Files
clang-p2996/polly/lib/Analysis/ScopBuilder.cpp
Michael Kruse a6716d9d81 [ScopBuilder] scalar-indep: Fix mutually referencing PHIs.
Two or more PHIs mutually using each other directly or indirectly as
incoming value could cause that a PHI WRITE be added before the PHI READ
(i.e. it overwrites the current incoming value with the next incoming
value before it being read).

Fix by ensuring that the PHI WRITE and PHI READ are in the same statement.

This should fix the miscompile of SingleSource/Benchmark/Misc/whetstone
from the test-suite.

llvm-svn: 324934
2018-02-12 21:09:40 +00:00

1621 lines
56 KiB
C++

//===- ScopBuilder.cpp ----------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Create a polyhedral description for a static control flow region.
//
// The pass creates a polyhedral description of the Scops detected by the SCoP
// detection derived from their LLVM-IR code.
//
//===----------------------------------------------------------------------===//
#include "polly/ScopBuilder.h"
#include "polly/Options.h"
#include "polly/ScopDetection.h"
#include "polly/ScopDetectionDiagnostic.h"
#include "polly/ScopInfo.h"
#include "polly/Support/GICHelper.h"
#include "polly/Support/SCEVValidator.h"
#include "polly/Support/ScopHelper.h"
#include "polly/Support/VirtualInstruction.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/EquivalenceClasses.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/RegionInfo.h"
#include "llvm/Analysis/RegionIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <string>
#include <tuple>
#include <vector>
using namespace llvm;
using namespace polly;
#define DEBUG_TYPE "polly-scops"
STATISTIC(ScopFound, "Number of valid Scops");
STATISTIC(RichScopFound, "Number of Scops containing a loop");
STATISTIC(InfeasibleScops,
"Number of SCoPs with statically infeasible context.");
bool polly::ModelReadOnlyScalars;
static cl::opt<bool, true> XModelReadOnlyScalars(
"polly-analyze-read-only-scalars",
cl::desc("Model read-only scalar values in the scop description"),
cl::location(ModelReadOnlyScalars), cl::Hidden, cl::ZeroOrMore,
cl::init(true), cl::cat(PollyCategory));
static cl::opt<bool> UnprofitableScalarAccs(
"polly-unprofitable-scalar-accs",
cl::desc("Count statements with scalar accesses as not optimizable"),
cl::Hidden, cl::init(false), cl::cat(PollyCategory));
static cl::opt<bool> DetectFortranArrays(
"polly-detect-fortran-arrays",
cl::desc("Detect Fortran arrays and use this for code generation"),
cl::Hidden, cl::init(false), cl::cat(PollyCategory));
static cl::opt<bool> DetectReductions("polly-detect-reductions",
cl::desc("Detect and exploit reductions"),
cl::Hidden, cl::ZeroOrMore,
cl::init(true), cl::cat(PollyCategory));
// Multiplicative reductions can be disabled separately as these kind of
// operations can overflow easily. Additive reductions and bit operations
// are in contrast pretty stable.
static cl::opt<bool> DisableMultiplicativeReductions(
"polly-disable-multiplicative-reductions",
cl::desc("Disable multiplicative reductions"), cl::Hidden, cl::ZeroOrMore,
cl::init(false), cl::cat(PollyCategory));
enum class GranularityChoice { BasicBlocks, ScalarIndependence, Stores };
static cl::opt<GranularityChoice> StmtGranularity(
"polly-stmt-granularity",
cl::desc(
"Algorithm to use for splitting basic blocks into multiple statements"),
cl::values(clEnumValN(GranularityChoice::BasicBlocks, "bb",
"One statement per basic block"),
clEnumValN(GranularityChoice::ScalarIndependence, "scalar-indep",
"Scalar independence heuristic"),
clEnumValN(GranularityChoice::Stores, "store",
"Store-level granularity")),
cl::init(GranularityChoice::ScalarIndependence), cl::cat(PollyCategory));
void ScopBuilder::buildPHIAccesses(ScopStmt *PHIStmt, PHINode *PHI,
Region *NonAffineSubRegion,
bool IsExitBlock) {
// PHI nodes that are in the exit block of the region, hence if IsExitBlock is
// true, are not modeled as ordinary PHI nodes as they are not part of the
// region. However, we model the operands in the predecessor blocks that are
// part of the region as regular scalar accesses.
// If we can synthesize a PHI we can skip it, however only if it is in
