Files
clang-p2996/mlir/lib/ExecutionEngine/SparseTensorUtils.cpp
Aart Bik 175b9af484 [mlir][sparse] avoid reserving dense storage for ptr/idx
This avoids a rather big bug where we were reserving
dense space for the ptx/idx in the first sparse dimension.
For example, using CSR for a 140874 x 140874 matrix with
3977139 nonzero would reserve the full 19845483876 space.
This revision fixes this for now, but we need to revisit
the reservation heuristic to make this better.

Reviewed By: bixia

Differential Revision: https://reviews.llvm.org/D123166
2022-04-05 17:40:01 -07:00

1307 lines
54 KiB
C++

//===- SparseTensorUtils.cpp - Sparse Tensor Utils for MLIR execution -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements a light-weight runtime support library that is useful
// for sparse tensor manipulations. The functionality provided in this library
// is meant to simplify benchmarking, testing, and debugging MLIR code that
// operates on sparse tensors. The provided functionality is **not** part
// of core MLIR, however.
//
//===----------------------------------------------------------------------===//
#include "mlir/ExecutionEngine/SparseTensorUtils.h"
#include "mlir/ExecutionEngine/CRunnerUtils.h"
#ifdef MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS
#include <algorithm>
#include <cassert>
#include <cctype>
#include <cinttypes>
#include <cstdio>
#include <cstdlib>
#include <cstring>
#include <fstream>
#include <iostream>
#include <limits>
#include <numeric>
#include <vector>
//===----------------------------------------------------------------------===//
//
// Internal support for storing and reading sparse tensors.
//
// The following memory-resident sparse storage schemes are supported:
//
// (a) A coordinate scheme for temporarily storing and lexicographically
// sorting a sparse tensor by index (SparseTensorCOO).
//
// (b) A "one-size-fits-all" sparse tensor storage scheme defined by
// per-dimension sparse/dense annnotations together with a dimension
// ordering used by MLIR compiler-generated code (SparseTensorStorage).
//
// The following external formats are supported:
//
// (1) Matrix Market Exchange (MME): *.mtx
// https://math.nist.gov/MatrixMarket/formats.html
//
// (2) Formidable Repository of Open Sparse Tensors and Tools (FROSTT): *.tns
// http://frostt.io/tensors/file-formats.html
//
// Two public APIs are supported:
//
// (I) Methods operating on MLIR buffers (memrefs) to interact with sparse
// tensors. These methods should be used exclusively by MLIR
// compiler-generated code.
//
// (II) Methods that accept C-style data structures to interact with sparse
// tensors. These methods can be used by any external runtime that wants
// to interact with MLIR compiler-generated code.
//
// In both cases (I) and (II), the SparseTensorStorage format is externally
// only visible as an opaque pointer.
//
//===----------------------------------------------------------------------===//
namespace {
static constexpr int kColWidth = 1025;
/// A version of `operator*` on `uint64_t` which checks for overflows.
static inline uint64_t checkedMul(uint64_t lhs, uint64_t rhs) {
assert((lhs == 0 || rhs <= std::numeric_limits<uint64_t>::max() / lhs) &&
"Integer overflow");
return lhs * rhs;
}
/// A sparse tensor element in coordinate scheme (value and indices).
/// For example, a rank-1 vector element would look like
/// ({i}, a[i])
/// and a rank-5 tensor element like
/// ({i,j,k,l,m}, a[i,j,k,l,m])
template <typename V>
struct Element {
Element(const std::vector<uint64_t> &ind, V val) : indices(ind), value(val){};
std::vector<uint64_t> indices;
V value;
/// Returns true if indices of e1 < indices of e2.
static bool lexOrder(const Element<V> &e1, const Element<V> &e2) {
uint64_t rank = e1.indices.size();
assert(rank == e2.indices.size());
for (uint64_t r = 0; r < rank; r++) {
if (e1.indices[r] == e2.indices[r])
continue;
return e1.indices[r] < e2.indices[r];
}
return false;
}
};
/// A memory-resident sparse tensor in coordinate scheme (collection of
/// elements). This data structure is used to read a sparse tensor from
/// any external format into memory and sort the elements lexicographically
/// by indices before passing it back to the client (most packed storage
/// formats require the elements to appear in lexicographic index order).
template <typename V>
struct SparseTensorCOO {
public:
SparseTensorCOO(const std::vector<uint64_t> &szs, uint64_t capacity)
: sizes(szs), iteratorLocked(false), iteratorPos(0) {
if (capacity)
elements.reserve(capacity);
}
/// Adds element as indices and value.
void add(const std::vector<uint64_t> &ind, V val) {
assert(!iteratorLocked && "Attempt to add() after startIterator()");
uint64_t rank = getRank();
assert(rank == ind.size());
for (uint64_t r = 0; r < rank; r++)
assert(ind[r] < sizes[r]); // within bounds
elements.emplace_back(ind, val);
}
/// Sorts elements lexicographically by index.
void sort() {
assert(!iteratorLocked && "Attempt to sort() after startIterator()");
// TODO: we may want to cache an `isSorted` bit, to avoid
// unnecessary/redundant sorting.
std::sort(elements.begin(), elements.end(), Element<V>::lexOrder);
}
/// Returns rank.
uint64_t getRank() const { return sizes.size(); }
/// Getter for sizes array.
const std::vector<uint64_t> &getSizes() const { return sizes; }
/// Getter for elements array.
const std::vector<Element<V>> &getElements() const { return elements; }
/// Switch into iterator mode.
void startIterator() {
iteratorLocked = true;
iteratorPos = 0;
}
/// Get the next element.
const Element<V> *getNext() {
assert(iteratorLocked && "Attempt to getNext() before startIterator()");
if (iteratorPos < elements.size())
return &(elements[iteratorPos++]);
iteratorLocked = false;
return nullptr;
}
/// Factory method. Permutes the original dimensions according to
/// the given ordering and expects subsequent add() calls to honor
/// that same ordering for the given indices. The result is a
/// fully permuted coordinate scheme.
static SparseTensorCOO<V> *newSparseTensorCOO(uint64_t rank,
const uint64_t *sizes,
const uint64_t *perm,
uint64_t capacity = 0) {
std::vector<uint64_t> permsz(rank);
for (uint64_t r = 0; r < rank; r++) {
assert(sizes[r] > 0 && "Dimension size zero has trivial storage");
permsz[perm[r]] = sizes[r];
}
return new SparseTensorCOO<V>(permsz, capacity);
}
private:
const std::vector<uint64_t> sizes; // per-dimension sizes
std::vector<Element<V>> elements;
bool iteratorLocked;
unsigned iteratorPos;
};
/// Abstract base class of sparse tensor storage. Note that we use
/// function overloading to implement "partial" method specialization.
