Recommitting after fixing AsmParser initialization and X86 inline asm error cleanup. Allow errors to be deferred and emitted as part of clean up to simplify and shorten Assembly parser code. This will allow error messages to be emitted in helper functions and be modified by the caller which has better context. As part of this many minor cleanups to the Parser: * Unify parser cleanup on error * Add Workaround for incorrect return values in ParseDirective instances * Tighten checks on error-signifying return values for parser functions and fix in-tree TargetParsers to be more consistent with the changes. * Fix AArch64 test cases checking for spurious error messages that are now fixed. These changes should be backwards compatible with current Target Parsers so long as the error status are correctly returned in appropriate functions. Reviewers: rnk, majnemer Subscribers: aemerson, jyknight, llvm-commits Differential Revision: https://reviews.llvm.org/D24047 llvm-svn: 281762
1176 lines
40 KiB
C++
1176 lines
40 KiB
C++
//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "MCTargetDesc/SystemZMCTargetDesc.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/MC/MCInstBuilder.h"
|
|
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
|
|
#include "llvm/MC/MCParser/MCTargetAsmParser.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSubtargetInfo.h"
|
|
#include "llvm/Support/TargetRegistry.h"
|
|
|
|
using namespace llvm;
|
|
|
|
// Return true if Expr is in the range [MinValue, MaxValue].
|
|
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
|
|
if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
|
|
int64_t Value = CE->getValue();
|
|
return Value >= MinValue && Value <= MaxValue;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
namespace {
|
|
enum RegisterKind {
|
|
GR32Reg,
|
|
GRH32Reg,
|
|
GR64Reg,
|
|
GR128Reg,
|
|
ADDR32Reg,
|
|
ADDR64Reg,
|
|
FP32Reg,
|
|
FP64Reg,
|
|
FP128Reg,
|
|
VR32Reg,
|
|
VR64Reg,
|
|
VR128Reg
|
|
};
|
|
|
|
enum MemoryKind {
|
|
BDMem,
|
|
BDXMem,
|
|
BDLMem,
|
|
BDVMem
|
|
};
|
|
|
|
class SystemZOperand : public MCParsedAsmOperand {
|
|
public:
|
|
private:
|
|
enum OperandKind {
|
|
KindInvalid,
|
|
KindToken,
|
|
KindReg,
|
|
KindAccessReg,
|
|
KindImm,
|
|
KindImmTLS,
|
|
KindMem
|
|
};
|
|
|
|
OperandKind Kind;
|
|
SMLoc StartLoc, EndLoc;
|
|
|
|
// A string of length Length, starting at Data.
|
|
struct TokenOp {
|
|
const char *Data;
|
|
unsigned Length;
|
|
};
|
|
|
|
// LLVM register Num, which has kind Kind. In some ways it might be
|
|
// easier for this class to have a register bank (general, floating-point
|
|
// or access) and a raw register number (0-15). This would postpone the
|
|
// interpretation of the operand to the add*() methods and avoid the need
|
|
// for context-dependent parsing. However, we do things the current way
|
|
// because of the virtual getReg() method, which needs to distinguish
|
|
// between (say) %r0 used as a single register and %r0 used as a pair.
|
|
// Context-dependent parsing can also give us slightly better error
|
|
// messages when invalid pairs like %r1 are used.
|
|
struct RegOp {
|
|
RegisterKind Kind;
|
|
unsigned Num;
|
|
};
|
|
|
|
// Base + Disp + Index, where Base and Index are LLVM registers or 0.
|
|
// MemKind says what type of memory this is and RegKind says what type
|
|
// the base register has (ADDR32Reg or ADDR64Reg). Length is the operand
|
|
// length for D(L,B)-style operands, otherwise it is null.
|
|
struct MemOp {
|
|
unsigned Base : 12;
|
|
unsigned Index : 12;
|
|
unsigned MemKind : 4;
|
|
unsigned RegKind : 4;
|
|
const MCExpr *Disp;
|
|
const MCExpr *Length;
|
|
};
|
|
|
|
// Imm is an immediate operand, and Sym is an optional TLS symbol
|
|
// for use with a __tls_get_offset marker relocation.
|
|
struct ImmTLSOp {
|
|
const MCExpr *Imm;
|
|
const MCExpr *Sym;
|
|
};
|
|
|
|
union {
|
|
TokenOp Token;
|
|
RegOp Reg;
|
|
unsigned AccessReg;
|
|
const MCExpr *Imm;
|
|
ImmTLSOp ImmTLS;
|
|
MemOp Mem;
|
|
};
|
|
|
|
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
|
|
// Add as immediates when possible. Null MCExpr = 0.
|
|
if (!Expr)
|
|
Inst.addOperand(MCOperand::createImm(0));
|
|
else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
|
|
Inst.addOperand(MCOperand::createImm(CE->getValue()));
|
|
else
|
|
Inst.addOperand(MCOperand::createExpr(Expr));
|
|
}
|
|
|
|
public:
|
|
SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
|
|
: Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
|
|
|
|
// Create particular kinds of operand.
|
|
static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
|
|
SMLoc EndLoc) {
|
|
return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
|
|
}
|
|
static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
|
|
auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc);
|
|
Op->Token.Data = Str.data();
|
|
Op->Token.Length = Str.size();
|
|
return Op;
|
|
}
|
|
static std::unique_ptr<SystemZOperand>
|
|
createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
|
|
auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
|
|
Op->Reg.Kind = Kind;
|
|
Op->Reg.Num = Num;
|
|
return Op;
|
|
}
|
|
static std::unique_ptr<SystemZOperand>
|
|
createAccessReg(unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
|
|
auto Op = make_unique<SystemZOperand>(KindAccessReg, StartLoc, EndLoc);
|
|
Op->AccessReg = Num;
|
|
return Op;
|
|
}
|
|
static std::unique_ptr<SystemZOperand>
|
|
createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
|
|
auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
|
|
Op->Imm = Expr;
|
|
return Op;
|
|
}
|
|
static std::unique_ptr<SystemZOperand>
|
|
createMem(MemoryKind MemKind, RegisterKind RegKind, unsigned Base,
|
|
const MCExpr *Disp, unsigned Index, const MCExpr *Length,
|
|
SMLoc StartLoc, SMLoc EndLoc) {
|
|
auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
|
|
Op->Mem.MemKind = MemKind;
|
|
Op->Mem.RegKind = RegKind;
|
|
Op->Mem.Base = Base;
|
|
Op->Mem.Index = Index;
|
|
Op->Mem.Disp = Disp;
|
|
Op->Mem.Length = Length;
|
|
return Op;
|
|
}
|
|
static std::unique_ptr<SystemZOperand>
|
|
createImmTLS(const MCExpr *Imm, const MCExpr *Sym,
|
|
SMLoc StartLoc, SMLoc EndLoc) {
|
|
auto Op = make_unique<SystemZOperand>(KindImmTLS, StartLoc, EndLoc);
|
|
Op->ImmTLS.Imm = Imm;
|
|
Op->ImmTLS.Sym = Sym;
|
|
return Op;
|
|
}
|
|
|
|
// Token operands
|
|
bool isToken() const override {
|
|
return Kind == KindToken;
|
|
}
|
|
StringRef getToken() const {
|
|
assert(Kind == KindToken && "Not a token");
|
|
return StringRef(Token.Data, Token.Length);
|
|
}
|
|
|
|
// Register operands.