// the region. If it is not it can only be in the exit block of the region.
// In this case we model the operands but not the PHI itself.
auto *Scope = LI.getLoopFor(PHI->getParent());
if (!IsExitBlock && canSynthesize(PHI, *scop, &SE, Scope))
return;
// PHI nodes are modeled as if they had been demoted prior to the SCoP
// detection. Hence, the PHI is a load of a new memory location in which the
// incoming value was written at the end of the incoming basic block.
bool OnlyNonAffineSubRegionOperands = true;
for (unsigned u = 0; u < PHI->getNumIncomingValues(); u++) {
Value *Op = PHI->getIncomingValue(u);
BasicBlock *OpBB = PHI->getIncomingBlock(u);
ScopStmt *OpStmt = scop->getIncomingStmtFor(PHI->getOperandUse(u));
// Do not build PHI dependences inside a non-affine subregion, but make
// sure that the necessary scalar values are still made available.
if (NonAffineSubRegion && NonAffineSubRegion->contains(OpBB)) {
auto *OpInst = dyn_cast<Instruction>(Op);
if (!OpInst || !NonAffineSubRegion->contains(OpInst))
ensureValueRead(Op, OpStmt);
continue;
}
OnlyNonAffineSubRegionOperands = false;
ensurePHIWrite(PHI, OpStmt, OpBB, Op, IsExitBlock);
}
if (!OnlyNonAffineSubRegionOperands && !IsExitBlock) {
addPHIReadAccess(PHIStmt, PHI);
}
}
void ScopBuilder::buildScalarDependences(ScopStmt *UserStmt,
Instruction *Inst) {
assert(!isa<PHINode>(Inst));
// Pull-in required operands.
for (Use &Op : Inst->operands())
ensureValueRead(Op.get(), UserStmt);
}
void ScopBuilder::buildEscapingDependences(Instruction *Inst) {
// Check for uses of this instruction outside the scop. Because we do not
// iterate over such instructions and therefore did not "ensure" the existence
// of a write, we must determine such use here.
if (scop->isEscaping(Inst))
ensureValueWrite(Inst);
}
/// Check that a value is a Fortran Array descriptor.
///
/// We check if V has the following structure:
/// %"struct.array1_real(kind=8)" = type { i8*, i<zz>, i<zz>,
/// [<num> x %struct.descriptor_dimension] }
///
///
/// %struct.descriptor_dimension = type { i<zz>, i<zz>, i<zz> }
///
/// 1. V's type name starts with "struct.array"
/// 2. V's type has layout as shown.
/// 3. Final member of V's type has name "struct.descriptor_dimension",
/// 4. "struct.descriptor_dimension" has layout as shown.
/// 5. Consistent use of i<zz> where <zz> is some fixed integer number.
///
/// We are interested in such types since this is the code that dragonegg
/// generates for Fortran array descriptors.
///
/// @param V the Value to be checked.
///
/// @returns True if V is a Fortran array descriptor, False otherwise.
bool isFortranArrayDescriptor(Value *V) {
PointerType *PTy = dyn_cast<PointerType>(V->getType());
if (!PTy)
return false;
Type *Ty = PTy->getElementType();
assert(Ty && "Ty expected to be initialized");
auto *StructArrTy = dyn_cast<StructType>(Ty);
if (!(StructArrTy && StructArrTy->hasName()))
return false;
if (!StructArrTy->getName().startswith("struct.array"))
return false;
if (StructArrTy->getNumElements() != 4)
return false;
const ArrayRef<Type *> ArrMemberTys = StructArrTy->elements();
// i8* match
if (ArrMemberTys[0] != Type::getInt8PtrTy(V->getContext()))
return false;
// Get a reference to the int type and check that all the members
// share the same int type
Type *IntTy = ArrMemberTys[1];
if (ArrMemberTys[2] != IntTy)
return false;
// type: [<num> x %struct.descriptor_dimension]
ArrayType *DescriptorDimArrayTy = dyn_cast<ArrayType>(ArrMemberTys[3]);
if (!DescriptorDimArrayTy)
return false;
// type: %struct.descriptor_dimension := type { ixx, ixx, ixx }
StructType *DescriptorDimTy =
dyn_cast<StructType>(DescriptorDimArrayTy->getElementType());
if (!(DescriptorDimTy && DescriptorDimTy->hasName()))
return false;
if (DescriptorDimTy->getName() != "struct.descriptor_dimension")
return false;
if (DescriptorDimTy->getNumElements() != 3)
return false;
for (auto MemberTy : DescriptorDimTy->elements()) {
if (MemberTy != IntTy)
return false;
}
return true;
}
Value *ScopBuilder::findFADAllocationVisible(MemAccInst Inst) {
// match: 4.1 & 4.2 store/load
if (!isa<LoadInst>(Inst) && !isa<StoreInst>(Inst))
return nullptr;
// match: 4
if (Inst.getAlignment() != 8)
return nullptr;