class SparseTensorStorageBase {
public:
/// Dimension size query.
virtual uint64_t getDimSize(uint64_t) const = 0;
/// Overhead storage.
virtual void getPointers(std::vector<uint64_t> **, uint64_t) { fatal("p64"); }
virtual void getPointers(std::vector<uint32_t> **, uint64_t) { fatal("p32"); }
virtual void getPointers(std::vector<uint16_t> **, uint64_t) { fatal("p16"); }
virtual void getPointers(std::vector<uint8_t> **, uint64_t) { fatal("p8"); }
virtual void getIndices(std::vector<uint64_t> **, uint64_t) { fatal("i64"); }
virtual void getIndices(std::vector<uint32_t> **, uint64_t) { fatal("i32"); }
virtual void getIndices(std::vector<uint16_t> **, uint64_t) { fatal("i16"); }
virtual void getIndices(std::vector<uint8_t> **, uint64_t) { fatal("i8"); }
/// Primary storage.
virtual void getValues(std::vector<double> **) { fatal("valf64"); }
virtual void getValues(std::vector<float> **) { fatal("valf32"); }
virtual void getValues(std::vector<int64_t> **) { fatal("vali64"); }
virtual void getValues(std::vector<int32_t> **) { fatal("vali32"); }
virtual void getValues(std::vector<int16_t> **) { fatal("vali16"); }
virtual void getValues(std::vector<int8_t> **) { fatal("vali8"); }
/// Element-wise insertion in lexicographic index order.
virtual void lexInsert(const uint64_t *, double) { fatal("insf64"); }
virtual void lexInsert(const uint64_t *, float) { fatal("insf32"); }
virtual void lexInsert(const uint64_t *, int64_t) { fatal("insi64"); }
virtual void lexInsert(const uint64_t *, int32_t) { fatal("insi32"); }
virtual void lexInsert(const uint64_t *, int16_t) { fatal("ins16"); }
virtual void lexInsert(const uint64_t *, int8_t) { fatal("insi8"); }
/// Expanded insertion.
virtual void expInsert(uint64_t *, double *, bool *, uint64_t *, uint64_t) {
fatal("expf64");
}
virtual void expInsert(uint64_t *, float *, bool *, uint64_t *, uint64_t) {
fatal("expf32");
}
virtual void expInsert(uint64_t *, int64_t *, bool *, uint64_t *, uint64_t) {
fatal("expi64");
}
virtual void expInsert(uint64_t *, int32_t *, bool *, uint64_t *, uint64_t) {
fatal("expi32");
}
virtual void expInsert(uint64_t *, int16_t *, bool *, uint64_t *, uint64_t) {
fatal("expi16");
}
virtual void expInsert(uint64_t *, int8_t *, bool *, uint64_t *, uint64_t) {
fatal("expi8");
}
/// Finishes insertion.
virtual void endInsert() = 0;
virtual ~SparseTensorStorageBase() = default;
private:
static void fatal(const char *tp) {
fprintf(stderr, "unsupported %s\n", tp);
exit(1);
}
};
/// A memory-resident sparse tensor using a storage scheme based on
/// per-dimension sparse/dense annotations. This data structure provides a
/// bufferized form of a sparse tensor type. In contrast to generating setup
/// methods for each differently annotated sparse tensor, this method provides
/// a convenient "one-size-fits-all" solution that simply takes an input tensor
/// and annotations to implement all required setup in a general manner.
template <typename P, typename I, typename V>
class SparseTensorStorage : public SparseTensorStorageBase {
public:
/// Constructs a sparse tensor storage scheme with the given dimensions,
/// permutation, and per-dimension dense/sparse annotations, using
/// the coordinate scheme tensor for the initial contents if provided.
SparseTensorStorage(const std::vector<uint64_t> &szs, const uint64_t *perm,
const DimLevelType *sparsity,
SparseTensorCOO<V> *tensor = nullptr)
: sizes(szs), rev(getRank()), idx(getRank()), pointers(getRank()),
indices(getRank()) {
uint64_t rank = getRank();
// Store "reverse" permutation.
for (uint64_t r = 0; r < rank; r++)
rev[perm[r]] = r;
// Provide hints on capacity of pointers and indices.
// TODO: needs much fine-tuning based on actual sparsity; currently
// we reserve pointer/index space based on all previous dense
// dimensions, which works well up to first sparse dim; but
// we should really use nnz and dense/sparse distribution.
bool allDense = true;
uint64_t sz = 1;
for (uint64_t r = 0; r < rank; r++) {
assert(sizes[r] > 0 && "Dimension size zero has trivial storage");
if (sparsity[r] == DimLevelType::kCompressed) {
pointers[r].reserve(sz + 1);
indices[r].reserve(sz);
sz = 1;
allDense = false;
// Prepare the pointer structure. We cannot use `appendPointer`
// here, because `isCompressedDim` won't work until after this
// preparation has been done.
pointers[r].push_back(0);
} else {
assert(sparsity[r] == DimLevelType::kDense &&
"singleton not yet supported");
sz = checkedMul(sz, sizes[r]);
}
}
// Then assign contents from coordinate scheme tensor if provided.
if (tensor) {
// Ensure both preconditions of `fromCOO`.
assert(tensor->getSizes() == sizes && "Tensor size mismatch");
tensor->sort();
// Now actually insert the `elements`.
const std::vector<Element<V>> &elements = tensor->getElements();
uint64_t nnz = elements.size();
values.reserve(nnz);
fromCOO(elements, 0, nnz, 0);
} else if (allDense) {
values.resize(sz, 0);
}
}
~SparseTensorStorage() override = default;
/// Get the rank of the tensor.
uint64_t getRank() const { return sizes.size(); }
/// Get the size of the given dimension of the tensor.
uint64_t getDimSize(uint64_t d) const override {
assert(d < getRank());
return sizes[d];
}
/// Partially specialize these getter methods based on template types.
void getPointers(std::vector<P> **out, uint64_t d) override {
assert(d < getRank());
*out = &pointers[d];
}
void getIndices(std::vector<I> **out, uint64_t d) override {
assert(d < getRank());
*out = &indices[d];
}
void getValues(std::vector<V> **out) override { *out = &values; }
/// Partially specialize lexicographical insertions based on template types.
void lexInsert(const uint64_t *cursor, V val) override {
// First, wrap up pending insertion path.
uint64_t diff = 0;
uint64_t top = 0;
if (!values.empty()) {
diff = lexDiff(cursor);
endPath(diff + 1);
top = idx[diff] + 1;
}
// Then continue with insertion path.
insPath(cursor, diff, top, val);
}
/// Partially specialize expanded insertions based on template types.
