Files
clang-p2996/lldb/source/Plugins/Process/minidump/MinidumpParser.cpp
Zachary Turner 97206d5727 Rename Error -> Status.
This renames the LLDB error class to Status, as discussed
on the lldb-dev mailing list.

A change of this magnitude cannot easily be done without
find and replace, but that has potential to catch unwanted
occurrences of common strings such as "Error".  Every effort
was made to find all the obvious things such as the word "Error"
appearing in a string, etc, but it's possible there are still
some lingering occurences left around.  Hopefully nothing too
serious.

llvm-svn: 302872
2017-05-12 04:51:55 +00:00

459 lines
15 KiB
C++

//===-- MinidumpParser.cpp ---------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
// Project includes
#include "MinidumpParser.h"
#include "NtStructures.h"
#include "RegisterContextMinidump_x86_32.h"
// Other libraries and framework includes
#include "lldb/Target/MemoryRegionInfo.h"
// C includes
// C++ includes
#include <map>
using namespace lldb_private;
using namespace minidump;
llvm::Optional<MinidumpParser>
MinidumpParser::Create(const lldb::DataBufferSP &data_buf_sp) {
if (data_buf_sp->GetByteSize() < sizeof(MinidumpHeader)) {
return llvm::None;
}
llvm::ArrayRef<uint8_t> header_data(data_buf_sp->GetBytes(),
sizeof(MinidumpHeader));
const MinidumpHeader *header = MinidumpHeader::Parse(header_data);
if (header == nullptr) {
return llvm::None;
}
lldb::offset_t directory_list_offset = header->stream_directory_rva;
// check if there is enough data for the parsing of the directory list
if ((directory_list_offset +
sizeof(MinidumpDirectory) * header->streams_count) >
data_buf_sp->GetByteSize()) {
return llvm::None;
}
const MinidumpDirectory *directory = nullptr;
Status error;
llvm::ArrayRef<uint8_t> directory_data(
data_buf_sp->GetBytes() + directory_list_offset,
sizeof(MinidumpDirectory) * header->streams_count);
llvm::DenseMap<uint32_t, MinidumpLocationDescriptor> directory_map;
for (uint32_t i = 0; i < header->streams_count; ++i) {
error = consumeObject(directory_data, directory);
if (error.Fail()) {
return llvm::None;
}
directory_map[static_cast<const uint32_t>(directory->stream_type)] =
directory->location;
}
return MinidumpParser(data_buf_sp, header, std::move(directory_map));
}
MinidumpParser::MinidumpParser(
const lldb::DataBufferSP &data_buf_sp, const MinidumpHeader *header,
llvm::DenseMap<uint32_t, MinidumpLocationDescriptor> &&directory_map)
: m_data_sp(data_buf_sp), m_header(header), m_directory_map(directory_map) {
}
llvm::ArrayRef<uint8_t> MinidumpParser::GetData() {
return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes(),
m_data_sp->GetByteSize());
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetStream(MinidumpStreamType stream_type) {
auto iter = m_directory_map.find(static_cast<uint32_t>(stream_type));
if (iter == m_directory_map.end())
return {};
// check if there is enough data
if (iter->second.rva + iter->second.data_size > m_data_sp->GetByteSize())
return {};
return llvm::ArrayRef<uint8_t>(m_data_sp->GetBytes() + iter->second.rva,
iter->second.data_size);
}
llvm::Optional<std::string> MinidumpParser::GetMinidumpString(uint32_t rva) {
auto arr_ref = m_data_sp->GetData();
if (rva > arr_ref.size())
return llvm::None;
arr_ref = arr_ref.drop_front(rva);
return parseMinidumpString(arr_ref);
}
llvm::ArrayRef<MinidumpThread> MinidumpParser::GetThreads() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::ThreadList);
if (data.size() == 0)
return llvm::None;
return MinidumpThread::ParseThreadList(data);
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContext(const MinidumpThread &td) {
if (td.thread_context.rva + td.thread_context.data_size > GetData().size())
return {};
return GetData().slice(td.thread_context.rva, td.thread_context.data_size);
}
llvm::ArrayRef<uint8_t>
MinidumpParser::GetThreadContextWow64(const MinidumpThread &td) {
// On Windows, a 32-bit process can run on a 64-bit machine under
// WOW64. If the minidump was captured with a 64-bit debugger, then
// the CONTEXT we just grabbed from the mini_dump_thread is the one
// for the 64-bit "native" process rather than the 32-bit "guest"
// process we care about. In this case, we can get the 32-bit CONTEXT
// from the TEB (Thread Environment Block) of the 64-bit process.
