Occupancy (i.e., the number of waves per EU) depends, in addition to register usage, on per-workgroup LDS usage as well as on the range of possible workgroup sizes. Mirroring the latter, occupancy should therefore be expressed as a range since different group sizes generally yield different achievable occupancies. `getOccupancyWithLocalMemSize` currently returns a scalar occupancy based on the maximum workgroup size and LDS usage. With respect to the workgroup size range, this scalar can be the minimum, the maximum, or neither of the two of the range of achievable occupancies. This commit fixes the function by making it compute and return the range of achievable occupancies w.r.t. workgroup size and LDS usage; it also renames it to `getOccupancyWithWorkGroupSizes` since it is the range of workgroup sizes that produces the range of achievable occupancies. Computing the achievable occupancy range is surprisingly involved. Minimum/maximum workgroup sizes do not necessarily yield maximum/minimum occupancies i.e., sometimes workgroup sizes inside the range yield the occupancy bounds. The implementation finds these sizes in constant time; heavy documentation explains the rationale behind the sometimes relatively obscure calculations. As a justifying example, consider a target with 10 waves / EU, 4 EUs/CU, 64-wide waves. Also consider a function with no LDS usage and a flat workgroup size range of [513,1024]. - A group of 513 items requires 9 waves per group. Only 4 groups made up of 9 waves each can fit fully on a CU at any given time, for a total of 36 waves on the CU, or 9 per EU. However, filling as much as possible the remaining 40-36=4 wave slots without decreasing the number of groups reveals that a larger group of 640 items yields 40 waves on the CU, or 10 per EU. - Similarly, a group of 1024 items requires 16 waves per group. Only 2 groups made up of 16 waves each can fit fully on a CU ay any given time, for a total of 32 waves on the CU, or 8 per EU. However, removing as many waves as possible from the groups without being able to fit another equal-sized group on the CU reveals that a smaller group of 896 items yields 28 waves on the CU, or 7 per EU. Therefore the achievable occupancy range for this function is not [8,9] as the group size bounds directly yield, but [7,10]. Naturally this change causes a lot of test churn as instruction scheduling is driven by achievable occupancy estimates. In most unit tests the flat workgroup size range is the default [1,1024] which, ignoring potential LDS limitations, would previously produce a scalar occupancy of 8 (derived from 1024) on a lot of targets, whereas we now consider the maximum occupancy to be 10 in such cases. Most tests are updated automatically and checked manually for sanity. I also manually changed some non-automatically generated assertions when necessary. Fixes #118220.
827 lines
29 KiB
C++
827 lines
29 KiB
C++
//===- SIMachineFunctionInfo.cpp - SI Machine Function Info ---------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "AMDGPUSubtarget.h"
|
|
#include "GCNSubtarget.h"
|
|
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
|
|
#include "SIRegisterInfo.h"
|
|
#include "Utils/AMDGPUBaseInfo.h"
|
|
#include "llvm/CodeGen/LiveIntervals.h"
|
|
#include "llvm/CodeGen/MIRParser/MIParser.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include <cassert>
|
|
#include <optional>
|
|
#include <vector>
|
|
|
|
enum { MAX_LANES = 64 };
|
|
|
|
using namespace llvm;
|
|
|
|
const GCNTargetMachine &getTM(const GCNSubtarget *STI) {
|
|
const SITargetLowering *TLI = STI->getTargetLowering();
|
|
return static_cast<const GCNTargetMachine &>(TLI->getTargetMachine());
|
|
}
|
|
|
|
SIMachineFunctionInfo::SIMachineFunctionInfo(const Function &F,
|
|
const GCNSubtarget *STI)
|
|
: AMDGPUMachineFunction(F, *STI), Mode(F, *STI), GWSResourcePSV(getTM(STI)),
|
|
UserSGPRInfo(F, *STI), WorkGroupIDX(false), WorkGroupIDY(false),
|
|
WorkGroupIDZ(false), WorkGroupInfo(false), LDSKernelId(false),
|
|
PrivateSegmentWaveByteOffset(false), WorkItemIDX(false),
|
|
WorkItemIDY(false), WorkItemIDZ(false), ImplicitArgPtr(false),
|
|
GITPtrHigh(0xffffffff), HighBitsOf32BitAddress(0) {
|
|
const GCNSubtarget &ST = *static_cast<const GCNSubtarget *>(STI);
|
|
FlatWorkGroupSizes = ST.getFlatWorkGroupSizes(F);
|
|
WavesPerEU = ST.getWavesPerEU(F);
|
|
MaxNumWorkGroups = ST.getMaxNumWorkGroups(F);
|
|
assert(MaxNumWorkGroups.size() == 3);
|
|
|
|
Occupancy = ST.computeOccupancy(F, getLDSSize()).second;
|
|
CallingConv::ID CC = F.getCallingConv();
|
|
|
|
VRegFlags.reserve(1024);
|
|
|
|
const bool IsKernel = CC == CallingConv::AMDGPU_KERNEL ||
|
|
CC == CallingConv::SPIR_KERNEL;
|
|
|
|
if (IsKernel) {
|
|
WorkGroupIDX = true;
|
|
WorkItemIDX = true;
|
|
} else if (CC == CallingConv::AMDGPU_PS) {
|
|
PSInputAddr = AMDGPU::getInitialPSInputAddr(F);
|
|
}
|
|
|
|
MayNeedAGPRs = ST.hasMAIInsts();
|
|
|
|
if (AMDGPU::isChainCC(CC)) {
|
|
// Chain functions don't receive an SP from their caller, but are free to
|
|
// set one up. For now, we can use s32 to match what amdgpu_gfx functions
|
|
// would use if called, but this can be revisited.