|
|
bool isReg() const override {
|
|
return Kind == KindReg;
|
|
}
|
|
bool isReg(RegisterKind RegKind) const {
|
|
return Kind == KindReg && Reg.Kind == RegKind;
|
|
}
|
|
unsigned getReg() const override {
|
|
assert(Kind == KindReg && "Not a register");
|
|
return Reg.Num;
|
|
}
|
|
|
|
// Access register operands. Access registers aren't exposed to LLVM
|
|
// as registers.
|
|
bool isAccessReg() const {
|
|
return Kind == KindAccessReg;
|
|
}
|
|
|
|
// Immediate operands.
|
|
bool isImm() const override {
|
|
return Kind == KindImm;
|
|
}
|
|
bool isImm(int64_t MinValue, int64_t MaxValue) const {
|
|
return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
|
|
}
|
|
const MCExpr *getImm() const {
|
|
assert(Kind == KindImm && "Not an immediate");
|
|
return Imm;
|
|
}
|
|
|
|
// Immediate operands with optional TLS symbol.
|
|
bool isImmTLS() const {
|
|
return Kind == KindImmTLS;
|
|
}
|
|
|
|
// Memory operands.
|
|
bool isMem() const override {
|
|
return Kind == KindMem;
|
|
}
|
|
bool isMem(MemoryKind MemKind) const {
|
|
return (Kind == KindMem &&
|
|
(Mem.MemKind == MemKind ||
|
|
// A BDMem can be treated as a BDXMem in which the index
|
|
// register field is 0.
|
|
(Mem.MemKind == BDMem && MemKind == BDXMem)));
|
|
}
|
|
bool isMem(MemoryKind MemKind, RegisterKind RegKind) const {
|
|
return isMem(MemKind) && Mem.RegKind == RegKind;
|
|
}
|
|
bool isMemDisp12(MemoryKind MemKind, RegisterKind RegKind) const {
|
|
return isMem(MemKind, RegKind) && inRange(Mem.Disp, 0, 0xfff);
|
|
}
|
|
bool isMemDisp20(MemoryKind MemKind, RegisterKind RegKind) const {
|
|
return isMem(MemKind, RegKind) && inRange(Mem.Disp, -524288, 524287);
|
|
}
|
|
bool isMemDisp12Len8(RegisterKind RegKind) const {
|
|
return isMemDisp12(BDLMem, RegKind) && inRange(Mem.Length, 1, 0x100);
|
|
}
|
|
void addBDVAddrOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 3 && "Invalid number of operands");
|
|
assert(isMem(BDVMem) && "Invalid operand type");
|
|
Inst.addOperand(MCOperand::createReg(Mem.Base));
|
|
addExpr(Inst, Mem.Disp);
|
|
Inst.addOperand(MCOperand::createReg(Mem.Index));
|
|
}
|
|
|
|
// Override MCParsedAsmOperand.
|
|
SMLoc getStartLoc() const override { return StartLoc; }
|
|
SMLoc getEndLoc() const override { return EndLoc; }
|
|
void print(raw_ostream &OS) const override;
|
|
|
|
// Used by the TableGen code to add particular types of operand
|
|
// to an instruction.
|
|
void addRegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands");
|
|
Inst.addOperand(MCOperand::createReg(getReg()));
|
|
}
|
|
void addAccessRegOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands");
|
|
assert(Kind == KindAccessReg && "Invalid operand type");
|
|
Inst.addOperand(MCOperand::createImm(AccessReg));
|
|
}
|
|
void addImmOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 1 && "Invalid number of operands");
|
|
addExpr(Inst, getImm());
|
|
}
|
|
void addBDAddrOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands");
|
|
assert(isMem(BDMem) && "Invalid operand type");
|
|
Inst.addOperand(MCOperand::createReg(Mem.Base));
|
|
addExpr(Inst, Mem.Disp);
|
|
}
|
|
void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 3 && "Invalid number of operands");
|
|
assert(isMem(BDXMem) && "Invalid operand type");
|
|
Inst.addOperand(MCOperand::createReg(Mem.Base));
|
|
addExpr(Inst, Mem.Disp);
|
|
Inst.addOperand(MCOperand::createReg(Mem.Index));
|
|
}
|
|
void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 3 && "Invalid number of operands");
|
|
assert(isMem(BDLMem) && "Invalid operand type");
|
|
Inst.addOperand(MCOperand::createReg(Mem.Base));
|
|
addExpr(Inst, Mem.Disp);
|
|
addExpr(Inst, Mem.Length);
|
|
}
|
|
void addImmTLSOperands(MCInst &Inst, unsigned N) const {
|
|
assert(N == 2 && "Invalid number of operands");
|
|
assert(Kind == KindImmTLS && "Invalid operand type");
|
|
addExpr(Inst, ImmTLS.Imm);
|
|
if (ImmTLS.Sym)
|
|
addExpr(Inst, ImmTLS.Sym);
|
|
}
|
|
|
|
// Used by the TableGen code to check for particular operand types.