/// Note that this method resets the values/filled-switch array back
/// to all-zero/false while only iterating over the nonzero elements.
void expInsert(uint64_t *cursor, V *values, bool *filled, uint64_t *added,
uint64_t count) override {
if (count == 0)
return;
// Sort.
std::sort(added, added + count);
// Restore insertion path for first insert.
const uint64_t lastDim = getRank() - 1;
uint64_t index = added[0];
cursor[lastDim] = index;
lexInsert(cursor, values[index]);
assert(filled[index]);
values[index] = 0;
filled[index] = false;
// Subsequent insertions are quick.
for (uint64_t i = 1; i < count; i++) {
assert(index < added[i] && "non-lexicographic insertion");
index = added[i];
cursor[lastDim] = index;
insPath(cursor, lastDim, added[i - 1] + 1, values[index]);
assert(filled[index]);
values[index] = 0;
filled[index] = false;
}
}
/// Finalizes lexicographic insertions.
void endInsert() override {
if (values.empty())
finalizeSegment(0);
else
endPath(0);
}
/// Returns this sparse tensor storage scheme as a new memory-resident
/// sparse tensor in coordinate scheme with the given dimension order.
SparseTensorCOO<V> *toCOO(const uint64_t *perm) {
// Restore original order of the dimension sizes and allocate coordinate
// scheme with desired new ordering specified in perm.
uint64_t rank = getRank();
std::vector<uint64_t> orgsz(rank);
for (uint64_t r = 0; r < rank; r++)
orgsz[rev[r]] = sizes[r];
SparseTensorCOO<V> *tensor = SparseTensorCOO<V>::newSparseTensorCOO(
rank, orgsz.data(), perm, values.size());
// Populate coordinate scheme restored from old ordering and changed with
// new ordering. Rather than applying both reorderings during the recursion,
// we compute the combine permutation in advance.
std::vector<uint64_t> reord(rank);
for (uint64_t r = 0; r < rank; r++)
reord[r] = perm[rev[r]];
toCOO(*tensor, reord, 0, 0);
assert(tensor->getElements().size() == values.size());
return tensor;
}
/// Factory method. Constructs a sparse tensor storage scheme with the given
/// dimensions, permutation, and per-dimension dense/sparse annotations,
/// using the coordinate scheme tensor for the initial contents if provided.
/// In the latter case, the coordinate scheme must respect the same
/// permutation as is desired for the new sparse tensor storage.
static SparseTensorStorage<P, I, V> *
newSparseTensor(uint64_t rank, const uint64_t *shape, const uint64_t *perm,
const DimLevelType *sparsity, SparseTensorCOO<V> *tensor) {
SparseTensorStorage<P, I, V> *n = nullptr;
if (tensor) {
assert(tensor->getRank() == rank);
for (uint64_t r = 0; r < rank; r++)
assert(shape[r] == 0 || shape[r] == tensor->getSizes()[perm[r]]);
n = new SparseTensorStorage<P, I, V>(tensor->getSizes(), perm, sparsity,
tensor);
} else {
std::vector<uint64_t> permsz(rank);
for (uint64_t r = 0; r < rank; r++) {
assert(shape[r] > 0 && "Dimension size zero has trivial storage");
permsz[perm[r]] = shape[r];
}
n = new SparseTensorStorage<P, I, V>(permsz, perm, sparsity);
}
return n;
}
private:
/// Appends an arbitrary new position to `pointers[d]`. This method
/// checks that `pos` is representable in the `P` type; however, it
/// does not check that `pos` is semantically valid (i.e., larger than
/// the previous position and smaller than `indices[d].capacity()`).
inline void appendPointer(uint64_t d, uint64_t pos, uint64_t count = 1) {
assert(isCompressedDim(d));
assert(pos <= std::numeric_limits<P>::max() &&
"Pointer value is too large for the P-type");
pointers[d].insert(pointers[d].end(), count, static_cast<P>(pos));
}
/// Appends index `i` to dimension `d`, in the semantically general
/// sense. For non-dense dimensions, that means appending to the
/// `indices[d]` array, checking that `i` is representable in the `I`
/// type; however, we do not verify other semantic requirements (e.g.,
/// that `i` is in bounds for `sizes[d]`, and not previously occurring
/// in the same segment). For dense dimensions, this method instead
/// appends the appropriate number of zeros to the `values` array,
/// where `full` is the number of "entries" already written to `values`
/// for this segment (aka one after the highest index previously appended).
void appendIndex(uint64_t d, uint64_t full, uint64_t i) {
if (isCompressedDim(d)) {
assert(i <= std::numeric_limits<I>::max() &&
"Index value is too large for the I-type");
indices[d].push_back(static_cast<I>(i));
} else { // Dense dimension.
assert(i >= full && "Index was already filled");
if (i == full)
return; // Short-circuit, since it'll be a nop.
if (d + 1 == getRank())
values.insert(values.end(), i - full, 0);
else
finalizeSegment(d + 1, 0, i - full);
}
}
/// Initializes sparse tensor storage scheme from a memory-resident sparse
/// tensor in coordinate scheme. This method prepares the pointers and
/// indices arrays under the given per-dimension dense/sparse annotations.
///
/// Preconditions:
/// (1) the `elements` must be lexicographically sorted.
/// (2) the indices of every element are valid for `sizes` (equal rank
/// and pointwise less-than).
void fromCOO(const std::vector<Element<V>> &elements, uint64_t lo,
uint64_t hi, uint64_t d) {
// Once dimensions are exhausted, insert the numerical values.
assert(d <= getRank() && hi <= elements.size());
if (d == getRank()) {
assert(lo < hi);
values.push_back(elements[lo].value);
return;
}
// Visit all elements in this interval.
uint64_t full = 0;
while (lo < hi) { // If `hi` is unchanged, then `lo < elements.size()`.