|
|
// FIXME: Only reserve this if we actually need it.
|
|
StackPtrOffsetReg = AMDGPU::SGPR32;
|
|
|
|
ScratchRSrcReg = AMDGPU::SGPR48_SGPR49_SGPR50_SGPR51;
|
|
|
|
ArgInfo.PrivateSegmentBuffer =
|
|
ArgDescriptor::createRegister(ScratchRSrcReg);
|
|
|
|
ImplicitArgPtr = false;
|
|
} else if (!isEntryFunction()) {
|
|
if (CC != CallingConv::AMDGPU_Gfx)
|
|
ArgInfo = AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
|
|
|
|
FrameOffsetReg = AMDGPU::SGPR33;
|
|
StackPtrOffsetReg = AMDGPU::SGPR32;
|
|
|
|
if (!ST.enableFlatScratch()) {
|
|
// Non-entry functions have no special inputs for now, other registers
|
|
// required for scratch access.
|
|
ScratchRSrcReg = AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3;
|
|
|
|
ArgInfo.PrivateSegmentBuffer =
|
|
ArgDescriptor::createRegister(ScratchRSrcReg);
|
|
}
|
|
|
|
if (!F.hasFnAttribute("amdgpu-no-implicitarg-ptr"))
|
|
ImplicitArgPtr = true;
|
|
} else {
|
|
ImplicitArgPtr = false;
|
|
MaxKernArgAlign = std::max(ST.getAlignmentForImplicitArgPtr(),
|
|
MaxKernArgAlign);
|
|
|
|
if (ST.hasGFX90AInsts() &&
|
|
ST.getMaxNumVGPRs(F) <= AMDGPU::VGPR_32RegClass.getNumRegs() &&
|
|
!mayUseAGPRs(F))
|
|
MayNeedAGPRs = false; // We will select all MAI with VGPR operands.
|
|
}
|
|
|
|
if (!AMDGPU::isGraphics(CC) ||
|
|
((CC == CallingConv::AMDGPU_CS || CC == CallingConv::AMDGPU_Gfx) &&
|
|
ST.hasArchitectedSGPRs())) {
|
|
if (IsKernel || !F.hasFnAttribute("amdgpu-no-workgroup-id-x"))
|
|
WorkGroupIDX = true;
|
|
|
|
if (!F.hasFnAttribute("amdgpu-no-workgroup-id-y"))
|
|
WorkGroupIDY = true;
|
|
|
|
if (!F.hasFnAttribute("amdgpu-no-workgroup-id-z"))
|
|
WorkGroupIDZ = true;
|
|
}
|
|
|
|
if (!AMDGPU::isGraphics(CC)) {
|
|
if (IsKernel || !F.hasFnAttribute("amdgpu-no-workitem-id-x"))
|
|
WorkItemIDX = true;
|
|
|
|
if (!F.hasFnAttribute("amdgpu-no-workitem-id-y") &&
|
|
ST.getMaxWorkitemID(F, 1) != 0)
|
|
WorkItemIDY = true;
|
|
|
|
if (!F.hasFnAttribute("amdgpu-no-workitem-id-z") &&
|
|
ST.getMaxWorkitemID(F, 2) != 0)
|
|
WorkItemIDZ = true;
|
|
|
|
if (!IsKernel && !F.hasFnAttribute("amdgpu-no-lds-kernel-id"))
|
|
LDSKernelId = true;
|
|
}
|
|
|
|
if (isEntryFunction()) {
|
|
// X, XY, and XYZ are the only supported combinations, so make sure Y is
|
|
// enabled if Z is.
|
|
if (WorkItemIDZ)
|
|
WorkItemIDY = true;
|
|
|
|
if (!ST.flatScratchIsArchitected()) {
|
|
PrivateSegmentWaveByteOffset = true;
|
|
|
|
// HS and GS always have the scratch wave offset in SGPR5 on GFX9.
|
|
if (ST.getGeneration() >= AMDGPUSubtarget::GFX9 &&
|
|
(CC == CallingConv::AMDGPU_HS || CC == CallingConv::AMDGPU_GS))
|
|
ArgInfo.PrivateSegmentWaveByteOffset =
|
|
ArgDescriptor::createRegister(AMDGPU::SGPR5);
|
|
}
|
|
}
|
|
|
|
Attribute A = F.getFnAttribute("amdgpu-git-ptr-high");
|
|
StringRef S = A.getValueAsString();
|
|
if (!S.empty())
|
|
S.consumeInteger(0, GITPtrHigh);
|
|
|
|
A = F.getFnAttribute("amdgpu-32bit-address-high-bits");
|
|
S = A.getValueAsString();
|
|
if (!S.empty())
|
|
S.consumeInteger(0, HighBitsOf32BitAddress);
|
|
|
|
MaxMemoryClusterDWords = F.getFnAttributeAsParsedInteger(
|
|
"amdgpu-max-memory-cluster-dwords", DefaultMemoryClusterDWordsLimit);
|
|
|
|
// On GFX908, in order to guarantee copying between AGPRs, we need a scratch
|
|
// VGPR available at all times. For now, reserve highest available VGPR. After
|
|
// RA, shift it to the lowest available unused VGPR if the one exist.