|
|
bool isGR32() const { return isReg(GR32Reg); }
|
|
bool isGRH32() const { return isReg(GRH32Reg); }
|
|
bool isGRX32() const { return false; }
|
|
bool isGR64() const { return isReg(GR64Reg); }
|
|
bool isGR128() const { return isReg(GR128Reg); }
|
|
bool isADDR32() const { return isReg(ADDR32Reg); }
|
|
bool isADDR64() const { return isReg(ADDR64Reg); }
|
|
bool isADDR128() const { return false; }
|
|
bool isFP32() const { return isReg(FP32Reg); }
|
|
bool isFP64() const { return isReg(FP64Reg); }
|
|
bool isFP128() const { return isReg(FP128Reg); }
|
|
bool isVR32() const { return isReg(VR32Reg); }
|
|
bool isVR64() const { return isReg(VR64Reg); }
|
|
bool isVF128() const { return false; }
|
|
bool isVR128() const { return isReg(VR128Reg); }
|
|
bool isAnyReg() const { return (isReg() || isImm(0, 15)); }
|
|
bool isBDAddr32Disp12() const { return isMemDisp12(BDMem, ADDR32Reg); }
|
|
bool isBDAddr32Disp20() const { return isMemDisp20(BDMem, ADDR32Reg); }
|
|
bool isBDAddr64Disp12() const { return isMemDisp12(BDMem, ADDR64Reg); }
|
|
bool isBDAddr64Disp20() const { return isMemDisp20(BDMem, ADDR64Reg); }
|
|
bool isBDXAddr64Disp12() const { return isMemDisp12(BDXMem, ADDR64Reg); }
|
|
bool isBDXAddr64Disp20() const { return isMemDisp20(BDXMem, ADDR64Reg); }
|
|
bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); }
|
|
bool isBDVAddr64Disp12() const { return isMemDisp12(BDVMem, ADDR64Reg); }
|
|
bool isU1Imm() const { return isImm(0, 1); }
|
|
bool isU2Imm() const { return isImm(0, 3); }
|
|
bool isU3Imm() const { return isImm(0, 7); }
|
|
bool isU4Imm() const { return isImm(0, 15); }
|
|
bool isU6Imm() const { return isImm(0, 63); }
|
|
bool isU8Imm() const { return isImm(0, 255); }
|
|
bool isS8Imm() const { return isImm(-128, 127); }
|
|
bool isU12Imm() const { return isImm(0, 4095); }
|
|
bool isU16Imm() const { return isImm(0, 65535); }
|
|
bool isS16Imm() const { return isImm(-32768, 32767); }
|
|
bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
|
|
bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
|
|
bool isU48Imm() const { return isImm(0, (1LL << 48) - 1); }
|
|
};
|
|
|
|
class SystemZAsmParser : public MCTargetAsmParser {
|
|
#define GET_ASSEMBLER_HEADER
|
|
#include "SystemZGenAsmMatcher.inc"
|
|
|
|
private:
|
|
MCAsmParser &Parser;
|
|
enum RegisterGroup {
|
|
RegGR,
|
|
RegFP,
|
|
RegV,
|
|
RegAccess
|
|
};
|
|
struct Register {
|
|
RegisterGroup Group;
|
|
unsigned Num;
|
|
SMLoc StartLoc, EndLoc;
|
|
};
|
|
|
|
bool parseRegister(Register &Reg);
|
|
|
|
bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs,
|
|
bool IsAddress = false);
|
|
|
|
OperandMatchResultTy parseRegister(OperandVector &Operands,
|
|
RegisterGroup Group, const unsigned *Regs,
|
|
RegisterKind Kind);
|
|
|
|
OperandMatchResultTy parseAnyRegister(OperandVector &Operands);
|
|
|
|
bool parseAddress(unsigned &Base, const MCExpr *&Disp,
|
|
unsigned &Index, bool &IsVector, const MCExpr *&Length,
|
|
const unsigned *Regs, RegisterKind RegKind);
|
|
|
|
bool ParseDirectiveInsn(SMLoc L);
|
|
|
|
OperandMatchResultTy parseAddress(OperandVector &Operands,
|
|
MemoryKind MemKind, const unsigned *Regs,
|
|
RegisterKind RegKind);
|
|
|
|
OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
|
|
int64_t MaxVal, bool AllowTLS);
|
|
|
|
bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
|
|
|
|
public:
|
|
SystemZAsmParser(const MCSubtargetInfo &sti, MCAsmParser &parser,
|
|
const MCInstrInfo &MII,
|
|
const MCTargetOptions &Options)
|
|
: MCTargetAsmParser(Options, sti), Parser(parser) {
|
|
MCAsmParserExtension::Initialize(Parser);
|
|
|
|
// Alias the .word directive to .short.
|
|
parser.addAliasForDirective(".word", ".short");
|
|
|
|
// Initialize the set of available features.
|
|
setAvailableFeatures(ComputeAvailableFeatures(getSTI().getFeatureBits()));
|
|
}
|
|
|
|
// Override MCTargetAsmParser.
|
|
bool ParseDirective(AsmToken DirectiveID) override;
|
|
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
|
|
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
|
|
SMLoc NameLoc, OperandVector &Operands) override;
|
|
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
|
|
OperandVector &Operands, MCStreamer &Out,
|
|
uint64_t &ErrorInfo,
|
|
bool MatchingInlineAsm) override;
|
|
|
|
// Used by the TableGen code to parse particular operand types.
