thread = thread_sp;
return tid;
}
return INVALID_NUB_THREAD;
}
bool
NativeThreadListDarwin::GetThreadStoppedReason(nub_thread_t tid, struct DNBThreadStopInfo *stop_info) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetStopException().GetStopInfo(stop_info);
return false;
}
bool
NativeThreadListDarwin::GetIdentifierInfo (nub_thread_t tid, thread_identifier_info_data_t *ident_info)
{
thread_t mach_port_number = GetMachPortNumberByThreadID (tid);
mach_msg_type_number_t count = THREAD_IDENTIFIER_INFO_COUNT;
return ::thread_info (mach_port_number, THREAD_IDENTIFIER_INFO, (thread_info_t)ident_info, &count) == KERN_SUCCESS;
}
void
NativeThreadListDarwin::DumpThreadStoppedReason (nub_thread_t tid) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
thread_sp->GetStopException().DumpStopReason();
}
const char *
NativeThreadListDarwin::GetThreadInfo (nub_thread_t tid) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetBasicInfoAsString();
return NULL;
}
#endif
NativeThreadDarwinSP
NativeThreadListDarwin::GetThreadByID(lldb::tid_t tid) const {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
for (auto thread_sp : m_threads) {
if (thread_sp && (thread_sp->GetID() == tid))
return thread_sp;
}
return NativeThreadDarwinSP();
}
NativeThreadDarwinSP NativeThreadListDarwin::GetThreadByMachPortNumber(
::thread_t mach_port_number) const {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
for (auto thread_sp : m_threads) {
if (thread_sp && (thread_sp->GetMachPortNumber() == mach_port_number))
return thread_sp;
}
return NativeThreadDarwinSP();
}
lldb::tid_t NativeThreadListDarwin::GetThreadIDByMachPortNumber(
::thread_t mach_port_number) const {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
for (auto thread_sp : m_threads) {
if (thread_sp && (thread_sp->GetMachPortNumber() == mach_port_number))
return thread_sp->GetID();
}
return LLDB_INVALID_THREAD_ID;
}
// TODO implement
#if 0
thread_t
NativeThreadListDarwin::GetMachPortNumberByThreadID (nub_thread_t globally_unique_id) const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
MachThreadSP thread_sp;
const size_t num_threads = m_threads.size();
for (size_t idx = 0; idx < num_threads; ++idx)
{
if (m_threads[idx]->ThreadID() == globally_unique_id)
{
return m_threads[idx]->MachPortNumber();
}
}
return 0;
}
bool
NativeThreadListDarwin::GetRegisterValue (nub_thread_t tid, uint32_t set, uint32_t reg, DNBRegisterValue *reg_value ) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetRegisterValue(set, reg, reg_value);
return false;
}
bool
NativeThreadListDarwin::SetRegisterValue (nub_thread_t tid, uint32_t set, uint32_t reg, const DNBRegisterValue *reg_value ) const
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->SetRegisterValue(set, reg, reg_value);
return false;
}
nub_size_t
NativeThreadListDarwin::GetRegisterContext (nub_thread_t tid, void *buf, size_t buf_len)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->GetRegisterContext (buf, buf_len);
return 0;
}
nub_size_t
NativeThreadListDarwin::SetRegisterContext (nub_thread_t tid, const void *buf, size_t buf_len)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->SetRegisterContext (buf, buf_len);
return 0;
}
uint32_t
NativeThreadListDarwin::SaveRegisterState (nub_thread_t tid)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->SaveRegisterState ();
return 0;
}
bool
NativeThreadListDarwin::RestoreRegisterState (nub_thread_t tid, uint32_t save_id)
{
MachThreadSP thread_sp (GetThreadByID (tid));
if (thread_sp)
return thread_sp->RestoreRegisterState (save_id);
return 0;
}
#endif
size_t NativeThreadListDarwin::GetNumberOfThreads() const {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
return static_cast<size_t>(m_threads.size());
}
// TODO implement
#if 0
nub_thread_t
NativeThreadListDarwin::ThreadIDAtIndex (nub_size_t idx) const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
if (idx < m_threads.size())
return m_threads[idx]->ThreadID();
return INVALID_NUB_THREAD;
}
nub_thread_t
NativeThreadListDarwin::CurrentThreadID ( )
{
MachThreadSP thread_sp;
CurrentThread(thread_sp);
if (thread_sp.get())
return thread_sp->ThreadID();
return INVALID_NUB_THREAD;
}
#endif
bool NativeThreadListDarwin::NotifyException(MachException::Data &exc) {
auto thread_sp = GetThreadByMachPortNumber(exc.thread_port);
if (thread_sp) {
thread_sp->NotifyException(exc);
return true;
}
return false;
}
void NativeThreadListDarwin::Clear() {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
m_threads.clear();
}
uint32_t NativeThreadListDarwin::UpdateThreadList(NativeProcessDarwin &process,
bool update,
collection *new_threads) {
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_THREAD));
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
if (log)
log->Printf("NativeThreadListDarwin::%s() (pid = %" PRIu64 ", update = "
"%u) process stop count = %u",
__FUNCTION__, process.GetID(), update, process.GetStopID());
if (process.GetStopID() == 0) {
// On our first stop, we'll record details like 32/64 bitness and
// select the proper architecture implementation.