// Find segment in interval with same index elements in this dimension.
uint64_t i = elements[lo].indices[d];
uint64_t seg = lo + 1;
while (seg < hi && elements[seg].indices[d] == i)
seg++;
// Handle segment in interval for sparse or dense dimension.
appendIndex(d, full, i);
full = i + 1;
fromCOO(elements, lo, seg, d + 1);
// And move on to next segment in interval.
lo = seg;
}
// Finalize the sparse pointer structure at this dimension.
finalizeSegment(d, full);
}
/// Stores the sparse tensor storage scheme into a memory-resident sparse
/// tensor in coordinate scheme.
void toCOO(SparseTensorCOO<V> &tensor, std::vector<uint64_t> &reord,
uint64_t pos, uint64_t d) {
assert(d <= getRank());
if (d == getRank()) {
assert(pos < values.size());
tensor.add(idx, values[pos]);
} else if (isCompressedDim(d)) {
// Sparse dimension.
for (uint64_t ii = pointers[d][pos]; ii < pointers[d][pos + 1]; ii++) {
idx[reord[d]] = indices[d][ii];
toCOO(tensor, reord, ii, d + 1);
}
} else {
// Dense dimension.
for (uint64_t i = 0, sz = sizes[d], off = pos * sz; i < sz; i++) {
idx[reord[d]] = i;
toCOO(tensor, reord, off + i, d + 1);
}
}
}
/// Finalize the sparse pointer structure at this dimension.
void finalizeSegment(uint64_t d, uint64_t full = 0, uint64_t count = 1) {
if (count == 0)
return; // Short-circuit, since it'll be a nop.
if (isCompressedDim(d)) {
appendPointer(d, indices[d].size(), count);
} else { // Dense dimension.
const uint64_t sz = sizes[d];
assert(sz >= full && "Segment is overfull");
// Assuming we checked for overflows in the constructor, then this
// multiply will never overflow.
count *= (sz - full);
// For dense storage we must enumerate all the remaining coordinates
// in this dimension (i.e., coordinates after the last non-zero
// element), and either fill in their zero values or else recurse
// to finalize some deeper dimension.
if (d + 1 == getRank())
values.insert(values.end(), count, 0);
else
finalizeSegment(d + 1, 0, count);
}
}
/// Wraps up a single insertion path, inner to outer.
void endPath(uint64_t diff) {
uint64_t rank = getRank();
assert(diff <= rank);
for (uint64_t i = 0; i < rank - diff; i++) {
const uint64_t d = rank - i - 1;
finalizeSegment(d, idx[d] + 1);
}
}
/// Continues a single insertion path, outer to inner.
void insPath(const uint64_t *cursor, uint64_t diff, uint64_t top, V val) {
uint64_t rank = getRank();
assert(diff < rank);
for (uint64_t d = diff; d < rank; d++) {
uint64_t i = cursor[d];
appendIndex(d, top, i);
top = 0;
idx[d] = i;
}
values.push_back(val);
}
/// Finds the lexicographic differing dimension.
uint64_t lexDiff(const uint64_t *cursor) const {
for (uint64_t r = 0, rank = getRank(); r < rank; r++)
if (cursor[r] > idx[r])
return r;
else
assert(cursor[r] == idx[r] && "non-lexicographic insertion");
assert(0 && "duplication insertion");
return -1u;
}
/// Returns true if dimension is compressed.
inline bool isCompressedDim(uint64_t d) const {
assert(d < getRank());
return (!pointers[d].empty());
}
private:
const std::vector<uint64_t> sizes; // per-dimension sizes
std::vector<uint64_t> rev; // "reverse" permutation
std::vector<uint64_t> idx; // index cursor
std::vector<std::vector<P>> pointers;
std::vector<std::vector<I>> indices;
std::vector<V> values;
};
/// Helper to convert string to lower case.
static char *toLower(char *token) {
for (char *c = token; *c; c++)
*c = tolower(*c);
return token;
}
/// Read the MME header of a general sparse matrix of type real.
static void readMMEHeader(FILE *file, char *filename, char *line,
uint64_t *idata, bool *isSymmetric) {
char header[64];
char object[64];
char format[64];
char field[64];
char symmetry[64];
// Read header line.
if (fscanf(file, "%63s %63s %63s %63s %63s\n", header, object, format, field,
symmetry) != 5) {
fprintf(stderr, "Corrupt header in %s\n", filename);
exit(1);
}
*isSymmetric = (strcmp(toLower(symmetry), "symmetric") == 0);
// Make sure this is a general sparse matrix.
if (strcmp(toLower(header), "%%matrixmarket") ||
strcmp(toLower(object), "matrix") ||
strcmp(toLower(format), "coordinate") || strcmp(toLower(field), "real") ||
(strcmp(toLower(symmetry), "general") && !(*isSymmetric))) {
fprintf(stderr,
"Cannot find a general sparse matrix with type real in %s\n",
filename);
exit(1);
}
// Skip comments.
while (true) {
if (!fgets(line, kColWidth, file)) {
fprintf(stderr, "Cannot find data in %s\n", filename);
exit(1);
}
if (line[0] != '%')
break;
}
// Next line contains M N NNZ.
idata[0] = 2; // rank
if (sscanf(line, "%" PRIu64 "%" PRIu64 "%" PRIu64 "\n", idata + 2, idata + 3,
idata + 1) != 3) {
fprintf(stderr, "Cannot find size in %s\n", filename);
exit(1);
}
}
/// Read the "extended" FROSTT header. Although not part of the documented
/// format, we assume that the file starts with optional comments followed
/// by two lines that define the rank, the number of nonzeros, and the
/// dimensions sizes (one per rank) of the sparse tensor.
static void readExtFROSTTHeader(FILE *file, char *filename, char *line,
uint64_t *idata) {
// Skip comments.
while (true) {
if (!fgets(line, kColWidth, file)) {
fprintf(stderr, "Cannot find data in %s\n", filename);
exit(1);
}
if (line[0] != '#')
break;
}
// Next line contains RANK and NNZ.
if (sscanf(line, "%" PRIu64 "%" PRIu64 "\n", idata, idata + 1) != 2) {
fprintf(stderr, "Cannot find metadata in %s\n", filename);
exit(1);
}
// Followed by a line with the dimension sizes (one per rank).
for (uint64_t r = 0; r < idata[0]; r++) {
if (fscanf(file, "%" PRIu64, idata + 2 + r) != 1) {
fprintf(stderr, "Cannot find dimension size %s\n", filename);
exit(1);
}
}
fgets(line, kColWidth, file); // end of line
}
/// Reads a sparse tensor with the given filename into a memory-resident
/// sparse tensor in coordinate scheme.
template <typename V>
static SparseTensorCOO<V> *openSparseTensorCOO(char *filename, uint64_t rank,
const uint64_t *shape,
const uint64_t *perm) {
// Open the file.