|
|
OperandMatchResultTy parseGR32(OperandVector &Operands) {
|
|
return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg);
|
|
}
|
|
OperandMatchResultTy parseGRH32(OperandVector &Operands) {
|
|
return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg);
|
|
}
|
|
OperandMatchResultTy parseGRX32(OperandVector &Operands) {
|
|
llvm_unreachable("GRX32 should only be used for pseudo instructions");
|
|
}
|
|
OperandMatchResultTy parseGR64(OperandVector &Operands) {
|
|
return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg);
|
|
}
|
|
OperandMatchResultTy parseGR128(OperandVector &Operands) {
|
|
return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg);
|
|
}
|
|
OperandMatchResultTy parseADDR32(OperandVector &Operands) {
|
|
return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg);
|
|
}
|
|
OperandMatchResultTy parseADDR64(OperandVector &Operands) {
|
|
return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg);
|
|
}
|
|
OperandMatchResultTy parseADDR128(OperandVector &Operands) {
|
|
llvm_unreachable("Shouldn't be used as an operand");
|
|
}
|
|
OperandMatchResultTy parseFP32(OperandVector &Operands) {
|
|
return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg);
|
|
}
|
|
OperandMatchResultTy parseFP64(OperandVector &Operands) {
|
|
return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg);
|
|
}
|
|
OperandMatchResultTy parseFP128(OperandVector &Operands) {
|
|
return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg);
|
|
}
|
|
OperandMatchResultTy parseVR32(OperandVector &Operands) {
|
|
return parseRegister(Operands, RegV, SystemZMC::VR32Regs, VR32Reg);
|
|
}
|
|
OperandMatchResultTy parseVR64(OperandVector &Operands) {
|
|
return parseRegister(Operands, RegV, SystemZMC::VR64Regs, VR64Reg);
|
|
}
|
|
OperandMatchResultTy parseVF128(OperandVector &Operands) {
|
|
llvm_unreachable("Shouldn't be used as an operand");
|
|
}
|
|
OperandMatchResultTy parseVR128(OperandVector &Operands) {
|
|
return parseRegister(Operands, RegV, SystemZMC::VR128Regs, VR128Reg);
|
|
}
|
|
OperandMatchResultTy parseAnyReg(OperandVector &Operands) {
|
|
return parseAnyRegister(Operands);
|
|
}
|
|
OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
|
|
return parseAddress(Operands, BDMem, SystemZMC::GR32Regs, ADDR32Reg);
|
|
}
|
|
OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
|
|
return parseAddress(Operands, BDMem, SystemZMC::GR64Regs, ADDR64Reg);
|
|
}
|
|
OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
|
|
return parseAddress(Operands, BDXMem, SystemZMC::GR64Regs, ADDR64Reg);
|
|
}
|
|
OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
|
|
return parseAddress(Operands, BDLMem, SystemZMC::GR64Regs, ADDR64Reg);
|
|
}
|
|
OperandMatchResultTy parseBDVAddr64(OperandVector &Operands) {
|
|
return parseAddress(Operands, BDVMem, SystemZMC::GR64Regs, ADDR64Reg);
|
|
}
|
|
OperandMatchResultTy parseAccessReg(OperandVector &Operands);
|
|
OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
|
|
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, false);
|
|
}
|
|
OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
|
|
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, false);
|
|
}
|
|
OperandMatchResultTy parsePCRelTLS16(OperandVector &Operands) {
|
|
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1, true);
|
|
}
|
|
OperandMatchResultTy parsePCRelTLS32(OperandVector &Operands) {
|
|
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1, true);
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
#define GET_REGISTER_MATCHER
|
|
#define GET_SUBTARGET_FEATURE_NAME
|
|
#define GET_MATCHER_IMPLEMENTATION
|
|
#include "SystemZGenAsmMatcher.inc"
|
|
|
|
// Used for the .insn directives; contains information needed to parse the
|
|
// operands in the directive.
|
|
struct InsnMatchEntry {
|
|
StringRef Format;
|
|
uint64_t Opcode;
|
|
int32_t NumOperands;
|
|
MatchClassKind OperandKinds[5];
|
|
};
|
|
|
|
// For equal_range comparison.
|
|
struct CompareInsn {
|
|
bool operator() (const InsnMatchEntry &LHS, StringRef RHS) {
|
|
return LHS.Format < RHS;
|
|
}
|
|
bool operator() (StringRef LHS, const InsnMatchEntry &RHS) {
|
|
return LHS < RHS.Format;
|
|
}
|
|
bool operator() (const InsnMatchEntry &LHS, const InsnMatchEntry &RHS) {
|
|
return LHS.Format < RHS.Format;
|
|
}
|
|
};
|
|
|
|
// Table initializing information for parsing the .insn directive.
|
|
static struct InsnMatchEntry InsnMatchTable[] = {
|
|
/* Format, Opcode, NumOperands, OperandKinds */
|
|
{ "e", SystemZ::InsnE, 1,
|
|
{ MCK_U16Imm } },
|
|
{ "ri", SystemZ::InsnRI, 3,
|
|
{ MCK_U32Imm, MCK_AnyReg, MCK_S16Imm } },
|
|
{ "rie", SystemZ::InsnRIE, 4,
|
|
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
|
|
{ "ril", SystemZ::InsnRIL, 3,
|
|
{ MCK_U48Imm, MCK_AnyReg, MCK_PCRel32 } },
|
|
{ "rilu", SystemZ::InsnRILU, 3,
|
|
{ MCK_U48Imm, MCK_AnyReg, MCK_U32Imm } },
|
|
{ "ris", SystemZ::InsnRIS, 5,
|
|
{ MCK_U48Imm, MCK_AnyReg, MCK_S8Imm, MCK_U4Imm, MCK_BDAddr64Disp12 } },
|
|
{ "rr", SystemZ::InsnRR, 3,
|
|
{ MCK_U16Imm, MCK_AnyReg, MCK_AnyReg } },
|
|
{ "rre", SystemZ::InsnRRE, 3,
|
|
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg } },
|
|
{ "rrf", SystemZ::InsnRRF, 5,
|
|
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm } },
|
|
{ "rrs", SystemZ::InsnRRS, 5,
|
|
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_U4Imm, MCK_BDAddr64Disp12 } },
|
|
{ "rs", SystemZ::InsnRS, 4,
|
|
{ MCK_U32Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
|
|
{ "rse", SystemZ::InsnRSE, 4,
|
|
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp12 } },
|
|
{ "rsi", SystemZ::InsnRSI, 4,
|
|
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_PCRel16 } },
|
|
{ "rsy", SystemZ::InsnRSY, 4,
|
|
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDAddr64Disp20 } },
|
|
{ "rx", SystemZ::InsnRX, 3,
|
|
{ MCK_U32Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
|
|
{ "rxe", SystemZ::InsnRXE, 3,
|
|
{ MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
|
|
{ "rxf", SystemZ::InsnRXF, 4,
|
|
{ MCK_U48Imm, MCK_AnyReg, MCK_AnyReg, MCK_BDXAddr64Disp12 } },
|
|
{ "rxy", SystemZ::InsnRXY, 3,
|
|
{ MCK_U48Imm, MCK_AnyReg, MCK_BDXAddr64Disp20 } },
|
|
{ "s", SystemZ::InsnS, 2,
|
|
{ MCK_U32Imm, MCK_BDAddr64Disp12 } },
|
|
{ "si", SystemZ::InsnSI, 3,
|
|
{ MCK_U32Imm, MCK_BDAddr64Disp12, MCK_S8Imm } },
|
|
{ "sil", SystemZ::InsnSIL, 3,
|
|
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_U16Imm } },
|
|
{ "siy", SystemZ::InsnSIY, 3,
|
|
{ MCK_U48Imm, MCK_BDAddr64Disp20, MCK_U8Imm } },
|
|
{ "ss", SystemZ::InsnSS, 4,
|
|
{ MCK_U48Imm, MCK_BDXAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } },
|
|
{ "sse", SystemZ::InsnSSE, 3,
|
|
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12 } },
|
|
{ "ssf", SystemZ::InsnSSF, 4,
|
|
{ MCK_U48Imm, MCK_BDAddr64Disp12, MCK_BDAddr64Disp12, MCK_AnyReg } }
|
|
};
|
|
|
|
void SystemZOperand::print(raw_ostream &OS) const {
|
|
llvm_unreachable("Not implemented");
|
|
}
|
|
|
|
// Parse one register of the form %<prefix><number>.