//
int mib[4] = {CTL_KERN, KERN_PROC, KERN_PROC_PID, (int)process.GetID()};
struct kinfo_proc processInfo;
size_t bufsize = sizeof(processInfo);
if ((sysctl(mib, (unsigned)(sizeof(mib) / sizeof(int)), &processInfo,
&bufsize, NULL, 0) == 0) &&
(bufsize > 0)) {
if (processInfo.kp_proc.p_flag & P_LP64)
m_is_64_bit = true;
}
// TODO implement architecture selection and abstraction.
#if 0
#if defined(__i386__) || defined(__x86_64__)
if (m_is_64_bit)
DNBArchProtocol::SetArchitecture(CPU_TYPE_X86_64);
else
DNBArchProtocol::SetArchitecture(CPU_TYPE_I386);
#elif defined(__arm__) || defined(__arm64__) || defined(__aarch64__)
if (m_is_64_bit)
DNBArchProtocol::SetArchitecture(CPU_TYPE_ARM64);
else
DNBArchProtocol::SetArchitecture(CPU_TYPE_ARM);
#endif
#endif
}
if (m_threads.empty() || update) {
thread_array_t thread_list = nullptr;
mach_msg_type_number_t thread_list_count = 0;
task_t task = process.GetTask();
Error error;
auto mach_err = ::task_threads(task, &thread_list, &thread_list_count);
error.SetError(mach_err, eErrorTypeMachKernel);
if (error.Fail()) {
if (log)
log->Printf("::task_threads(task = 0x%4.4x, thread_list => %p, "
"thread_list_count => %u) failed: %u (%s)",
task, thread_list, thread_list_count, error.GetError(),
error.AsCString());
return 0;
}
if (thread_list_count > 0) {
collection currThreads;
size_t idx;
// Iterator through the current thread list and see which threads
// we already have in our list (keep them), which ones we don't
// (add them), and which ones are not around anymore (remove them).
for (idx = 0; idx < thread_list_count; ++idx) {
// Get the Mach thread port.
const ::thread_t mach_port_num = thread_list[idx];
// Get the unique thread id for the mach port number.
uint64_t unique_thread_id =
NativeThreadDarwin::GetGloballyUniqueThreadIDForMachPortID(
mach_port_num);
// Retrieve the thread if it exists.
auto thread_sp = GetThreadByID(unique_thread_id);
if (thread_sp) {
// We are already tracking it. Keep the existing native
// thread instance.
currThreads.push_back(thread_sp);
} else {
// We don't have a native thread instance for this thread.
// Create it now.
thread_sp.reset(new NativeThreadDarwin(
&process, m_is_64_bit, unique_thread_id, mach_port_num));
// Add the new thread regardless of its is user ready state.
// Make sure the thread is ready to be displayed and shown
// to users before we add this thread to our list...
if (thread_sp->IsUserReady()) {
if (new_threads)
new_threads->push_back(thread_sp);
currThreads.push_back(thread_sp);
}
}
}
m_threads.swap(currThreads);
m_current_thread.reset();
// Free the vm memory given to us by ::task_threads()
vm_size_t thread_list_size =
(vm_size_t)(thread_list_count * sizeof(::thread_t));
::vm_deallocate(::mach_task_self(), (vm_address_t)thread_list,
thread_list_size);
}
}
return static_cast<uint32_t>(m_threads.size());
}
// TODO implement
#if 0
void
NativeThreadListDarwin::CurrentThread (MachThreadSP& thread_sp)
{
// locker will keep a mutex locked until it goes out of scope
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
if (m_current_thread.get() == NULL)
{
// Figure out which thread is going to be our current thread.