FILE *file = fopen(filename, "r");
if (!file) {
assert(filename && "Received nullptr for filename");
fprintf(stderr, "Cannot find file %s\n", filename);
exit(1);
}
// Perform some file format dependent set up.
char line[kColWidth];
uint64_t idata[512];
bool isSymmetric = false;
if (strstr(filename, ".mtx")) {
readMMEHeader(file, filename, line, idata, &isSymmetric);
} else if (strstr(filename, ".tns")) {
readExtFROSTTHeader(file, filename, line, idata);
} else {
fprintf(stderr, "Unknown format %s\n", filename);
exit(1);
}
// Prepare sparse tensor object with per-dimension sizes
// and the number of nonzeros as initial capacity.
assert(rank == idata[0] && "rank mismatch");
uint64_t nnz = idata[1];
for (uint64_t r = 0; r < rank; r++)
assert((shape[r] == 0 || shape[r] == idata[2 + r]) &&
"dimension size mismatch");
SparseTensorCOO<V> *tensor =
SparseTensorCOO<V>::newSparseTensorCOO(rank, idata + 2, perm, nnz);
// Read all nonzero elements.
std::vector<uint64_t> indices(rank);
for (uint64_t k = 0; k < nnz; k++) {
if (!fgets(line, kColWidth, file)) {
fprintf(stderr, "Cannot find next line of data in %s\n", filename);
exit(1);
}
char *linePtr = line;
for (uint64_t r = 0; r < rank; r++) {
uint64_t idx = strtoul(linePtr, &linePtr, 10);
// Add 0-based index.
indices[perm[r]] = idx - 1;
}
// The external formats always store the numerical values with the type
// double, but we cast these values to the sparse tensor object type.
double value = strtod(linePtr, &linePtr);
tensor->add(indices, value);
// We currently chose to deal with symmetric matrices by fully constructing
// them. In the future, we may want to make symmetry implicit for storage
// reasons.
if (isSymmetric && indices[0] != indices[1])
tensor->add({indices[1], indices[0]}, value);
}
// Close the file and return tensor.
fclose(file);
return tensor;
}
/// Writes the sparse tensor to extended FROSTT format.
template <typename V>
static void outSparseTensor(void *tensor, void *dest, bool sort) {
assert(tensor && dest);
auto coo = static_cast<SparseTensorCOO<V> *>(tensor);
if (sort)
coo->sort();
char *filename = static_cast<char *>(dest);
auto &sizes = coo->getSizes();
auto &elements = coo->getElements();
uint64_t rank = coo->getRank();
uint64_t nnz = elements.size();
std::fstream file;
file.open(filename, std::ios_base::out | std::ios_base::trunc);
assert(file.is_open());
file << "; extended FROSTT format\n" << rank << " " << nnz << std::endl;
for (uint64_t r = 0; r < rank - 1; r++)
file << sizes[r] << " ";
file << sizes[rank - 1] << std::endl;
for (uint64_t i = 0; i < nnz; i++) {
auto &idx = elements[i].indices;
for (uint64_t r = 0; r < rank; r++)
file << (idx[r] + 1) << " ";
file << elements[i].value << std::endl;
}
file.flush();
file.close();
assert(file.good());
}
/// Initializes sparse tensor from an external COO-flavored format.
template <typename V>
static SparseTensorStorage<uint64_t, uint64_t, V> *
toMLIRSparseTensor(uint64_t rank, uint64_t nse, uint64_t *shape, V *values,
uint64_t *indices, uint64_t *perm, uint8_t *sparse) {
const DimLevelType *sparsity = (DimLevelType *)(sparse);
#ifndef NDEBUG
// Verify that perm is a permutation of 0..(rank-1).
std::vector<uint64_t> order(perm, perm + rank);
std::sort(order.begin(), order.end());
for (uint64_t i = 0; i < rank; ++i) {
if (i != order[i]) {
fprintf(stderr, "Not a permutation of 0..%" PRIu64 "\n", rank);
exit(1);
}
}
// Verify that the sparsity values are supported.
for (uint64_t i = 0; i < rank; ++i) {
if (sparsity[i] != DimLevelType::kDense &&
sparsity[i] != DimLevelType::kCompressed) {
fprintf(stderr, "Unsupported sparsity value %d\n",
static_cast<int>(sparsity[i]));
exit(1);
}
}
#endif
// Convert external format to internal COO.
auto *coo = SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm, nse);
std::vector<uint64_t> idx(rank);
for (uint64_t i = 0, base = 0; i < nse; i++) {
for (uint64_t r = 0; r < rank; r++)
idx[perm[r]] = indices[base + r];
coo->add(idx, values[i]);
base += rank;
}
// Return sparse tensor storage format as opaque pointer.
auto *tensor = SparseTensorStorage<uint64_t, uint64_t, V>::newSparseTensor(
rank, shape, perm, sparsity, coo);
delete coo;
return tensor;
}
/// Converts a sparse tensor to an external COO-flavored format.
template <typename V>
static void fromMLIRSparseTensor(void *tensor, uint64_t *pRank, uint64_t *pNse,
uint64_t **pShape, V **pValues,
uint64_t **pIndices) {
auto sparseTensor =
static_cast<SparseTensorStorage<uint64_t, uint64_t, V> *>(tensor);
uint64_t rank = sparseTensor->getRank();
std::vector<uint64_t> perm(rank);
std::iota(perm.begin(), perm.end(), 0);
SparseTensorCOO<V> *coo = sparseTensor->toCOO(perm.data());
const std::vector<Element<V>> &elements = coo->getElements();
uint64_t nse = elements.size();
uint64_t *shape = new uint64_t[rank];
for (uint64_t i = 0; i < rank; i++)
shape[i] = coo->getSizes()[i];
V *values = new V[nse];
uint64_t *indices = new uint64_t[rank * nse];
for (uint64_t i = 0, base = 0; i < nse; i++) {
values[i] = elements[i].value;
for (uint64_t j = 0; j < rank; j++)
indices[base + j] = elements[i].indices[j];
base += rank;
}
delete coo;
*pRank = rank;
*pNse = nse;
*pShape = shape;
*pValues = values;
*pIndices = indices;
}
} // namespace
extern "C" {
//===----------------------------------------------------------------------===//
//
// Public API with methods that operate on MLIR buffers (memrefs) to interact
// with sparse tensors, which are only visible as opaque pointers externally.
// These methods should be used exclusively by MLIR compiler-generated code.
//
// Some macro magic is used to generate implementations for all required type
// combinations that can be called from MLIR compiler-generated code.