|
|
if (ST.hasMAIInsts() && !ST.hasGFX90AInsts()) {
|
|
VGPRForAGPRCopy =
|
|
AMDGPU::VGPR_32RegClass.getRegister(ST.getMaxNumVGPRs(F) - 1);
|
|
}
|
|
}
|
|
|
|
MachineFunctionInfo *SIMachineFunctionInfo::clone(
|
|
BumpPtrAllocator &Allocator, MachineFunction &DestMF,
|
|
const DenseMap<MachineBasicBlock *, MachineBasicBlock *> &Src2DstMBB)
|
|
const {
|
|
return DestMF.cloneInfo<SIMachineFunctionInfo>(*this);
|
|
}
|
|
|
|
void SIMachineFunctionInfo::limitOccupancy(const MachineFunction &MF) {
|
|
limitOccupancy(getMaxWavesPerEU());
|
|
const GCNSubtarget& ST = MF.getSubtarget<GCNSubtarget>();
|
|
limitOccupancy(ST.getOccupancyWithWorkGroupSizes(MF).second);
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addPrivateSegmentBuffer(
|
|
const SIRegisterInfo &TRI) {
|
|
ArgInfo.PrivateSegmentBuffer =
|
|
ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SGPR_128RegClass));
|
|
NumUserSGPRs += 4;
|
|
return ArgInfo.PrivateSegmentBuffer.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addDispatchPtr(const SIRegisterInfo &TRI) {
|
|
ArgInfo.DispatchPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.DispatchPtr.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addQueuePtr(const SIRegisterInfo &TRI) {
|
|
ArgInfo.QueuePtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.QueuePtr.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addKernargSegmentPtr(const SIRegisterInfo &TRI) {
|
|
ArgInfo.KernargSegmentPtr
|
|
= ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.KernargSegmentPtr.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addDispatchID(const SIRegisterInfo &TRI) {
|
|
ArgInfo.DispatchID = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.DispatchID.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addFlatScratchInit(const SIRegisterInfo &TRI) {
|
|
ArgInfo.FlatScratchInit = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.FlatScratchInit.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addPrivateSegmentSize(const SIRegisterInfo &TRI) {
|
|
ArgInfo.PrivateSegmentSize = ArgDescriptor::createRegister(getNextUserSGPR());
|
|
NumUserSGPRs += 1;
|
|
return ArgInfo.PrivateSegmentSize.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addImplicitBufferPtr(const SIRegisterInfo &TRI) {
|
|
ArgInfo.ImplicitBufferPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
|
|
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
|
|
NumUserSGPRs += 2;
|
|
return ArgInfo.ImplicitBufferPtr.getRegister();
|
|
}
|
|
|
|
Register SIMachineFunctionInfo::addLDSKernelId() {
|
|
ArgInfo.LDSKernelId = ArgDescriptor::createRegister(getNextUserSGPR());
|
|
NumUserSGPRs += 1;
|
|
return ArgInfo.LDSKernelId.getRegister();
|
|
}
|
|
|
|
SmallVectorImpl<MCRegister> *SIMachineFunctionInfo::addPreloadedKernArg(
|
|
const SIRegisterInfo &TRI, const TargetRegisterClass *RC,
|
|
unsigned AllocSizeDWord, int KernArgIdx, int PaddingSGPRs) {
|
|
assert(!ArgInfo.PreloadKernArgs.count(KernArgIdx) &&
|
|
"Preload kernel argument allocated twice.");
|
|
NumUserSGPRs += PaddingSGPRs;
|
|
// If the available register tuples are aligned with the kernarg to be
|
|
// preloaded use that register, otherwise we need to use a set of SGPRs and
|
|
// merge them.
|
|
if (!ArgInfo.FirstKernArgPreloadReg)
|
|
ArgInfo.FirstKernArgPreloadReg = getNextUserSGPR();
|
|
Register PreloadReg =
|
|
TRI.getMatchingSuperReg(getNextUserSGPR(), AMDGPU::sub0, RC);
|
|
if (PreloadReg &&
|
|
(RC == &AMDGPU::SReg_32RegClass || RC == &AMDGPU::SReg_64RegClass)) {
|
|
ArgInfo.PreloadKernArgs[KernArgIdx].Regs.push_back(PreloadReg);
|
|
NumUserSGPRs += AllocSizeDWord;
|
|
} else {
|
|
for (unsigned I = 0; I < AllocSizeDWord; ++I) {
|
|
ArgInfo.PreloadKernArgs[KernArgIdx].Regs.push_back(getNextUserSGPR());
|
|
NumUserSGPRs++;
|
|
}
|
|
}
|
|
|
|
// Track the actual number of SGPRs that HW will preload to.
|
|
UserSGPRInfo.allocKernargPreloadSGPRs(AllocSizeDWord + PaddingSGPRs);
|
|
return &ArgInfo.PreloadKernArgs[KernArgIdx].Regs;
|
|
}
|
|
|
|
void SIMachineFunctionInfo::allocateWWMSpill(MachineFunction &MF, Register VGPR,
|
|
uint64_t Size, Align Alignment) {
|
|
// Skip if it is an entry function or the register is already added.