|
|
bool SystemZAsmParser::parseRegister(Register &Reg) {
|
|
Reg.StartLoc = Parser.getTok().getLoc();
|
|
|
|
// Eat the % prefix.
|
|
if (Parser.getTok().isNot(AsmToken::Percent))
|
|
return Error(Parser.getTok().getLoc(), "register expected");
|
|
Parser.Lex();
|
|
|
|
// Expect a register name.
|
|
if (Parser.getTok().isNot(AsmToken::Identifier))
|
|
return Error(Reg.StartLoc, "invalid register");
|
|
|
|
// Check that there's a prefix.
|
|
StringRef Name = Parser.getTok().getString();
|
|
if (Name.size() < 2)
|
|
return Error(Reg.StartLoc, "invalid register");
|
|
char Prefix = Name[0];
|
|
|
|
// Treat the rest of the register name as a register number.
|
|
if (Name.substr(1).getAsInteger(10, Reg.Num))
|
|
return Error(Reg.StartLoc, "invalid register");
|
|
|
|
// Look for valid combinations of prefix and number.
|
|
if (Prefix == 'r' && Reg.Num < 16)
|
|
Reg.Group = RegGR;
|
|
else if (Prefix == 'f' && Reg.Num < 16)
|
|
Reg.Group = RegFP;
|
|
else if (Prefix == 'v' && Reg.Num < 32)
|
|
Reg.Group = RegV;
|
|
else if (Prefix == 'a' && Reg.Num < 16)
|
|
Reg.Group = RegAccess;
|
|
else
|
|
return Error(Reg.StartLoc, "invalid register");
|
|
|
|
Reg.EndLoc = Parser.getTok().getLoc();
|
|
Parser.Lex();
|
|
return false;
|
|
}
|
|
|
|
// Parse a register of group Group. If Regs is nonnull, use it to map
|
|
// the raw register number to LLVM numbering, with zero entries
|
|
// indicating an invalid register. IsAddress says whether the
|
|
// register appears in an address context. Allow FP Group if expecting
|
|
// RegV Group, since the f-prefix yields the FP group even while used
|
|
// with vector instructions.
|
|
bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group,
|
|
const unsigned *Regs, bool IsAddress) {
|
|
if (parseRegister(Reg))
|
|
return true;
|
|
if (Reg.Group != Group && !(Reg.Group == RegFP && Group == RegV))
|
|
return Error(Reg.StartLoc, "invalid operand for instruction");
|
|
if (Regs && Regs[Reg.Num] == 0)
|
|
return Error(Reg.StartLoc, "invalid register pair");
|
|
if (Reg.Num == 0 && IsAddress)
|
|
return Error(Reg.StartLoc, "%r0 used in an address");
|
|
if (Regs)
|
|
Reg.Num = Regs[Reg.Num];
|
|
return false;
|
|
}
|
|
|
|
// Parse a register and add it to Operands. The other arguments are as above.
|
|
SystemZAsmParser::OperandMatchResultTy
|
|
SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group,
|
|
const unsigned *Regs, RegisterKind Kind) {
|
|
if (Parser.getTok().isNot(AsmToken::Percent))
|
|
return MatchOperand_NoMatch;
|
|
|
|
Register Reg;
|
|
bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg);
|
|
if (parseRegister(Reg, Group, Regs, IsAddress))
|
|
return MatchOperand_ParseFail;
|
|
|
|
Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num,
|
|
Reg.StartLoc, Reg.EndLoc));
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
// Parse any type of register (including integers) and add it to Operands.
|
|
SystemZAsmParser::OperandMatchResultTy
|
|
SystemZAsmParser::parseAnyRegister(OperandVector &Operands) {
|
|
// Handle integer values.
|
|
if (Parser.getTok().is(AsmToken::Integer)) {
|
|
const MCExpr *Register;
|
|
SMLoc StartLoc = Parser.getTok().getLoc();
|
|
if (Parser.parseExpression(Register))
|
|
return MatchOperand_ParseFail;
|
|
|
|
if (auto *CE = dyn_cast<MCConstantExpr>(Register)) {
|
|
int64_t Value = CE->getValue();
|
|
if (Value < 0 || Value > 15) {
|
|
Error(StartLoc, "invalid register");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
}
|
|
|
|
SMLoc EndLoc =
|
|
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
|
|
|
|
Operands.push_back(SystemZOperand::createImm(Register, StartLoc, EndLoc));
|
|
}
|
|
else {
|
|
Register Reg;
|
|
if (parseRegister(Reg))
|
|
return MatchOperand_ParseFail;
|
|
|
|
// Map to the correct register kind.