//
//===----------------------------------------------------------------------===//
#define CASE(p, i, v, P, I, V) \
if (ptrTp == (p) && indTp == (i) && valTp == (v)) { \
SparseTensorCOO<V> *coo = nullptr; \
if (action <= Action::kFromCOO) { \
if (action == Action::kFromFile) { \
char *filename = static_cast<char *>(ptr); \
coo = openSparseTensorCOO<V>(filename, rank, shape, perm); \
} else if (action == Action::kFromCOO) { \
coo = static_cast<SparseTensorCOO<V> *>(ptr); \
} else { \
assert(action == Action::kEmpty); \
} \
auto *tensor = SparseTensorStorage<P, I, V>::newSparseTensor( \
rank, shape, perm, sparsity, coo); \
if (action == Action::kFromFile) \
delete coo; \
return tensor; \
} \
if (action == Action::kEmptyCOO) \
return SparseTensorCOO<V>::newSparseTensorCOO(rank, shape, perm); \
coo = static_cast<SparseTensorStorage<P, I, V> *>(ptr)->toCOO(perm); \
if (action == Action::kToIterator) { \
coo->startIterator(); \
} else { \
assert(action == Action::kToCOO); \
} \
return coo; \
}
#define CASE_SECSAME(p, v, P, V) CASE(p, p, v, P, P, V)
#define IMPL_SPARSEVALUES(NAME, TYPE, LIB) \
void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor) { \
assert(ref &&tensor); \
std::vector<TYPE> *v; \
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v); \
ref->basePtr = ref->data = v->data(); \
ref->offset = 0; \
ref->sizes[0] = v->size(); \
ref->strides[0] = 1; \
}
#define IMPL_GETOVERHEAD(NAME, TYPE, LIB) \
void _mlir_ciface_##NAME(StridedMemRefType<TYPE, 1> *ref, void *tensor, \
index_type d) { \
assert(ref &&tensor); \
std::vector<TYPE> *v; \
static_cast<SparseTensorStorageBase *>(tensor)->LIB(&v, d); \
ref->basePtr = ref->data = v->data(); \
ref->offset = 0; \
ref->sizes[0] = v->size(); \
ref->strides[0] = 1; \
}
#define IMPL_ADDELT(NAME, TYPE) \
void *_mlir_ciface_##NAME(void *tensor, TYPE value, \
StridedMemRefType<index_type, 1> *iref, \
StridedMemRefType<index_type, 1> *pref) { \
assert(tensor &&iref &&pref); \
assert(iref->strides[0] == 1 && pref->strides[0] == 1); \
assert(iref->sizes[0] == pref->sizes[0]); \
const index_type *indx = iref->data + iref->offset; \
const index_type *perm = pref->data + pref->offset; \
uint64_t isize = iref->sizes[0]; \
std::vector<index_type> indices(isize); \
for (uint64_t r = 0; r < isize; r++) \
indices[perm[r]] = indx[r]; \
static_cast<SparseTensorCOO<TYPE> *>(tensor)->add(indices, value); \
return tensor; \
}
#define IMPL_GETNEXT(NAME, V) \
bool _mlir_ciface_##NAME(void *tensor, \
StridedMemRefType<index_type, 1> *iref, \
StridedMemRefType<V, 0> *vref) { \
assert(tensor &&iref &&vref); \
assert(iref->strides[0] == 1); \
index_type *indx = iref->data + iref->offset; \
V *value = vref->data + vref->offset; \
const uint64_t isize = iref->sizes[0]; \
auto iter = static_cast<SparseTensorCOO<V> *>(tensor); \
const Element<V> *elem = iter->getNext(); \
if (elem == nullptr) \
return false; \
for (uint64_t r = 0; r < isize; r++) \
indx[r] = elem->indices[r]; \
*value = elem->value; \
return true; \
}
#define IMPL_LEXINSERT(NAME, V) \
void _mlir_ciface_##NAME(void *tensor, \
StridedMemRefType<index_type, 1> *cref, V val) { \
assert(tensor &&cref); \
assert(cref->strides[0] == 1); \
index_type *cursor = cref->data + cref->offset; \
assert(cursor); \
static_cast<SparseTensorStorageBase *>(tensor)->lexInsert(cursor, val); \
}
#define IMPL_EXPINSERT(NAME, V) \
void _mlir_ciface_##NAME( \
void *tensor, StridedMemRefType<index_type, 1> *cref, \
StridedMemRefType<V, 1> *vref, StridedMemRefType<bool, 1> *fref, \
StridedMemRefType<index_type, 1> *aref, index_type count) { \
assert(tensor &&cref &&vref &&fref &&aref); \
assert(cref->strides[0] == 1); \
assert(vref->strides[0] == 1); \
assert(fref->strides[0] == 1); \
assert(aref->strides[0] == 1); \
assert(vref->sizes[0] == fref->sizes[0]); \
index_type *cursor = cref->data + cref->offset; \
V *values = vref->data + vref->offset; \
bool *filled = fref->data + fref->offset; \
index_type *added = aref->data + aref->offset; \
static_cast<SparseTensorStorageBase *>(tensor)->expInsert( \
cursor, values, filled, added, count); \
}
// Assume index_type is in fact uint64_t, so that _mlir_ciface_newSparseTensor
// can safely rewrite kIndex to kU64. We make this assertion to guarantee
// that this file cannot get out of sync with its header.
static_assert(std::is_same<index_type, uint64_t>::value,
"Expected index_type == uint64_t");
/// Constructs a new sparse tensor. This is the "swiss army knife"
/// method for materializing sparse tensors into the computation.
///
/// Action:
/// kEmpty = returns empty storage to fill later
/// kFromFile = returns storage, where ptr contains filename to read
/// kFromCOO = returns storage, where ptr contains coordinate scheme to assign
/// kEmptyCOO = returns empty coordinate scheme to fill and use with kFromCOO
/// kToCOO = returns coordinate scheme from storage in ptr to use with kFromCOO
/// kToIterator = returns iterator from storage in ptr (call getNext() to use)
void *
_mlir_ciface_newSparseTensor(StridedMemRefType<DimLevelType, 1> *aref, // NOLINT
StridedMemRefType<index_type, 1> *sref,
StridedMemRefType<index_type, 1> *pref,
OverheadType ptrTp, OverheadType indTp,
PrimaryType valTp, Action action, void *ptr) {
assert(aref && sref && pref);
assert(aref->strides[0] == 1 && sref->strides[0] == 1 &&
pref->strides[0] == 1);
assert(aref->sizes[0] == sref->sizes[0] && sref->sizes[0] == pref->sizes[0]);
const DimLevelType *sparsity = aref->data + aref->offset;
const index_type *shape = sref->data + sref->offset;
const index_type *perm = pref->data + pref->offset;
uint64_t rank = aref->sizes[0];
// Rewrite kIndex to kU64, to avoid introducing a bunch of new cases.