|
|
if (isEntryFunction() || WWMSpills.count(VGPR))
|
|
return;
|
|
|
|
// Skip if this is a function with the amdgpu_cs_chain or
|
|
// amdgpu_cs_chain_preserve calling convention and this is a scratch register.
|
|
// We never need to allocate a spill for these because we don't even need to
|
|
// restore the inactive lanes for them (they're scratchier than the usual
|
|
// scratch registers). We only need to do this if we have calls to
|
|
// llvm.amdgcn.cs.chain (otherwise there's no one to save them for, since
|
|
// chain functions do not return) and the function did not contain a call to
|
|
// llvm.amdgcn.init.whole.wave (since in that case there are no inactive lanes
|
|
// when entering the function).
|
|
if (isChainFunction() &&
|
|
(SIRegisterInfo::isChainScratchRegister(VGPR) ||
|
|
!MF.getFrameInfo().hasTailCall() || hasInitWholeWave()))
|
|
return;
|
|
|
|
WWMSpills.insert(std::make_pair(
|
|
VGPR, MF.getFrameInfo().CreateSpillStackObject(Size, Alignment)));
|
|
}
|
|
|
|
// Separate out the callee-saved and scratch registers.
|
|
void SIMachineFunctionInfo::splitWWMSpillRegisters(
|
|
MachineFunction &MF,
|
|
SmallVectorImpl<std::pair<Register, int>> &CalleeSavedRegs,
|
|
SmallVectorImpl<std::pair<Register, int>> &ScratchRegs) const {
|
|
const MCPhysReg *CSRegs = MF.getRegInfo().getCalleeSavedRegs();
|
|
for (auto &Reg : WWMSpills) {
|
|
if (isCalleeSavedReg(CSRegs, Reg.first))
|
|
CalleeSavedRegs.push_back(Reg);
|
|
else
|
|
ScratchRegs.push_back(Reg);
|
|
}
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::isCalleeSavedReg(const MCPhysReg *CSRegs,
|
|
MCPhysReg Reg) const {
|
|
for (unsigned I = 0; CSRegs[I]; ++I) {
|
|
if (CSRegs[I] == Reg)
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
void SIMachineFunctionInfo::shiftWwmVGPRsToLowestRange(
|
|
MachineFunction &MF, SmallVectorImpl<Register> &WWMVGPRs,
|
|
BitVector &SavedVGPRs) {
|
|
const SIRegisterInfo *TRI = MF.getSubtarget<GCNSubtarget>().getRegisterInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
for (unsigned I = 0, E = WWMVGPRs.size(); I < E; ++I) {
|
|
Register Reg = WWMVGPRs[I];
|
|
Register NewReg =
|
|
TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF);
|
|
if (!NewReg || NewReg >= Reg)
|
|
break;
|
|
|
|
MRI.replaceRegWith(Reg, NewReg);
|
|
|
|
// Update various tables with the new VGPR.
|
|
WWMVGPRs[I] = NewReg;
|
|
WWMReservedRegs.remove(Reg);
|
|
WWMReservedRegs.insert(NewReg);
|
|
MRI.reserveReg(NewReg, TRI);
|
|
|
|
// Replace the register in SpillPhysVGPRs. This is needed to look for free
|
|
// lanes while spilling special SGPRs like FP, BP, etc. during PEI.
|
|
auto *RegItr = std::find(SpillPhysVGPRs.begin(), SpillPhysVGPRs.end(), Reg);
|
|
if (RegItr != SpillPhysVGPRs.end()) {
|
|
unsigned Idx = std::distance(SpillPhysVGPRs.begin(), RegItr);
|
|
SpillPhysVGPRs[Idx] = NewReg;
|
|
}
|
|
|
|
// The generic `determineCalleeSaves` might have set the old register if it
|
|
// is in the CSR range.
|
|
SavedVGPRs.reset(Reg);
|
|
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
MBB.removeLiveIn(Reg);
|
|
MBB.sortUniqueLiveIns();
|
|
}
|
|
|
|
Reg = NewReg;
|
|
}
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::allocateVirtualVGPRForSGPRSpills(
|
|
MachineFunction &MF, int FI, unsigned LaneIndex) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
Register LaneVGPR;
|
|
if (!LaneIndex) {
|
|
LaneVGPR = MRI.createVirtualRegister(&AMDGPU::VGPR_32RegClass);
|
|
SpillVGPRs.push_back(LaneVGPR);
|
|
} else {
|
|
LaneVGPR = SpillVGPRs.back();
|
|
}
|
|
|
|
SGPRSpillsToVirtualVGPRLanes[FI].emplace_back(LaneVGPR, LaneIndex);
|
|
return true;
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::allocatePhysicalVGPRForSGPRSpills(
|
|
MachineFunction &MF, int FI, unsigned LaneIndex, bool IsPrologEpilog) {
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
Register LaneVGPR;
|
|
if (!LaneIndex) {
|
|
// Find the highest available register if called before RA to ensure the
|
|
// lowest registers are available for allocation. The LaneVGPR, in that
|
|
// case, will be shifted back to the lowest range after VGPR allocation.
|
|
LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF,
|
|
!IsPrologEpilog);
|
|
if (LaneVGPR == AMDGPU::NoRegister) {
|
|
// We have no VGPRs left for spilling SGPRs. Reset because we will not
|
|
// partially spill the SGPR to VGPRs.