|
|
RegisterKind Kind;
|
|
unsigned RegNo;
|
|
if (Reg.Group == RegGR) {
|
|
Kind = GR64Reg;
|
|
RegNo = SystemZMC::GR64Regs[Reg.Num];
|
|
}
|
|
else if (Reg.Group == RegFP) {
|
|
Kind = FP64Reg;
|
|
RegNo = SystemZMC::FP64Regs[Reg.Num];
|
|
}
|
|
else if (Reg.Group == RegV) {
|
|
Kind = VR128Reg;
|
|
RegNo = SystemZMC::VR128Regs[Reg.Num];
|
|
}
|
|
else {
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
Operands.push_back(SystemZOperand::createReg(Kind, RegNo,
|
|
Reg.StartLoc, Reg.EndLoc));
|
|
}
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
// Parse a memory operand into Base, Disp, Index and Length.
|
|
// Regs maps asm register numbers to LLVM register numbers and RegKind
|
|
// says what kind of address register we're using (ADDR32Reg or ADDR64Reg).
|
|
bool SystemZAsmParser::parseAddress(unsigned &Base, const MCExpr *&Disp,
|
|
unsigned &Index, bool &IsVector,
|
|
const MCExpr *&Length, const unsigned *Regs,
|
|
RegisterKind RegKind) {
|
|
// Parse the displacement, which must always be present.
|
|
if (getParser().parseExpression(Disp))
|
|
return true;
|
|
|
|
// Parse the optional base and index.
|
|
Index = 0;
|
|
Base = 0;
|
|
IsVector = false;
|
|
Length = nullptr;
|
|
if (getLexer().is(AsmToken::LParen)) {
|
|
Parser.Lex();
|
|
|
|
if (getLexer().is(AsmToken::Percent)) {
|
|
// Parse the first register and decide whether it's a base or an index.
|
|
Register Reg;
|
|
if (parseRegister(Reg))
|
|
return true;
|
|
if (Reg.Group == RegV) {
|
|
// A vector index register. The base register is optional.
|
|
IsVector = true;
|
|
Index = SystemZMC::VR128Regs[Reg.Num];
|
|
} else if (Reg.Group == RegGR) {
|
|
if (Reg.Num == 0)
|
|
return Error(Reg.StartLoc, "%r0 used in an address");
|
|
// If the are two registers, the first one is the index and the
|
|
// second is the base.
|
|
if (getLexer().is(AsmToken::Comma))
|
|
Index = Regs[Reg.Num];
|
|
else
|
|
Base = Regs[Reg.Num];
|
|
} else
|
|
return Error(Reg.StartLoc, "invalid address register");
|
|
} else {
|
|
// Parse the length.
|
|
if (getParser().parseExpression(Length))
|
|
return true;
|
|
}
|
|
|
|
// Check whether there's a second register. It's the base if so.
|
|
if (getLexer().is(AsmToken::Comma)) {
|
|
Parser.Lex();
|
|
Register Reg;
|
|
if (parseRegister(Reg, RegGR, Regs, RegKind))
|
|
return true;
|
|
Base = Reg.Num;
|
|
}
|
|
|
|
// Consume the closing bracket.
|
|
if (getLexer().isNot(AsmToken::RParen))
|
|
return Error(Parser.getTok().getLoc(), "unexpected token in address");
|
|
Parser.Lex();
|
|
}
|
|
return false;
|
|
}
|
|
|
|
// Parse a memory operand and add it to Operands. The other arguments
|
|
// are as above.
|
|
SystemZAsmParser::OperandMatchResultTy
|
|
SystemZAsmParser::parseAddress(OperandVector &Operands, MemoryKind MemKind,
|
|
const unsigned *Regs, RegisterKind RegKind) {
|
|
SMLoc StartLoc = Parser.getTok().getLoc();
|
|
unsigned Base, Index;
|
|
bool IsVector;
|
|
const MCExpr *Disp;
|
|
const MCExpr *Length;
|
|
if (parseAddress(Base, Disp, Index, IsVector, Length, Regs, RegKind))
|
|
return MatchOperand_ParseFail;
|
|
|
|
if (IsVector && MemKind != BDVMem) {
|
|
Error(StartLoc, "invalid use of vector addressing");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
if (!IsVector && MemKind == BDVMem) {
|
|
Error(StartLoc, "vector index required in address");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
if (Index && MemKind != BDXMem && MemKind != BDVMem) {
|
|
Error(StartLoc, "invalid use of indexed addressing");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
if (Length && MemKind != BDLMem) {
|
|
Error(StartLoc, "invalid use of length addressing");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
if (!Length && MemKind == BDLMem) {
|
|
Error(StartLoc, "missing length in address");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
SMLoc EndLoc =
|
|
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
|
|
Operands.push_back(SystemZOperand::createMem(MemKind, RegKind, Base, Disp,
|
|
Index, Length, StartLoc,
|
|
EndLoc));
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
|
|
StringRef IDVal = DirectiveID.getIdentifier();
|
|
|
|
if (IDVal == ".insn")
|
|
return ParseDirectiveInsn(DirectiveID.getLoc());
|
|
|
|
return true;
|
|
}
|
|
|
|
/// ParseDirectiveInsn
|
|
/// ::= .insn [ format, encoding, (operands (, operands)*) ]
|
|
bool SystemZAsmParser::ParseDirectiveInsn(SMLoc L) {
|
|
MCAsmParser &Parser = getParser();
|
|
|
|
// Expect instruction format as identifier.
|
|
StringRef Format;
|
|
SMLoc ErrorLoc = Parser.getTok().getLoc();
|
|
if (Parser.parseIdentifier(Format))
|
|
return Error(ErrorLoc, "expected instruction format");
|
|
|
|
SmallVector<std::unique_ptr<MCParsedAsmOperand>, 8> Operands;
|
|
|
|
// Find entry for this format in InsnMatchTable.
|
|
auto EntryRange =
|
|
std::equal_range(std::begin(InsnMatchTable), std::end(InsnMatchTable),
|
|
Format, CompareInsn());
|
|
|
|
// If first == second, couldn't find a match in the table.
|
|
if (EntryRange.first == EntryRange.second)
|
|
return Error(ErrorLoc, "unrecognized format");
|
|
|
|
struct InsnMatchEntry *Entry = EntryRange.first;
|
|
|
|
// Format should match from equal_range.
|
|
assert(Entry->Format == Format);
|
|
|
|
// Parse the following operands using the table's information.