// This is safe because of the static_assert above.
if (ptrTp == OverheadType::kIndex)
ptrTp = OverheadType::kU64;
if (indTp == OverheadType::kIndex)
indTp = OverheadType::kU64;
// Double matrices with all combinations of overhead storage.
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF64, uint64_t,
uint64_t, double);
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF64, uint64_t,
uint32_t, double);
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF64, uint64_t,
uint16_t, double);
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF64, uint64_t,
uint8_t, double);
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF64, uint32_t,
uint64_t, double);
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF64, uint32_t,
uint32_t, double);
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF64, uint32_t,
uint16_t, double);
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF64, uint32_t,
uint8_t, double);
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF64, uint16_t,
uint64_t, double);
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF64, uint16_t,
uint32_t, double);
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF64, uint16_t,
uint16_t, double);
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF64, uint16_t,
uint8_t, double);
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF64, uint8_t,
uint64_t, double);
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF64, uint8_t,
uint32_t, double);
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF64, uint8_t,
uint16_t, double);
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF64, uint8_t,
uint8_t, double);
// Float matrices with all combinations of overhead storage.
CASE(OverheadType::kU64, OverheadType::kU64, PrimaryType::kF32, uint64_t,
uint64_t, float);
CASE(OverheadType::kU64, OverheadType::kU32, PrimaryType::kF32, uint64_t,
uint32_t, float);
CASE(OverheadType::kU64, OverheadType::kU16, PrimaryType::kF32, uint64_t,
uint16_t, float);
CASE(OverheadType::kU64, OverheadType::kU8, PrimaryType::kF32, uint64_t,
uint8_t, float);
CASE(OverheadType::kU32, OverheadType::kU64, PrimaryType::kF32, uint32_t,
uint64_t, float);
CASE(OverheadType::kU32, OverheadType::kU32, PrimaryType::kF32, uint32_t,
uint32_t, float);
CASE(OverheadType::kU32, OverheadType::kU16, PrimaryType::kF32, uint32_t,
uint16_t, float);
CASE(OverheadType::kU32, OverheadType::kU8, PrimaryType::kF32, uint32_t,
uint8_t, float);
CASE(OverheadType::kU16, OverheadType::kU64, PrimaryType::kF32, uint16_t,
uint64_t, float);
CASE(OverheadType::kU16, OverheadType::kU32, PrimaryType::kF32, uint16_t,
uint32_t, float);
CASE(OverheadType::kU16, OverheadType::kU16, PrimaryType::kF32, uint16_t,
uint16_t, float);
CASE(OverheadType::kU16, OverheadType::kU8, PrimaryType::kF32, uint16_t,
uint8_t, float);
CASE(OverheadType::kU8, OverheadType::kU64, PrimaryType::kF32, uint8_t,
uint64_t, float);
CASE(OverheadType::kU8, OverheadType::kU32, PrimaryType::kF32, uint8_t,
uint32_t, float);
CASE(OverheadType::kU8, OverheadType::kU16, PrimaryType::kF32, uint8_t,
uint16_t, float);
CASE(OverheadType::kU8, OverheadType::kU8, PrimaryType::kF32, uint8_t,
uint8_t, float);
// Integral matrices with both overheads of the same type.
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI64, uint64_t, int64_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI32, uint64_t, int32_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI16, uint64_t, int16_t);
CASE_SECSAME(OverheadType::kU64, PrimaryType::kI8, uint64_t, int8_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI32, uint32_t, int32_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI16, uint32_t, int16_t);
CASE_SECSAME(OverheadType::kU32, PrimaryType::kI8, uint32_t, int8_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI32, uint16_t, int32_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI16, uint16_t, int16_t);
CASE_SECSAME(OverheadType::kU16, PrimaryType::kI8, uint16_t, int8_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI32, uint8_t, int32_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI16, uint8_t, int16_t);
CASE_SECSAME(OverheadType::kU8, PrimaryType::kI8, uint8_t, int8_t);
// Unsupported case (add above if needed).
fputs("unsupported combination of types\n", stderr);
exit(1);
}
/// Methods that provide direct access to pointers.
IMPL_GETOVERHEAD(sparsePointers, index_type, getPointers)
IMPL_GETOVERHEAD(sparsePointers64, uint64_t, getPointers)
IMPL_GETOVERHEAD(sparsePointers32, uint32_t, getPointers)
IMPL_GETOVERHEAD(sparsePointers16, uint16_t, getPointers)
IMPL_GETOVERHEAD(sparsePointers8, uint8_t, getPointers)
/// Methods that provide direct access to indices.
IMPL_GETOVERHEAD(sparseIndices, index_type, getIndices)
IMPL_GETOVERHEAD(sparseIndices64, uint64_t, getIndices)
IMPL_GETOVERHEAD(sparseIndices32, uint32_t, getIndices)
IMPL_GETOVERHEAD(sparseIndices16, uint16_t, getIndices)
IMPL_GETOVERHEAD(sparseIndices8, uint8_t, getIndices)
/// Methods that provide direct access to values.
IMPL_SPARSEVALUES(sparseValuesF64, double, getValues)
IMPL_SPARSEVALUES(sparseValuesF32, float, getValues)
IMPL_SPARSEVALUES(sparseValuesI64, int64_t, getValues)
IMPL_SPARSEVALUES(sparseValuesI32, int32_t, getValues)
IMPL_SPARSEVALUES(sparseValuesI16, int16_t, getValues)
IMPL_SPARSEVALUES(sparseValuesI8, int8_t, getValues)
/// Helper to add value to coordinate scheme, one per value type.
IMPL_ADDELT(addEltF64, double)
IMPL_ADDELT(addEltF32, float)
IMPL_ADDELT(addEltI64, int64_t)
IMPL_ADDELT(addEltI32, int32_t)
IMPL_ADDELT(addEltI16, int16_t)
IMPL_ADDELT(addEltI8, int8_t)
/// Helper to enumerate elements of coordinate scheme, one per value type.
IMPL_GETNEXT(getNextF64, double)
IMPL_GETNEXT(getNextF32, float)
IMPL_GETNEXT(getNextI64, int64_t)
IMPL_GETNEXT(getNextI32, int32_t)
IMPL_GETNEXT(getNextI16, int16_t)
IMPL_GETNEXT(getNextI8, int8_t)
/// Insert elements in lexicographical index order, one per value type.