|
|
SGPRSpillsToPhysicalVGPRLanes.erase(FI);
|
|
return false;
|
|
}
|
|
|
|
if (IsPrologEpilog)
|
|
allocateWWMSpill(MF, LaneVGPR);
|
|
|
|
reserveWWMRegister(LaneVGPR);
|
|
for (MachineBasicBlock &MBB : MF) {
|
|
MBB.addLiveIn(LaneVGPR);
|
|
MBB.sortUniqueLiveIns();
|
|
}
|
|
SpillPhysVGPRs.push_back(LaneVGPR);
|
|
} else {
|
|
LaneVGPR = SpillPhysVGPRs.back();
|
|
}
|
|
|
|
SGPRSpillsToPhysicalVGPRLanes[FI].emplace_back(LaneVGPR, LaneIndex);
|
|
return true;
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::allocateSGPRSpillToVGPRLane(
|
|
MachineFunction &MF, int FI, bool SpillToPhysVGPRLane,
|
|
bool IsPrologEpilog) {
|
|
std::vector<SIRegisterInfo::SpilledReg> &SpillLanes =
|
|
SpillToPhysVGPRLane ? SGPRSpillsToPhysicalVGPRLanes[FI]
|
|
: SGPRSpillsToVirtualVGPRLanes[FI];
|
|
|
|
// This has already been allocated.
|
|
if (!SpillLanes.empty())
|
|
return true;
|
|
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
|
|
unsigned WaveSize = ST.getWavefrontSize();
|
|
|
|
unsigned Size = FrameInfo.getObjectSize(FI);
|
|
unsigned NumLanes = Size / 4;
|
|
|
|
if (NumLanes > WaveSize)
|
|
return false;
|
|
|
|
assert(Size >= 4 && "invalid sgpr spill size");
|
|
assert(ST.getRegisterInfo()->spillSGPRToVGPR() &&
|
|
"not spilling SGPRs to VGPRs");
|
|
|
|
unsigned &NumSpillLanes = SpillToPhysVGPRLane ? NumPhysicalVGPRSpillLanes
|
|
: NumVirtualVGPRSpillLanes;
|
|
|
|
for (unsigned I = 0; I < NumLanes; ++I, ++NumSpillLanes) {
|
|
unsigned LaneIndex = (NumSpillLanes % WaveSize);
|
|
|
|
bool Allocated = SpillToPhysVGPRLane
|
|
? allocatePhysicalVGPRForSGPRSpills(MF, FI, LaneIndex,
|
|
IsPrologEpilog)
|
|
: allocateVirtualVGPRForSGPRSpills(MF, FI, LaneIndex);
|
|
if (!Allocated) {
|
|
NumSpillLanes -= I;
|
|
return false;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Reserve AGPRs or VGPRs to support spilling for FrameIndex \p FI.
|
|
/// Either AGPR is spilled to VGPR to vice versa.
|
|
/// Returns true if a \p FI can be eliminated completely.
|
|
bool SIMachineFunctionInfo::allocateVGPRSpillToAGPR(MachineFunction &MF,
|
|
int FI,
|
|
bool isAGPRtoVGPR) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
|
|
assert(ST.hasMAIInsts() && FrameInfo.isSpillSlotObjectIndex(FI));
|
|
|
|
auto &Spill = VGPRToAGPRSpills[FI];
|
|
|
|
// This has already been allocated.
|
|
if (!Spill.Lanes.empty())
|
|
return Spill.FullyAllocated;
|
|
|
|
unsigned Size = FrameInfo.getObjectSize(FI);
|
|
unsigned NumLanes = Size / 4;
|
|
Spill.Lanes.resize(NumLanes, AMDGPU::NoRegister);
|
|
|
|
const TargetRegisterClass &RC =
|
|
isAGPRtoVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::AGPR_32RegClass;
|
|
auto Regs = RC.getRegisters();
|
|
|
|
auto &SpillRegs = isAGPRtoVGPR ? SpillAGPR : SpillVGPR;
|
|
const SIRegisterInfo *TRI = ST.getRegisterInfo();
|
|
Spill.FullyAllocated = true;
|
|
|
|
// FIXME: Move allocation logic out of MachineFunctionInfo and initialize
|
|
// once.
|
|
BitVector OtherUsedRegs;
|
|
OtherUsedRegs.resize(TRI->getNumRegs());
|
|
|
|
const uint32_t *CSRMask =
|
|
TRI->getCallPreservedMask(MF, MF.getFunction().getCallingConv());
|
|
if (CSRMask)
|
|
OtherUsedRegs.setBitsInMask(CSRMask);
|
|
|
|
// TODO: Should include register tuples, but doesn't matter with current
|
|
// usage.
