Files
clang-p2996/lldb/source/Plugins/LanguageRuntime/RenderScript/RenderScriptRuntime/RenderScriptExpressionOpts.cpp
Luke Drummond 19459580af Add IR fixups for RenderScript ABI mismatch between ARMV7 frontend and x86 backend
Expression evaluation for function calls to certain public RenderScript
API functions in libRSCPURef can segfault.

`slang`,
the compiler frontend for RenderScript embeds an ARM specific triple in
IR that is shipped in the app, after generating IR that has some
assumptions that an ARM device is the target.
As the IR is then compiled on a device of unknown (at time the IR was
generated at least) architecture, when calling RenderScript API function
as part of debugger expressions, we have to perform a fixup pass that
removes those assumptions right before the module is sent to be
generated by the llvm backend.

This issue is caused by multiple problems with the ARMv7-specific
assumptions encoded in the LLVM IR. x86 large value returns use a hidden
first argument (mapping to llvm::Attribute::StructRet), which can't be
picked up by the JIT due to the mismatch between IR generated by the
slang frontend and llvm backend. This means that code generated by bcc
did not necessarily match the default SysV Linux/Android ABI used by the
LLDB JIT

- Original Authors: Luke Drummond (@ldrumm), Function declarations fixed by Aidan Dodds (@ADodds)

Subscribers: lldb-commits

Differential Revision: https://reviews.llvm.org/D18059

llvm-svn: 276976
2016-07-28 14:21:07 +00:00

202 lines
7.0 KiB
C++

//===-- ExpressionOpts.cpp --------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// C Includes
// C++ Includes
#include <string>
// Other libraries and framework includes
#include "llvm/ADT/None.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "clang/Basic/TargetOptions.h"
// Project includes
#include "lldb/Core/Log.h"
#include "lldb/Target/Process.h"
#include "lldb/Target/Target.h"
#include "RenderScriptExpressionOpts.h"
#include "RenderScriptRuntime.h"
#include "RenderScriptx86ABIFixups.h"
using namespace lldb_private;
using namespace lldb_renderscript;
// [``slang``](https://android.googlesource.com/platform/frameworks/compile/slang),
// the compiler frontend for RenderScript embeds an ARM specific triple in IR that is shipped in the app, after
// generating IR that has some assumptions that an ARM device is the target.
// As the IR is then compiled on a device of unknown (at time the IR was generated at least) architecture,
// when calling RenderScript API function as part of debugger expressions, we have to perform a fixup pass that
// removes those assumptions right before the module is sent to be generated by the llvm backend.
namespace
{
bool
registerRSDefaultTargetOpts(clang::TargetOptions &proto, const llvm::Triple::ArchType &arch)
{
switch (arch)
{
case llvm::Triple::ArchType::x86:
proto.Triple = "i686--linux-android";
proto.CPU = "atom";
proto.Features.push_back("+long64");
// Fallthrough for common x86 family features
case llvm::Triple::ArchType::x86_64:
proto.Features.push_back("+mmx");
proto.Features.push_back("+sse");
proto.Features.push_back("+sse2");
proto.Features.push_back("+sse3");
proto.Features.push_back("+ssse3");
proto.Features.push_back("+sse4.1");
proto.Features.push_back("+sse4.2");
break;
case llvm::Triple::ArchType::mipsel:
// pretend this is `arm' for the front-end
proto.Triple = "armv7-none-linux-android";
proto.CPU = "";
proto.Features.push_back("+long64");
break;
case llvm::Triple::ArchType::mips64el:
// pretend this is `aarch64' for the front-end
proto.Triple = "aarch64-none-linux-android";
proto.CPU = "";
break;
default:
return false;
}
return true;
}
} // end anonymous namespace
bool
RenderScriptRuntimeModulePass::runOnModule(llvm::Module &module)
{
bool changed_module = false;
Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_EXPRESSIONS));
std::string err;
llvm::StringRef real_triple = m_process_ptr->GetTarget().GetArchitecture().GetTriple().getTriple();
const llvm::Target *target_info = llvm::TargetRegistry::lookupTarget(real_triple, err);
if (!target_info)
{
if (log)
log->Warning("couldn't determine real target architecture: '%s'", err.c_str());
return false;
}
llvm::Optional<llvm::Reloc::Model> reloc_model = llvm::None;
assert(m_process_ptr && "no available lldb process");
switch (m_process_ptr->GetTarget().GetArchitecture().GetMachine())
{
case llvm::Triple::ArchType::x86:
changed_module |= fixupX86FunctionCalls(module);
// For some reason this triple gets totally missed by the backend, and must be set manually.
// There a reference in bcc/Main.cpp about auto feature-detection being removed from LLVM3.5, but I can't
// see that discussion anywhere public.
real_triple = "i686--linux-android";
break;
case llvm::Triple::ArchType::x86_64:
changed_module |= fixupX86_64FunctionCalls(module);
break;
case llvm::Triple::ArchType::mipsel:
case llvm::Triple::ArchType::mips64el:
// No actual IR fixup pass is needed on MIPS, but the datalayout
// and targetmachine do need to be explicitly set.
// bcc explicitly compiles MIPS code to use the static relocation
// model due to an issue with relocations in mclinker.
// see libbcc/support/CompilerConfig.cpp for details
reloc_model = llvm::Reloc::Static;
changed_module = true;
break;
case llvm::Triple::ArchType::arm:
case llvm::Triple::ArchType::aarch64:
// ARM subtargets need no fixup passes as they are the initial target as generated by the
// slang compiler frontend.
break;
default:
if (log)
log->Warning("Ignoring unknown renderscript target");
return false;
}
if (changed_module)
{
llvm::TargetOptions options;
llvm::TargetMachine *target_machine =
target_info->createTargetMachine(real_triple, "", "", options, reloc_model);
assert(target_machine && "failed to identify RenderScriptRuntime target machine");
// We've been using a triple and datalayout of some ARM variant all along, so
// we need to let the backend know that this is no longer the case.
if (log)
{
log->Printf("%s - Changing RS target triple to '%s'", __FUNCTION__, real_triple.str().c_str());
log->Printf("%s - Changing RS datalayout to '%s'", __FUNCTION__,
target_machine->createDataLayout().getStringRepresentation().c_str());
}
module.setTargetTriple(real_triple);
module.setDataLayout(target_machine->createDataLayout());
}
return changed_module;
}
char RenderScriptRuntimeModulePass::ID = 0;
namespace lldb_private
{
bool
RenderScriptRuntime::GetOverrideExprOptions(clang::TargetOptions &proto)
{
auto *process = GetProcess();
assert(process);
return registerRSDefaultTargetOpts(proto, process->GetTarget().GetArchitecture().GetMachine());
}
bool
RenderScriptRuntime::GetIRPasses(LLVMUserExpression::IRPasses &passes)
{
if (!m_ir_passes)
m_ir_passes = new RSIRPasses(GetProcess());
assert(m_ir_passes);
passes.EarlyPasses = m_ir_passes->EarlyPasses;
passes.LatePasses = m_ir_passes->LatePasses;
return true;
}
namespace lldb_renderscript
{
RSIRPasses::RSIRPasses(Process *process)
{
IRPasses();
assert(process);
EarlyPasses = std::make_shared<llvm::legacy::PassManager>();
assert(EarlyPasses);
EarlyPasses->add(new RenderScriptRuntimeModulePass(process));
}
RSIRPasses::~RSIRPasses()
{
}
} // namespace lldb_renderscript
} // namespace lldb_private