Files
clang-p2996/llvm/lib/Target/SystemZ/SystemZLDCleanup.cpp
Chandler Carruth 6bda14b313 Sort the remaining #include lines in include/... and lib/....
I did this a long time ago with a janky python script, but now
clang-format has built-in support for this. I fed clang-format every
line with a #include and let it re-sort things according to the precise
LLVM rules for include ordering baked into clang-format these days.

I've reverted a number of files where the results of sorting includes
isn't healthy. Either places where we have legacy code relying on
particular include ordering (where possible, I'll fix these separately)
or where we have particular formatting around #include lines that
I didn't want to disturb in this patch.

This patch is *entirely* mechanical. If you get merge conflicts or
anything, just ignore the changes in this patch and run clang-format
over your #include lines in the files.

Sorry for any noise here, but it is important to keep these things
stable. I was seeing an increasing number of patches with irrelevant
re-ordering of #include lines because clang-format was used. This patch
at least isolates that churn, makes it easy to skip when resolving
conflicts, and gets us to a clean baseline (again).

llvm-svn: 304787
2017-06-06 11:49:48 +00:00

147 lines
4.9 KiB
C++

//===-- SystemZLDCleanup.cpp - Clean up local-dynamic TLS accesses --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass combines multiple accesses to local-dynamic TLS variables so that
// the TLS base address for the module is only fetched once per execution path
// through the function.
//
//===----------------------------------------------------------------------===//
#include "SystemZMachineFunctionInfo.h"
#include "SystemZTargetMachine.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
using namespace llvm;
namespace {
class SystemZLDCleanup : public MachineFunctionPass {
public:
static char ID;
SystemZLDCleanup(const SystemZTargetMachine &tm)
: MachineFunctionPass(ID), TII(nullptr), MF(nullptr) {}
StringRef getPassName() const override {
return "SystemZ Local Dynamic TLS Access Clean-up";
}
bool runOnMachineFunction(MachineFunction &MF) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
private:
bool VisitNode(MachineDomTreeNode *Node, unsigned TLSBaseAddrReg);
MachineInstr *ReplaceTLSCall(MachineInstr *I, unsigned TLSBaseAddrReg);
MachineInstr *SetRegister(MachineInstr *I, unsigned *TLSBaseAddrReg);
const SystemZInstrInfo *TII;
MachineFunction *MF;
};
char SystemZLDCleanup::ID = 0;
} // end anonymous namespace
FunctionPass *llvm::createSystemZLDCleanupPass(SystemZTargetMachine &TM) {
return new SystemZLDCleanup(TM);
}
void SystemZLDCleanup::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool SystemZLDCleanup::runOnMachineFunction(MachineFunction &F) {
if (skipFunction(*F.getFunction()))
return false;
TII = static_cast<const SystemZInstrInfo *>(F.getSubtarget().getInstrInfo());
MF = &F;
SystemZMachineFunctionInfo* MFI = F.getInfo<SystemZMachineFunctionInfo>();
if (MFI->getNumLocalDynamicTLSAccesses() < 2) {
// No point folding accesses if there isn't at least two.
return false;
}
MachineDominatorTree *DT = &getAnalysis<MachineDominatorTree>();
return VisitNode(DT->getRootNode(), 0);
}
// Visit the dominator subtree rooted at Node in pre-order.
// If TLSBaseAddrReg is non-null, then use that to replace any
// TLS_LDCALL instructions. Otherwise, create the register
// when the first such instruction is seen, and then use it
// as we encounter more instructions.
bool SystemZLDCleanup::VisitNode(MachineDomTreeNode *Node,
unsigned TLSBaseAddrReg) {
MachineBasicBlock *BB = Node->getBlock();
bool Changed = false;
// Traverse the current block.
for (auto I = BB->begin(), E = BB->end(); I != E; ++I) {
switch (I->getOpcode()) {
case SystemZ::TLS_LDCALL:
if (TLSBaseAddrReg)
I = ReplaceTLSCall(&*I, TLSBaseAddrReg);
else
I = SetRegister(&*I, &TLSBaseAddrReg);
Changed = true;
break;
default:
break;
}
}
// Visit the children of this block in the dominator tree.
for (auto I = Node->begin(), E = Node->end(); I != E; ++I)
Changed |= VisitNode(*I, TLSBaseAddrReg);
return Changed;
}
// Replace the TLS_LDCALL instruction I with a copy from TLSBaseAddrReg,
// returning the new instruction.
MachineInstr *SystemZLDCleanup::ReplaceTLSCall(MachineInstr *I,
unsigned TLSBaseAddrReg) {
// Insert a Copy from TLSBaseAddrReg to R2.
MachineInstr *Copy = BuildMI(*I->getParent(), I, I->getDebugLoc(),
TII->get(TargetOpcode::COPY), SystemZ::R2D)
.addReg(TLSBaseAddrReg);
// Erase the TLS_LDCALL instruction.
I->eraseFromParent();
return Copy;
}
// Create a virtal register in *TLSBaseAddrReg, and populate it by
// inserting a copy instruction after I. Returns the new instruction.
MachineInstr *SystemZLDCleanup::SetRegister(MachineInstr *I,
unsigned *TLSBaseAddrReg) {
// Create a virtual register for the TLS base address.
MachineRegisterInfo &RegInfo = MF->getRegInfo();
*TLSBaseAddrReg = RegInfo.createVirtualRegister(&SystemZ::GR64BitRegClass);
// Insert a copy from R2 to TLSBaseAddrReg.
MachineInstr *Next = I->getNextNode();
MachineInstr *Copy = BuildMI(*I->getParent(), Next, I->getDebugLoc(),
TII->get(TargetOpcode::COPY), *TLSBaseAddrReg)
.addReg(SystemZ::R2D);
return Copy;
}