|
|
for (int i = 0; i < Entry->NumOperands; i++) {
|
|
MatchClassKind Kind = Entry->OperandKinds[i];
|
|
|
|
SMLoc StartLoc = Parser.getTok().getLoc();
|
|
|
|
// Always expect commas as separators for operands.
|
|
if (getLexer().isNot(AsmToken::Comma))
|
|
return Error(StartLoc, "unexpected token in directive");
|
|
Lex();
|
|
|
|
// Parse operands.
|
|
OperandMatchResultTy ResTy;
|
|
if (Kind == MCK_AnyReg)
|
|
ResTy = parseAnyReg(Operands);
|
|
else if (Kind == MCK_BDXAddr64Disp12 || Kind == MCK_BDXAddr64Disp20)
|
|
ResTy = parseBDXAddr64(Operands);
|
|
else if (Kind == MCK_BDAddr64Disp12 || Kind == MCK_BDAddr64Disp20)
|
|
ResTy = parseBDAddr64(Operands);
|
|
else if (Kind == MCK_PCRel32)
|
|
ResTy = parsePCRel32(Operands);
|
|
else if (Kind == MCK_PCRel16)
|
|
ResTy = parsePCRel16(Operands);
|
|
else {
|
|
// Only remaining operand kind is an immediate.
|
|
const MCExpr *Expr;
|
|
SMLoc StartLoc = Parser.getTok().getLoc();
|
|
|
|
// Expect immediate expression.
|
|
if (Parser.parseExpression(Expr))
|
|
return Error(StartLoc, "unexpected token in directive");
|
|
|
|
SMLoc EndLoc =
|
|
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
|
|
|
|
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
|
|
ResTy = MatchOperand_Success;
|
|
}
|
|
|
|
if (ResTy != MatchOperand_Success)
|
|
return true;
|
|
}
|
|
|
|
// Build the instruction with the parsed operands.
|
|
MCInst Inst = MCInstBuilder(Entry->Opcode);
|
|
|
|
for (size_t i = 0; i < Operands.size(); i++) {
|
|
MCParsedAsmOperand &Operand = *Operands[i];
|
|
MatchClassKind Kind = Entry->OperandKinds[i];
|
|
|
|
// Verify operand.
|
|
unsigned Res = validateOperandClass(Operand, Kind);
|
|
if (Res != Match_Success)
|
|
return Error(Operand.getStartLoc(), "unexpected operand type");
|
|
|
|
// Add operands to instruction.
|
|
SystemZOperand &ZOperand = static_cast<SystemZOperand &>(Operand);
|
|
if (ZOperand.isReg())
|
|
ZOperand.addRegOperands(Inst, 1);
|
|
else if (ZOperand.isMem(BDMem))
|
|
ZOperand.addBDAddrOperands(Inst, 2);
|
|
else if (ZOperand.isMem(BDXMem))
|
|
ZOperand.addBDXAddrOperands(Inst, 3);
|
|
else if (ZOperand.isImm())
|
|
ZOperand.addImmOperands(Inst, 1);
|
|
else
|
|
llvm_unreachable("unexpected operand type");
|
|
}
|
|
|
|
// Emit as a regular instruction.
|
|
Parser.getStreamer().EmitInstruction(Inst, getSTI());
|
|
|
|
return false;
|
|
}
|
|
|
|
bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
|
|
SMLoc &EndLoc) {
|
|
Register Reg;
|
|
if (parseRegister(Reg))
|
|
return true;
|
|
if (Reg.Group == RegGR)
|
|
RegNo = SystemZMC::GR64Regs[Reg.Num];
|
|
else if (Reg.Group == RegFP)
|
|
RegNo = SystemZMC::FP64Regs[Reg.Num];
|
|
else if (Reg.Group == RegV)
|
|
RegNo = SystemZMC::VR128Regs[Reg.Num];
|
|
else
|
|
// FIXME: Access registers aren't modelled as LLVM registers yet.
|
|
return Error(Reg.StartLoc, "invalid operand for instruction");
|
|
StartLoc = Reg.StartLoc;
|
|
EndLoc = Reg.EndLoc;
|
|
return false;
|
|
}
|
|
|
|
bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
|
|
StringRef Name, SMLoc NameLoc,
|
|
OperandVector &Operands) {
|
|
Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
|
|
|
|
// Read the remaining operands.
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
// Read the first operand.
|
|
if (parseOperand(Operands, Name)) {
|
|
return true;
|
|
}
|
|
|
|
// Read any subsequent operands.
|
|
while (getLexer().is(AsmToken::Comma)) {
|
|
Parser.Lex();
|
|
if (parseOperand(Operands, Name)) {
|
|
return true;
|
|
}
|
|
}
|
|
if (getLexer().isNot(AsmToken::EndOfStatement)) {
|
|
SMLoc Loc = getLexer().getLoc();
|
|
return Error(Loc, "unexpected token in argument list");
|
|
}
|
|
}
|
|
|
|
// Consume the EndOfStatement.
|
|
Parser.Lex();
|
|
return false;
|
|
}
|
|
|
|
bool SystemZAsmParser::parseOperand(OperandVector &Operands,
|
|
StringRef Mnemonic) {
|
|
// Check if the current operand has a custom associated parser, if so, try to
|
|
// custom parse the operand, or fallback to the general approach.
|
|
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
|
|
if (ResTy == MatchOperand_Success)
|
|
return false;
|
|
|
|
// If there wasn't a custom match, try the generic matcher below. Otherwise,
|
|
// there was a match, but an error occurred, in which case, just return that
|
|
// the operand parsing failed.
|
|
if (ResTy == MatchOperand_ParseFail)
|
|
return true;
|
|
|
|
// Check for a register. All real register operands should have used
|
|
// a context-dependent parse routine, which gives the required register
|
|
// class. The code is here to mop up other cases, like those where
|
|
// the instruction isn't recognized.
|
|
if (Parser.getTok().is(AsmToken::Percent)) {
|
|
Register Reg;
|
|
if (parseRegister(Reg))
|
|
return true;
|
|
Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
|
|
return false;
|
|
}
|
|
|
|
// The only other type of operand is an immediate or address. As above,
|
|
// real address operands should have used a context-dependent parse routine,
|
|
// so we treat any plain expression as an immediate.