auto teb_mem = GetMemory(td.teb, sizeof(TEB64));
if (teb_mem.empty())
return {};
const TEB64 *wow64teb;
Status error = consumeObject(teb_mem, wow64teb);
if (error.Fail())
return {};
// Slot 1 of the thread-local storage in the 64-bit TEB points to a
// structure that includes the 32-bit CONTEXT (after a ULONG).
// See: https://msdn.microsoft.com/en-us/library/ms681670.aspx
auto context =
GetMemory(wow64teb->tls_slots[1] + 4, sizeof(MinidumpContext_x86_32));
if (context.size() < sizeof(MinidumpContext_x86_32))
return {};
return context;
// NOTE: We don't currently use the TEB for anything else. If we
// need it in the future, the 32-bit TEB is located according to the address
// stored in the first slot of the 64-bit TEB (wow64teb.Reserved1[0]).
}
const MinidumpSystemInfo *MinidumpParser::GetSystemInfo() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::SystemInfo);
if (data.size() == 0)
return nullptr;
return MinidumpSystemInfo::Parse(data);
}
ArchSpec MinidumpParser::GetArchitecture() {
ArchSpec arch_spec;
const MinidumpSystemInfo *system_info = GetSystemInfo();
if (!system_info)
return arch_spec;
// TODO what to do about big endiand flavors of arm ?
// TODO set the arm subarch stuff if the minidump has info about it
llvm::Triple triple;
triple.setVendor(llvm::Triple::VendorType::UnknownVendor);
const MinidumpCPUArchitecture arch =
static_cast<const MinidumpCPUArchitecture>(
static_cast<const uint32_t>(system_info->processor_arch));
switch (arch) {
case MinidumpCPUArchitecture::X86:
triple.setArch(llvm::Triple::ArchType::x86);
break;
case MinidumpCPUArchitecture::AMD64:
triple.setArch(llvm::Triple::ArchType::x86_64);
break;
case MinidumpCPUArchitecture::ARM:
triple.setArch(llvm::Triple::ArchType::arm);
break;
case MinidumpCPUArchitecture::ARM64:
triple.setArch(llvm::Triple::ArchType::aarch64);
break;
default:
triple.setArch(llvm::Triple::ArchType::UnknownArch);
break;
}
const MinidumpOSPlatform os = static_cast<const MinidumpOSPlatform>(
static_cast<const uint32_t>(system_info->platform_id));
// TODO add all of the OSes that Minidump/breakpad distinguishes?