// This is currently done by finding the first thread in the list
// that has a valid exception.
const size_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
if (m_threads[idx]->GetStopException().IsValid())
{
m_current_thread = m_threads[idx];
break;
}
}
}
thread_sp = m_current_thread;
}
#endif
void NativeThreadListDarwin::Dump(Stream &stream) const {
bool first = true;
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
for (auto thread_sp : m_threads) {
if (thread_sp) {
// Handle newlines between thread entries.
if (first)
first = false;
else
stream.PutChar('\n');
thread_sp->Dump(stream);
}
}
}
void NativeThreadListDarwin::ProcessWillResume(
NativeProcessDarwin &process, const ResumeActionList &thread_actions) {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
// Update our thread list, because sometimes libdispatch or the kernel
// will spawn threads while a task is suspended.
NativeThreadListDarwin::collection new_threads;
// TODO implement this.
#if 0
// First figure out if we were planning on running only one thread, and if
// so, force that thread to resume.
bool run_one_thread;
thread_t solo_thread = THREAD_NULL;
if ((thread_actions.GetSize() > 0) &&
(thread_actions.NumActionsWithState(eStateStepping) +
thread_actions.NumActionsWithState (eStateRunning) == 1))
{
run_one_thread = true;
const DNBThreadResumeAction *action_ptr = thread_actions.GetFirst();
size_t num_actions = thread_actions.GetSize();
for (size_t i = 0; i < num_actions; i++, action_ptr++)
{
if (action_ptr->state == eStateStepping || action_ptr->state == eStateRunning)
{
solo_thread = action_ptr->tid;
break;
}
}
}
else
run_one_thread = false;
#endif
UpdateThreadList(process, true, &new_threads);
#if 0
DNBThreadResumeAction resume_new_threads = { -1U, eStateRunning, 0, INVALID_NUB_ADDRESS };
// If we are planning to run only one thread, any new threads should be suspended.
if (run_one_thread)
resume_new_threads.state = eStateSuspended;
const size_t num_new_threads = new_threads.size();
const size_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
MachThread *thread = m_threads[idx].get();
bool handled = false;
for (uint32_t new_idx = 0; new_idx < num_new_threads; ++new_idx)
{
if (thread == new_threads[new_idx].get())
{
thread->ThreadWillResume(&resume_new_threads);
handled = true;
break;
}
}
if (!handled)
{
const DNBThreadResumeAction *thread_action = thread_actions.GetActionForThread (thread->ThreadID(), true);
// There must always be a thread action for every thread.
assert (thread_action);
bool others_stopped = false;
if (solo_thread == thread->ThreadID())
others_stopped = true;
thread->ThreadWillResume (thread_action, others_stopped);
}
}
if (new_threads.size())
{
for (uint32_t idx = 0; idx < num_new_threads; ++idx)
{
DNBLogThreadedIf (LOG_THREAD, "NativeThreadListDarwin::ProcessWillResume (pid = %4.4x) stop-id=%u, resuming newly discovered thread: 0x%8.8" PRIx64 ", thread-is-user-ready=%i)",
process->ProcessID(),
process->StopCount(),
new_threads[idx]->ThreadID(),
new_threads[idx]->IsUserReady());
}
}
#endif
}
uint32_t NativeThreadListDarwin::ProcessDidStop(NativeProcessDarwin &process) {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
// Update our thread list.
UpdateThreadList(process, true);
for (auto thread_sp : m_threads) {
if (thread_sp)
thread_sp->ThreadDidStop();
}
return (uint32_t)m_threads.size();
}
//----------------------------------------------------------------------
// Check each thread in our thread list to see if we should notify our
// client of the current halt in execution.
//
// Breakpoints can have callback functions associated with them than
// can return true to stop, or false to continue executing the inferior.