|
|
for (MCPhysReg Reg : SpillAGPR)
|
|
OtherUsedRegs.set(Reg);
|
|
for (MCPhysReg Reg : SpillVGPR)
|
|
OtherUsedRegs.set(Reg);
|
|
|
|
SmallVectorImpl<MCPhysReg>::const_iterator NextSpillReg = Regs.begin();
|
|
for (int I = NumLanes - 1; I >= 0; --I) {
|
|
NextSpillReg = std::find_if(
|
|
NextSpillReg, Regs.end(), [&MRI, &OtherUsedRegs](MCPhysReg Reg) {
|
|
return MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg) &&
|
|
!OtherUsedRegs[Reg];
|
|
});
|
|
|
|
if (NextSpillReg == Regs.end()) { // Registers exhausted
|
|
Spill.FullyAllocated = false;
|
|
break;
|
|
}
|
|
|
|
OtherUsedRegs.set(*NextSpillReg);
|
|
SpillRegs.push_back(*NextSpillReg);
|
|
MRI.reserveReg(*NextSpillReg, TRI);
|
|
Spill.Lanes[I] = *NextSpillReg++;
|
|
}
|
|
|
|
return Spill.FullyAllocated;
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::removeDeadFrameIndices(
|
|
MachineFrameInfo &MFI, bool ResetSGPRSpillStackIDs) {
|
|
// Remove dead frame indices from function frame, however keep FP & BP since
|
|
// spills for them haven't been inserted yet. And also make sure to remove the
|
|
// frame indices from `SGPRSpillsToVirtualVGPRLanes` data structure,
|
|
// otherwise, it could result in an unexpected side effect and bug, in case of
|
|
// any re-mapping of freed frame indices by later pass(es) like "stack slot
|
|
// coloring".
|
|
for (auto &R : make_early_inc_range(SGPRSpillsToVirtualVGPRLanes)) {
|
|
MFI.RemoveStackObject(R.first);
|
|
SGPRSpillsToVirtualVGPRLanes.erase(R.first);
|
|
}
|
|
|
|
// Remove the dead frame indices of CSR SGPRs which are spilled to physical
|
|
// VGPR lanes during SILowerSGPRSpills pass.
|
|
if (!ResetSGPRSpillStackIDs) {
|
|
for (auto &R : make_early_inc_range(SGPRSpillsToPhysicalVGPRLanes)) {
|
|
MFI.RemoveStackObject(R.first);
|
|
SGPRSpillsToPhysicalVGPRLanes.erase(R.first);
|
|
}
|
|
}
|
|
bool HaveSGPRToMemory = false;
|
|
|
|
if (ResetSGPRSpillStackIDs) {
|
|
// All other SGPRs must be allocated on the default stack, so reset the
|
|
// stack ID.
|
|
for (int I = MFI.getObjectIndexBegin(), E = MFI.getObjectIndexEnd(); I != E;
|
|
++I) {
|
|
if (!checkIndexInPrologEpilogSGPRSpills(I)) {
|
|
if (MFI.getStackID(I) == TargetStackID::SGPRSpill) {
|
|
MFI.setStackID(I, TargetStackID::Default);
|
|
HaveSGPRToMemory = true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto &R : VGPRToAGPRSpills) {
|
|
if (R.second.IsDead)
|
|
MFI.RemoveStackObject(R.first);
|
|
}
|
|
|
|
return HaveSGPRToMemory;
|
|
}
|
|
|
|
int SIMachineFunctionInfo::getScavengeFI(MachineFrameInfo &MFI,
|
|
const SIRegisterInfo &TRI) {
|
|
if (ScavengeFI)
|
|
return *ScavengeFI;
|
|
|
|
ScavengeFI =
|
|
MFI.CreateStackObject(TRI.getSpillSize(AMDGPU::SGPR_32RegClass),
|
|
TRI.getSpillAlign(AMDGPU::SGPR_32RegClass), false);
|
|
return *ScavengeFI;
|
|
}
|
|
|
|
MCPhysReg SIMachineFunctionInfo::getNextUserSGPR() const {
|
|
assert(NumSystemSGPRs == 0 && "System SGPRs must be added after user SGPRs");
|
|
return AMDGPU::SGPR0 + NumUserSGPRs;
|
|
}
|
|
|
|
MCPhysReg SIMachineFunctionInfo::getNextSystemSGPR() const {
|
|
return AMDGPU::SGPR0 + NumUserSGPRs + NumSystemSGPRs;
|
|
}
|
|
|
|
void SIMachineFunctionInfo::MRI_NoteNewVirtualRegister(Register Reg) {
|
|
VRegFlags.grow(Reg);
|
|
}
|
|
|
|
void SIMachineFunctionInfo::MRI_NoteCloneVirtualRegister(Register NewReg,
|
|
Register SrcReg) {
|
|
VRegFlags.grow(NewReg);
|
|
VRegFlags[NewReg] = VRegFlags[SrcReg];
|
|
}
|
|
|
|
Register
|
|
SIMachineFunctionInfo::getGITPtrLoReg(const MachineFunction &MF) const {
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
if (!ST.isAmdPalOS())
|
|
return Register();
|
|
Register GitPtrLo = AMDGPU::SGPR0; // Low GIT address passed in
|
|
if (ST.hasMergedShaders()) {
|
|
switch (MF.getFunction().getCallingConv()) {
|
|
case CallingConv::AMDGPU_HS:
|
|
case CallingConv::AMDGPU_GS:
|
|
// Low GIT address is passed in s8 rather than s0 for an LS+HS or
|
|
// ES+GS merged shader on gfx9+.