switch (os) {
case MinidumpOSPlatform::Win32S:
case MinidumpOSPlatform::Win32Windows:
case MinidumpOSPlatform::Win32NT:
case MinidumpOSPlatform::Win32CE:
triple.setOS(llvm::Triple::OSType::Win32);
break;
case MinidumpOSPlatform::Linux:
triple.setOS(llvm::Triple::OSType::Linux);
break;
case MinidumpOSPlatform::MacOSX:
triple.setOS(llvm::Triple::OSType::MacOSX);
break;
case MinidumpOSPlatform::Android:
triple.setOS(llvm::Triple::OSType::Linux);
triple.setEnvironment(llvm::Triple::EnvironmentType::Android);
break;
default:
triple.setOS(llvm::Triple::OSType::UnknownOS);
break;
}
arch_spec.SetTriple(triple);
return arch_spec;
}
const MinidumpMiscInfo *MinidumpParser::GetMiscInfo() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MiscInfo);
if (data.size() == 0)
return nullptr;
return MinidumpMiscInfo::Parse(data);
}
llvm::Optional<LinuxProcStatus> MinidumpParser::GetLinuxProcStatus() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::LinuxProcStatus);
if (data.size() == 0)
return llvm::None;
return LinuxProcStatus::Parse(data);
}
llvm::Optional<lldb::pid_t> MinidumpParser::GetPid() {
const MinidumpMiscInfo *misc_info = GetMiscInfo();
if (misc_info != nullptr) {
return misc_info->GetPid();
}
llvm::Optional<LinuxProcStatus> proc_status = GetLinuxProcStatus();
if (proc_status.hasValue()) {
return proc_status->GetPid();
}
return llvm::None;
}
llvm::ArrayRef<MinidumpModule> MinidumpParser::GetModuleList() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::ModuleList);
if (data.size() == 0)
return {};
return MinidumpModule::ParseModuleList(data);
}
std::vector<const MinidumpModule *> MinidumpParser::GetFilteredModuleList() {
llvm::ArrayRef<MinidumpModule> modules = GetModuleList();
// map module_name -> pair(load_address, pointer to module struct in memory)
llvm::StringMap<std::pair<uint64_t, const MinidumpModule *>> lowest_addr;
std::vector<const MinidumpModule *> filtered_modules;
llvm::Optional<std::string> name;
std::string module_name;
for (const auto &module : modules) {
name = GetMinidumpString(module.module_name_rva);
if (!name)
continue;
module_name = name.getValue();
auto iter = lowest_addr.end();
bool exists;
std::tie(iter, exists) = lowest_addr.try_emplace(
module_name, std::make_pair(module.base_of_image, &module));
if (exists && module.base_of_image < iter->second.first)
iter->second = std::make_pair(module.base_of_image, &module);
}
filtered_modules.reserve(lowest_addr.size());
for (const auto &module : lowest_addr) {
filtered_modules.push_back(module.second.second);
}
return filtered_modules;
}
const MinidumpExceptionStream *MinidumpParser::GetExceptionStream() {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::Exception);
if (data.size() == 0)
return nullptr;
return MinidumpExceptionStream::Parse(data);
}
llvm::Optional<minidump::Range>
MinidumpParser::FindMemoryRange(lldb::addr_t addr) {
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MemoryList);
llvm::ArrayRef<uint8_t> data64 = GetStream(MinidumpStreamType::Memory64List);
if (data.empty() && data64.empty())
return llvm::None;
if (!data.empty()) {
llvm::ArrayRef<MinidumpMemoryDescriptor> memory_list =
MinidumpMemoryDescriptor::ParseMemoryList(data);
if (memory_list.empty())
return llvm::None;
for (const auto &memory_desc : memory_list) {
const MinidumpLocationDescriptor &loc_desc = memory_desc.memory;
const lldb::addr_t range_start = memory_desc.start_of_memory_range;
const size_t range_size = loc_desc.data_size;
if (loc_desc.rva + loc_desc.data_size > GetData().size())
return llvm::None;
if (range_start <= addr && addr < range_start + range_size) {
return minidump::Range(range_start,
GetData().slice(loc_desc.rva, range_size));
}
}
}
// Some Minidumps have a Memory64ListStream that captures all the heap
// memory (full-memory Minidumps). We can't exactly use the same loop as
// above, because the Minidump uses slightly different data structures to
// describe those
if (!data64.empty()) {
llvm::ArrayRef<MinidumpMemoryDescriptor64> memory64_list;
uint64_t base_rva;
std::tie(memory64_list, base_rva) =
MinidumpMemoryDescriptor64::ParseMemory64List(data64);
if (memory64_list.empty())
return llvm::None;
for (const auto &memory_desc64 : memory64_list) {
const lldb::addr_t range_start = memory_desc64.start_of_memory_range;
const size_t range_size = memory_desc64.data_size;
if (base_rva + range_size > GetData().size())
return llvm::None;
if (range_start <= addr && addr < range_start + range_size) {
return minidump::Range(range_start,
GetData().slice(base_rva, range_size));
}
base_rva += range_size;
}
}
return llvm::None;
}
llvm::ArrayRef<uint8_t> MinidumpParser::GetMemory(lldb::addr_t addr,
size_t size) {
// I don't have a sense of how frequently this is called or how many memory
// ranges a Minidump typically has, so I'm not sure if searching for the
// appropriate range linearly each time is stupid. Perhaps we should build
// an index for faster lookups.