IMPL_LEXINSERT(lexInsertF64, double)
IMPL_LEXINSERT(lexInsertF32, float)
IMPL_LEXINSERT(lexInsertI64, int64_t)
IMPL_LEXINSERT(lexInsertI32, int32_t)
IMPL_LEXINSERT(lexInsertI16, int16_t)
IMPL_LEXINSERT(lexInsertI8, int8_t)
/// Insert using expansion, one per value type.
IMPL_EXPINSERT(expInsertF64, double)
IMPL_EXPINSERT(expInsertF32, float)
IMPL_EXPINSERT(expInsertI64, int64_t)
IMPL_EXPINSERT(expInsertI32, int32_t)
IMPL_EXPINSERT(expInsertI16, int16_t)
IMPL_EXPINSERT(expInsertI8, int8_t)
#undef CASE
#undef IMPL_SPARSEVALUES
#undef IMPL_GETOVERHEAD
#undef IMPL_ADDELT
#undef IMPL_GETNEXT
#undef IMPL_LEXINSERT
#undef IMPL_EXPINSERT
/// Output a sparse tensor, one per value type.
void outSparseTensorF64(void *tensor, void *dest, bool sort) {
return outSparseTensor<double>(tensor, dest, sort);
}
void outSparseTensorF32(void *tensor, void *dest, bool sort) {
return outSparseTensor<float>(tensor, dest, sort);
}
void outSparseTensorI64(void *tensor, void *dest, bool sort) {
return outSparseTensor<int64_t>(tensor, dest, sort);
}
void outSparseTensorI32(void *tensor, void *dest, bool sort) {
return outSparseTensor<int32_t>(tensor, dest, sort);
}
void outSparseTensorI16(void *tensor, void *dest, bool sort) {
return outSparseTensor<int16_t>(tensor, dest, sort);
}
void outSparseTensorI8(void *tensor, void *dest, bool sort) {
return outSparseTensor<int8_t>(tensor, dest, sort);
}
//===----------------------------------------------------------------------===//
//
// Public API with methods that accept C-style data structures to interact
// with sparse tensors, which are only visible as opaque pointers externally.
// These methods can be used both by MLIR compiler-generated code as well as by
// an external runtime that wants to interact with MLIR compiler-generated code.
//
//===----------------------------------------------------------------------===//
/// Helper method to read a sparse tensor filename from the environment,
/// defined with the naming convention ${TENSOR0}, ${TENSOR1}, etc.
char *getTensorFilename(index_type id) {
char var[80];
sprintf(var, "TENSOR%" PRIu64, id);
char *env = getenv(var);
if (!env) {
fprintf(stderr, "Environment variable %s is not set\n", var);
exit(1);
}
return env;
}
/// Returns size of sparse tensor in given dimension.
index_type sparseDimSize(void *tensor, index_type d) {
return static_cast<SparseTensorStorageBase *>(tensor)->getDimSize(d);
}
/// Finalizes lexicographic insertions.
void endInsert(void *tensor) {
return static_cast<SparseTensorStorageBase *>(tensor)->endInsert();
}
/// Releases sparse tensor storage.
void delSparseTensor(void *tensor) {
delete static_cast<SparseTensorStorageBase *>(tensor);
}
/// Releases sparse tensor coordinate scheme.
#define IMPL_DELCOO(VNAME, V) \
void delSparseTensorCOO##VNAME(void *coo) { \
delete static_cast<SparseTensorCOO<V> *>(coo); \
}
IMPL_DELCOO(F64, double)
IMPL_DELCOO(F32, float)
IMPL_DELCOO(I64, int64_t)
IMPL_DELCOO(I32, int32_t)
IMPL_DELCOO(I16, int16_t)
IMPL_DELCOO(I8, int8_t)
#undef IMPL_DELCOO
/// Initializes sparse tensor from a COO-flavored format expressed using C-style
/// data structures. The expected parameters are:
///
/// rank: rank of tensor
/// nse: number of specified elements (usually the nonzeros)
/// shape: array with dimension size for each rank
/// values: a "nse" array with values for all specified elements
/// indices: a flat "nse x rank" array with indices for all specified elements
/// perm: the permutation of the dimensions in the storage
/// sparse: the sparsity for the dimensions
///
/// For example, the sparse matrix
/// | 1.0 0.0 0.0 |
/// | 0.0 5.0 3.0 |
/// can be passed as
/// rank = 2
/// nse = 3
/// shape = [2, 3]
/// values = [1.0, 5.0, 3.0]
/// indices = [ 0, 0, 1, 1, 1, 2]
//
// TODO: generalize beyond 64-bit indices.
//
void *convertToMLIRSparseTensorF64(uint64_t rank, uint64_t nse, uint64_t *shape,
double *values, uint64_t *indices,
uint64_t *perm, uint8_t *sparse) {
return toMLIRSparseTensor<double>(rank, nse, shape, values, indices, perm,
sparse);
}
void *convertToMLIRSparseTensorF32(uint64_t rank, uint64_t nse, uint64_t *shape,
float *values, uint64_t *indices,
uint64_t *perm, uint8_t *sparse) {
return toMLIRSparseTensor<float>(rank, nse, shape, values, indices, perm,
sparse);
}
/// Converts a sparse tensor to COO-flavored format expressed using C-style
/// data structures. The expected output parameters are pointers for these
/// values:
///
/// rank: rank of tensor
/// nse: number of specified elements (usually the nonzeros)
/// shape: array with dimension size for each rank
/// values: a "nse" array with values for all specified elements
/// indices: a flat "nse x rank" array with indices for all specified elements
///
/// The input is a pointer to SparseTensorStorage<P, I, V>, typically returned
/// from convertToMLIRSparseTensor.
///
// TODO: Currently, values are copied from SparseTensorStorage to
// SparseTensorCOO, then to the output. We may want to reduce the number of
// copies.
//
// TODO: generalize beyond 64-bit indices, no dim ordering, all dimensions
// compressed
//
void convertFromMLIRSparseTensorF64(void *tensor, uint64_t *pRank,
uint64_t *pNse, uint64_t **pShape,
double **pValues, uint64_t **pIndices) {
fromMLIRSparseTensor<double>(tensor, pRank, pNse, pShape, pValues, pIndices);
}
void convertFromMLIRSparseTensorF32(void *tensor, uint64_t *pRank,
uint64_t *pNse, uint64_t **pShape,
float **pValues, uint64_t **pIndices) {
fromMLIRSparseTensor<float>(tensor, pRank, pNse, pShape, pValues, pIndices);
}
} // extern "C"
#endif // MLIR_CRUNNERUTILS_DEFINE_FUNCTIONS