|
|
GitPtrLo = AMDGPU::SGPR8;
|
|
return GitPtrLo;
|
|
default:
|
|
return GitPtrLo;
|
|
}
|
|
}
|
|
return GitPtrLo;
|
|
}
|
|
|
|
static yaml::StringValue regToString(Register Reg,
|
|
const TargetRegisterInfo &TRI) {
|
|
yaml::StringValue Dest;
|
|
{
|
|
raw_string_ostream OS(Dest.Value);
|
|
OS << printReg(Reg, &TRI);
|
|
}
|
|
return Dest;
|
|
}
|
|
|
|
static std::optional<yaml::SIArgumentInfo>
|
|
convertArgumentInfo(const AMDGPUFunctionArgInfo &ArgInfo,
|
|
const TargetRegisterInfo &TRI) {
|
|
yaml::SIArgumentInfo AI;
|
|
|
|
auto convertArg = [&](std::optional<yaml::SIArgument> &A,
|
|
const ArgDescriptor &Arg) {
|
|
if (!Arg)
|
|
return false;
|
|
|
|
// Create a register or stack argument.
|
|
yaml::SIArgument SA = yaml::SIArgument::createArgument(Arg.isRegister());
|
|
if (Arg.isRegister()) {
|
|
raw_string_ostream OS(SA.RegisterName.Value);
|
|
OS << printReg(Arg.getRegister(), &TRI);
|
|
} else
|
|
SA.StackOffset = Arg.getStackOffset();
|
|
// Check and update the optional mask.
|
|
if (Arg.isMasked())
|
|
SA.Mask = Arg.getMask();
|
|
|
|
A = SA;
|
|
return true;
|
|
};
|
|
|
|
// TODO: Need to serialize kernarg preloads.
|
|
bool Any = false;
|
|
Any |= convertArg(AI.PrivateSegmentBuffer, ArgInfo.PrivateSegmentBuffer);
|
|
Any |= convertArg(AI.DispatchPtr, ArgInfo.DispatchPtr);
|
|
Any |= convertArg(AI.QueuePtr, ArgInfo.QueuePtr);
|
|
Any |= convertArg(AI.KernargSegmentPtr, ArgInfo.KernargSegmentPtr);
|
|
Any |= convertArg(AI.DispatchID, ArgInfo.DispatchID);
|
|
Any |= convertArg(AI.FlatScratchInit, ArgInfo.FlatScratchInit);
|
|
Any |= convertArg(AI.LDSKernelId, ArgInfo.LDSKernelId);
|
|
Any |= convertArg(AI.PrivateSegmentSize, ArgInfo.PrivateSegmentSize);
|
|
Any |= convertArg(AI.WorkGroupIDX, ArgInfo.WorkGroupIDX);
|
|
Any |= convertArg(AI.WorkGroupIDY, ArgInfo.WorkGroupIDY);
|
|
Any |= convertArg(AI.WorkGroupIDZ, ArgInfo.WorkGroupIDZ);
|
|
Any |= convertArg(AI.WorkGroupInfo, ArgInfo.WorkGroupInfo);
|
|
Any |= convertArg(AI.PrivateSegmentWaveByteOffset,
|
|
ArgInfo.PrivateSegmentWaveByteOffset);
|
|
Any |= convertArg(AI.ImplicitArgPtr, ArgInfo.ImplicitArgPtr);
|
|
Any |= convertArg(AI.ImplicitBufferPtr, ArgInfo.ImplicitBufferPtr);
|
|
Any |= convertArg(AI.WorkItemIDX, ArgInfo.WorkItemIDX);
|
|
Any |= convertArg(AI.WorkItemIDY, ArgInfo.WorkItemIDY);
|
|
Any |= convertArg(AI.WorkItemIDZ, ArgInfo.WorkItemIDZ);
|
|
|
|
if (Any)
|
|
return AI;
|
|
|
|
return std::nullopt;
|
|
}
|
|
|
|
yaml::SIMachineFunctionInfo::SIMachineFunctionInfo(
|
|
const llvm::SIMachineFunctionInfo &MFI, const TargetRegisterInfo &TRI,
|
|
const llvm::MachineFunction &MF)
|
|
: ExplicitKernArgSize(MFI.getExplicitKernArgSize()),
|
|
MaxKernArgAlign(MFI.getMaxKernArgAlign()), LDSSize(MFI.getLDSSize()),
|
|
GDSSize(MFI.getGDSSize()), DynLDSAlign(MFI.getDynLDSAlign()),
|
|
IsEntryFunction(MFI.isEntryFunction()),
|
|
NoSignedZerosFPMath(MFI.hasNoSignedZerosFPMath()),
|
|
MemoryBound(MFI.isMemoryBound()), WaveLimiter(MFI.needsWaveLimiter()),
|
|
HasSpilledSGPRs(MFI.hasSpilledSGPRs()),
|
|
HasSpilledVGPRs(MFI.hasSpilledVGPRs()),
|
|
HighBitsOf32BitAddress(MFI.get32BitAddressHighBits()),
|
|
Occupancy(MFI.getOccupancy()),
|
|
ScratchRSrcReg(regToString(MFI.getScratchRSrcReg(), TRI)),
|
|
FrameOffsetReg(regToString(MFI.getFrameOffsetReg(), TRI)),
|
|
StackPtrOffsetReg(regToString(MFI.getStackPtrOffsetReg(), TRI)),
|
|
BytesInStackArgArea(MFI.getBytesInStackArgArea()),
|
|
ReturnsVoid(MFI.returnsVoid()),
|
|
ArgInfo(convertArgumentInfo(MFI.getArgInfo(), TRI)),
|
|
PSInputAddr(MFI.getPSInputAddr()), PSInputEnable(MFI.getPSInputEnable()),
|
|
MaxMemoryClusterDWords(MFI.getMaxMemoryClusterDWords()),