llvm::Optional<minidump::Range> range = FindMemoryRange(addr);
if (!range)
return {};
// There's at least some overlap between the beginning of the desired range
// (addr) and the current range. Figure out where the overlap begins and
// how much overlap there is.
const size_t offset = addr - range->start;
if (addr < range->start || offset >= range->range_ref.size())
return {};
const size_t overlap = std::min(size, range->range_ref.size() - offset);
return range->range_ref.slice(offset, overlap);
}
llvm::Optional<MemoryRegionInfo>
MinidumpParser::GetMemoryRegionInfo(lldb::addr_t load_addr) {
MemoryRegionInfo info;
llvm::ArrayRef<uint8_t> data = GetStream(MinidumpStreamType::MemoryInfoList);
if (data.empty())
return llvm::None;
std::vector<const MinidumpMemoryInfo *> mem_info_list =
MinidumpMemoryInfo::ParseMemoryInfoList(data);
if (mem_info_list.empty())
return llvm::None;
const auto yes = MemoryRegionInfo::eYes;
const auto no = MemoryRegionInfo::eNo;
const MinidumpMemoryInfo *next_entry = nullptr;
for (const auto &entry : mem_info_list) {
const auto head = entry->base_address;
const auto tail = head + entry->region_size;
if (head <= load_addr && load_addr < tail) {
info.GetRange().SetRangeBase(
(entry->state != uint32_t(MinidumpMemoryInfoState::MemFree))
? head
: load_addr);
info.GetRange().SetRangeEnd(tail);
const uint32_t PageNoAccess =
static_cast<uint32_t>(MinidumpMemoryProtectionContants::PageNoAccess);
info.SetReadable((entry->protect & PageNoAccess) == 0 ? yes : no);
const uint32_t PageWritable =
static_cast<uint32_t>(MinidumpMemoryProtectionContants::PageWritable);
info.SetWritable((entry->protect & PageWritable) != 0 ? yes : no);
const uint32_t PageExecutable = static_cast<uint32_t>(
MinidumpMemoryProtectionContants::PageExecutable);
info.SetExecutable((entry->protect & PageExecutable) != 0 ? yes : no);
const uint32_t MemFree =
static_cast<uint32_t>(MinidumpMemoryInfoState::MemFree);
info.SetMapped((entry->state != MemFree) ? yes : no);
return info;
} else if (head > load_addr &&
(next_entry == nullptr || head < next_entry->base_address)) {
// In case there is no region containing load_addr keep track of the
// nearest region after load_addr so we can return the distance to it.
next_entry = entry;
}
}
// No containing region found. Create an unmapped region that extends to the
// next region or LLDB_INVALID_ADDRESS
info.GetRange().SetRangeBase(load_addr);
info.GetRange().SetRangeEnd((next_entry != nullptr) ? next_entry->base_address
: LLDB_INVALID_ADDRESS);
info.SetReadable(no);
info.SetWritable(no);
info.SetExecutable(no);
info.SetMapped(no);
// Note that the memory info list doesn't seem to contain ranges in kernel
// space, so if you're walking a stack that has kernel frames, the stack may
// appear truncated.
return info;
}