//
// RETURNS
// true if we should stop and notify our clients
// false if we should resume our child process and skip notification
//----------------------------------------------------------------------
bool NativeThreadListDarwin::ShouldStop(bool &step_more) {
std::lock_guard<std::recursive_mutex> locker(m_threads_mutex);
for (auto thread_sp : m_threads) {
if (thread_sp && thread_sp->ShouldStop(step_more))
return true;
}
return false;
}
// Implement.
#if 0
void
NativeThreadListDarwin::NotifyBreakpointChanged (const DNBBreakpoint *bp)
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
const size_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
m_threads[idx]->NotifyBreakpointChanged(bp);
}
}
uint32_t
NativeThreadListDarwin::EnableHardwareBreakpoint (const DNBBreakpoint* bp) const
{
if (bp != NULL)
{
const size_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
m_threads[idx]->EnableHardwareBreakpoint(bp);
}
return INVALID_NUB_HW_INDEX;
}
bool
NativeThreadListDarwin::DisableHardwareBreakpoint (const DNBBreakpoint* bp) const
{
if (bp != NULL)
{
const size_t num_threads = m_threads.size();
for (uint32_t idx = 0; idx < num_threads; ++idx)
m_threads[idx]->DisableHardwareBreakpoint(bp);
}
return false;
}
// DNBWatchpointSet() -> MachProcess::CreateWatchpoint() -> MachProcess::EnableWatchpoint()
// -> NativeThreadListDarwin::EnableHardwareWatchpoint().
uint32_t
NativeThreadListDarwin::EnableHardwareWatchpoint (const DNBBreakpoint* wp) const
{
uint32_t hw_index = INVALID_NUB_HW_INDEX;
if (wp != NULL)
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
const size_t num_threads = m_threads.size();
// On Mac OS X we have to prime the control registers for new threads. We do this
// using the control register data for the first thread, for lack of a better way of choosing.
bool also_set_on_task = true;
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
if ((hw_index = m_threads[idx]->EnableHardwareWatchpoint(wp, also_set_on_task)) == INVALID_NUB_HW_INDEX)
{
// We know that idx failed for some reason. Let's rollback the transaction for [0, idx).
for (uint32_t i = 0; i < idx; ++i)
m_threads[i]->RollbackTransForHWP();
return INVALID_NUB_HW_INDEX;
}
also_set_on_task = false;
}
// Notify each thread to commit the pending transaction.
for (uint32_t idx = 0; idx < num_threads; ++idx)
m_threads[idx]->FinishTransForHWP();
}
return hw_index;
}
bool
NativeThreadListDarwin::DisableHardwareWatchpoint (const DNBBreakpoint* wp) const
{
if (wp != NULL)
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
const size_t num_threads = m_threads.size();
// On Mac OS X we have to prime the control registers for new threads. We do this
// using the control register data for the first thread, for lack of a better way of choosing.
bool also_set_on_task = true;
for (uint32_t idx = 0; idx < num_threads; ++idx)
{
if (!m_threads[idx]->DisableHardwareWatchpoint(wp, also_set_on_task))
{
// We know that idx failed for some reason. Let's rollback the transaction for [0, idx).
for (uint32_t i = 0; i < idx; ++i)
m_threads[i]->RollbackTransForHWP();
return false;
}
also_set_on_task = false;
}
// Notify each thread to commit the pending transaction.
for (uint32_t idx = 0; idx < num_threads; ++idx)
m_threads[idx]->FinishTransForHWP();
return true;
}
return false;
}
uint32_t
NativeThreadListDarwin::NumSupportedHardwareWatchpoints () const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
const size_t num_threads = m_threads.size();
// Use an arbitrary thread to retrieve the number of supported hardware watchpoints.
if (num_threads)
return m_threads[0]->NumSupportedHardwareWatchpoints();
return 0;
}
uint32_t
NativeThreadListDarwin::GetThreadIndexForThreadStoppedWithSignal (const int signo) const
{
PTHREAD_MUTEX_LOCKER (locker, m_threads_mutex);
uint32_t should_stop = false;
const size_t num_threads = m_threads.size();
for (uint32_t idx = 0; !should_stop && idx < num_threads; ++idx)
{
if (m_threads[idx]->GetStopException().SoftSignal () == signo)
return idx;
}
return UINT32_MAX;
}
#endif