|
|
Mode(MFI.getMode()), HasInitWholeWave(MFI.hasInitWholeWave()) {
|
|
for (Register Reg : MFI.getSGPRSpillPhysVGPRs())
|
|
SpillPhysVGPRS.push_back(regToString(Reg, TRI));
|
|
|
|
for (Register Reg : MFI.getWWMReservedRegs())
|
|
WWMReservedRegs.push_back(regToString(Reg, TRI));
|
|
|
|
if (MFI.getLongBranchReservedReg())
|
|
LongBranchReservedReg = regToString(MFI.getLongBranchReservedReg(), TRI);
|
|
if (MFI.getVGPRForAGPRCopy())
|
|
VGPRForAGPRCopy = regToString(MFI.getVGPRForAGPRCopy(), TRI);
|
|
|
|
if (MFI.getSGPRForEXECCopy())
|
|
SGPRForEXECCopy = regToString(MFI.getSGPRForEXECCopy(), TRI);
|
|
|
|
auto SFI = MFI.getOptionalScavengeFI();
|
|
if (SFI)
|
|
ScavengeFI = yaml::FrameIndex(*SFI, MF.getFrameInfo());
|
|
}
|
|
|
|
void yaml::SIMachineFunctionInfo::mappingImpl(yaml::IO &YamlIO) {
|
|
MappingTraits<SIMachineFunctionInfo>::mapping(YamlIO, *this);
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::initializeBaseYamlFields(
|
|
const yaml::SIMachineFunctionInfo &YamlMFI, const MachineFunction &MF,
|
|
PerFunctionMIParsingState &PFS, SMDiagnostic &Error, SMRange &SourceRange) {
|
|
ExplicitKernArgSize = YamlMFI.ExplicitKernArgSize;
|
|
MaxKernArgAlign = YamlMFI.MaxKernArgAlign;
|
|
LDSSize = YamlMFI.LDSSize;
|
|
GDSSize = YamlMFI.GDSSize;
|
|
DynLDSAlign = YamlMFI.DynLDSAlign;
|
|
PSInputAddr = YamlMFI.PSInputAddr;
|
|
PSInputEnable = YamlMFI.PSInputEnable;
|
|
MaxMemoryClusterDWords = YamlMFI.MaxMemoryClusterDWords;
|
|
HighBitsOf32BitAddress = YamlMFI.HighBitsOf32BitAddress;
|
|
Occupancy = YamlMFI.Occupancy;
|
|
IsEntryFunction = YamlMFI.IsEntryFunction;
|
|
NoSignedZerosFPMath = YamlMFI.NoSignedZerosFPMath;
|
|
MemoryBound = YamlMFI.MemoryBound;
|
|
WaveLimiter = YamlMFI.WaveLimiter;
|
|
HasSpilledSGPRs = YamlMFI.HasSpilledSGPRs;
|
|
HasSpilledVGPRs = YamlMFI.HasSpilledVGPRs;
|
|
BytesInStackArgArea = YamlMFI.BytesInStackArgArea;
|
|
ReturnsVoid = YamlMFI.ReturnsVoid;
|
|
|
|
if (YamlMFI.ScavengeFI) {
|
|
auto FIOrErr = YamlMFI.ScavengeFI->getFI(MF.getFrameInfo());
|
|
if (!FIOrErr) {
|
|
// Create a diagnostic for a the frame index.
|
|
const MemoryBuffer &Buffer =
|
|
*PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
|
|
|
|
Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1,
|
|
SourceMgr::DK_Error, toString(FIOrErr.takeError()),
|
|
"", {}, {});
|
|
SourceRange = YamlMFI.ScavengeFI->SourceRange;
|
|
return true;
|
|
}
|
|
ScavengeFI = *FIOrErr;
|
|
} else {
|
|
ScavengeFI = std::nullopt;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::mayUseAGPRs(const Function &F) const {
|
|
return !F.hasFnAttribute("amdgpu-no-agpr");
|
|
}
|
|
|
|
bool SIMachineFunctionInfo::usesAGPRs(const MachineFunction &MF) const {
|
|
if (UsesAGPRs)
|
|
return *UsesAGPRs;
|
|
|
|
if (!mayNeedAGPRs()) {
|
|
UsesAGPRs = false;
|
|
return false;
|
|
}
|
|
|
|
if (!AMDGPU::isEntryFunctionCC(MF.getFunction().getCallingConv()) ||
|
|
MF.getFrameInfo().hasCalls()) {
|
|
UsesAGPRs = true;
|
|
return true;
|
|
}
|
|
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
|
|
const Register Reg = Register::index2VirtReg(I);
|
|
const TargetRegisterClass *RC = MRI.getRegClassOrNull(Reg);
|
|
if (RC && SIRegisterInfo::isAGPRClass(RC)) {
|
|
UsesAGPRs = true;
|
|
return true;
|
|
}
|
|
if (!RC && !MRI.use_empty(Reg) && MRI.getType(Reg).isValid()) {
|
|
// Defer caching UsesAGPRs, function might not yet been regbank selected.
|
|
return true;
|
|
}
|
|
}
|
|
|
|
for (MCRegister Reg : AMDGPU::AGPR_32RegClass) {
|
|
if (MRI.isPhysRegUsed(Reg)) {
|
|
UsesAGPRs = true;
|
|
return true;
|
|
}
|
|
}
|
|
|
|
UsesAGPRs = false;
|
|
return false;
|
|
}
|