|
|
SMLoc StartLoc = Parser.getTok().getLoc();
|
|
unsigned Base, Index;
|
|
bool IsVector;
|
|
const MCExpr *Expr, *Length;
|
|
if (parseAddress(Base, Expr, Index, IsVector, Length, SystemZMC::GR64Regs,
|
|
ADDR64Reg))
|
|
return true;
|
|
|
|
SMLoc EndLoc =
|
|
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
|
|
if (Base || Index || Length)
|
|
Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
|
|
else
|
|
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
|
|
return false;
|
|
}
|
|
|
|
bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
|
|
OperandVector &Operands,
|
|
MCStreamer &Out,
|
|
uint64_t &ErrorInfo,
|
|
bool MatchingInlineAsm) {
|
|
MCInst Inst;
|
|
unsigned MatchResult;
|
|
|
|
MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
|
|
MatchingInlineAsm);
|
|
switch (MatchResult) {
|
|
case Match_Success:
|
|
Inst.setLoc(IDLoc);
|
|
Out.EmitInstruction(Inst, getSTI());
|
|
return false;
|
|
|
|
case Match_MissingFeature: {
|
|
assert(ErrorInfo && "Unknown missing feature!");
|
|
// Special case the error message for the very common case where only
|
|
// a single subtarget feature is missing
|
|
std::string Msg = "instruction requires:";
|
|
uint64_t Mask = 1;
|
|
for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) {
|
|
if (ErrorInfo & Mask) {
|
|
Msg += " ";
|
|
Msg += getSubtargetFeatureName(ErrorInfo & Mask);
|
|
}
|
|
Mask <<= 1;
|
|
}
|
|
return Error(IDLoc, Msg);
|
|
}
|
|
|
|
case Match_InvalidOperand: {
|
|
SMLoc ErrorLoc = IDLoc;
|
|
if (ErrorInfo != ~0ULL) {
|
|
if (ErrorInfo >= Operands.size())
|
|
return Error(IDLoc, "too few operands for instruction");
|
|
|
|
ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
|
|
if (ErrorLoc == SMLoc())
|
|
ErrorLoc = IDLoc;
|
|
}
|
|
return Error(ErrorLoc, "invalid operand for instruction");
|
|
}
|
|
|
|
case Match_MnemonicFail:
|
|
return Error(IDLoc, "invalid instruction");
|
|
}
|
|
|
|
llvm_unreachable("Unexpected match type");
|
|
}
|
|
|
|
SystemZAsmParser::OperandMatchResultTy
|
|
SystemZAsmParser::parseAccessReg(OperandVector &Operands) {
|
|
if (Parser.getTok().isNot(AsmToken::Percent))
|
|
return MatchOperand_NoMatch;
|
|
|
|
Register Reg;
|
|
if (parseRegister(Reg, RegAccess, nullptr))
|
|
return MatchOperand_ParseFail;
|
|
|
|
Operands.push_back(SystemZOperand::createAccessReg(Reg.Num,
|
|
Reg.StartLoc,
|
|
Reg.EndLoc));
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
SystemZAsmParser::OperandMatchResultTy
|
|
SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
|
|
int64_t MaxVal, bool AllowTLS) {
|
|
MCContext &Ctx = getContext();
|
|
MCStreamer &Out = getStreamer();
|
|
const MCExpr *Expr;
|
|
SMLoc StartLoc = Parser.getTok().getLoc();
|
|
if (getParser().parseExpression(Expr))
|
|
return MatchOperand_NoMatch;
|
|
|
|
// For consistency with the GNU assembler, treat immediates as offsets
|
|
// from ".".
|
|
if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
|
|
int64_t Value = CE->getValue();
|
|
if ((Value & 1) || Value < MinVal || Value > MaxVal) {
|
|
Error(StartLoc, "offset out of range");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
MCSymbol *Sym = Ctx.createTempSymbol();
|
|
Out.EmitLabel(Sym);
|
|
const MCExpr *Base = MCSymbolRefExpr::create(Sym, MCSymbolRefExpr::VK_None,
|
|
Ctx);
|
|
Expr = Value == 0 ? Base : MCBinaryExpr::createAdd(Base, Expr, Ctx);
|
|
}
|
|
|
|
// Optionally match :tls_gdcall: or :tls_ldcall: followed by a TLS symbol.
|
|
const MCExpr *Sym = nullptr;
|
|
if (AllowTLS && getLexer().is(AsmToken::Colon)) {
|
|
Parser.Lex();
|
|
|
|
if (Parser.getTok().isNot(AsmToken::Identifier)) {
|
|
Error(Parser.getTok().getLoc(), "unexpected token");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
MCSymbolRefExpr::VariantKind Kind = MCSymbolRefExpr::VK_None;
|
|
StringRef Name = Parser.getTok().getString();
|
|
if (Name == "tls_gdcall")
|
|
Kind = MCSymbolRefExpr::VK_TLSGD;
|
|
else if (Name == "tls_ldcall")
|
|
Kind = MCSymbolRefExpr::VK_TLSLDM;
|
|
else {
|
|
Error(Parser.getTok().getLoc(), "unknown TLS tag");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Parser.Lex();
|
|
|
|
if (Parser.getTok().isNot(AsmToken::Colon)) {
|
|
Error(Parser.getTok().getLoc(), "unexpected token");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
Parser.Lex();
|
|
|
|
if (Parser.getTok().isNot(AsmToken::Identifier)) {
|
|
Error(Parser.getTok().getLoc(), "unexpected token");
|
|
return MatchOperand_ParseFail;
|
|
}
|
|
|
|
StringRef Identifier = Parser.getTok().getString();
|
|
Sym = MCSymbolRefExpr::create(Ctx.getOrCreateSymbol(Identifier),
|
|
Kind, Ctx);
|
|
Parser.Lex();
|
|
}
|
|
|
|
SMLoc EndLoc =
|
|
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
|
|
|
|
if (AllowTLS)
|
|
Operands.push_back(SystemZOperand::createImmTLS(Expr, Sym,
|
|
StartLoc, EndLoc));
|
|
else
|
|
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
|
|
|
|
return MatchOperand_Success;
|
|
}
|
|
|
|
// Force static initialization.
|
|
extern "C" void LLVMInitializeSystemZAsmParser() {
|
|
RegisterMCAsmParser<SystemZAsmParser> X(TheSystemZTarget);
|
|
}
|