Value *Address = Inst.getPointerOperand();
const BitCastInst *Bitcast = nullptr;
// [match: 3]
if (auto *Slot = dyn_cast<GetElementPtrInst>(Address)) {
Value *TypedMem = Slot->getPointerOperand();
// match: 2
Bitcast = dyn_cast<BitCastInst>(TypedMem);
} else {
// match: 2
Bitcast = dyn_cast<BitCastInst>(Address);
}
if (!Bitcast)
return nullptr;
auto *MallocMem = Bitcast->getOperand(0);
// match: 1
auto *MallocCall = dyn_cast<CallInst>(MallocMem);
if (!MallocCall)
return nullptr;
Function *MallocFn = MallocCall->getCalledFunction();
if (!(MallocFn && MallocFn->hasName() && MallocFn->getName() == "malloc"))
return nullptr;
// Find all uses the malloc'd memory.
// We are looking for a "store" into a struct with the type being the Fortran
// descriptor type
for (auto user : MallocMem->users()) {
/// match: 5
auto *MallocStore = dyn_cast<StoreInst>(user);
if (!MallocStore)
continue;
auto *DescriptorGEP =
dyn_cast<GEPOperator>(MallocStore->getPointerOperand());
if (!DescriptorGEP)
continue;
// match: 5
auto DescriptorType =
dyn_cast<StructType>(DescriptorGEP->getSourceElementType());
if (!(DescriptorType && DescriptorType->hasName()))
continue;
Value *Descriptor = dyn_cast<Value>(DescriptorGEP->getPointerOperand());
if (!Descriptor)
continue;
if (!isFortranArrayDescriptor(Descriptor))
continue;
return Descriptor;
}
return nullptr;
}
Value *ScopBuilder::findFADAllocationInvisible(MemAccInst Inst) {
// match: 3
if (!isa<LoadInst>(Inst) && !isa<StoreInst>(Inst))
return nullptr;
Value *Slot = Inst.getPointerOperand();
LoadInst *MemLoad = nullptr;
// [match: 2]
if (auto *SlotGEP = dyn_cast<GetElementPtrInst>(Slot)) {
// match: 1
MemLoad = dyn_cast<LoadInst>(SlotGEP->getPointerOperand());
} else {
// match: 1
MemLoad = dyn_cast<LoadInst>(Slot);
}
if (!MemLoad)
return nullptr;
auto *BitcastOperator =
dyn_cast<BitCastOperator>(MemLoad->getPointerOperand());
if (!BitcastOperator)
return nullptr;
Value *Descriptor = dyn_cast<Value>(BitcastOperator->getOperand(0));
if (!Descriptor)
return nullptr;
if (!isFortranArrayDescriptor(Descriptor))
return nullptr;
return Descriptor;
}
bool ScopBuilder::buildAccessMultiDimFixed(MemAccInst Inst, ScopStmt *Stmt) {
Value *Val = Inst.getValueOperand();
Type *ElementType = Val->getType();
Value *Address = Inst.getPointerOperand();
const SCEV *AccessFunction =
SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent()));
const SCEVUnknown *BasePointer =
dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
enum MemoryAccess::AccessType AccType =
isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
if (auto *BitCast = dyn_cast<BitCastInst>(Address)) {
auto *Src = BitCast->getOperand(0);
auto *SrcTy = Src->getType();
auto *DstTy = BitCast->getType();
// Do not try to delinearize non-sized (opaque) pointers.
if ((SrcTy->isPointerTy() && !SrcTy->getPointerElementType()->isSized()) ||
(DstTy->isPointerTy() && !DstTy->getPointerElementType()->isSized())) {
return false;
}
if (SrcTy->isPointerTy() && DstTy->isPointerTy() &&
DL.getTypeAllocSize(SrcTy->getPointerElementType()) ==
DL.getTypeAllocSize(DstTy->getPointerElementType()))
Address = Src;
}
auto *GEP = dyn_cast<GetElementPtrInst>(Address);
if (!GEP)
return false;
std::vector<const SCEV *> Subscripts;
std::vector<int> Sizes;
std::tie(Subscripts, Sizes) = getIndexExpressionsFromGEP(GEP, SE);
auto *BasePtr = GEP->getOperand(0);
if (auto *BasePtrCast = dyn_cast<BitCastInst>(BasePtr))
BasePtr = BasePtrCast->getOperand(0);
// Check for identical base pointers to ensure that we do not miss index
// offsets that have been added before this GEP is applied.
if (BasePtr != BasePointer->getValue())
return false;
std::vector<const SCEV *> SizesSCEV;
const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
Loop *SurroundingLoop = Stmt->getSurroundingLoop();
for (auto *Subscript : Subscripts) {
InvariantLoadsSetTy AccessILS;
if (!isAffineExpr(&scop->getRegion(), SurroundingLoop, Subscript, SE,
&AccessILS))
return false;
for (LoadInst *LInst : AccessILS)
if (!ScopRIL.count(LInst))
return false;
}
if (Sizes.empty())
return false;
SizesSCEV.push_back(nullptr);
for (auto V : Sizes)
SizesSCEV.push_back(SE.getSCEV(
ConstantInt::get(IntegerType::getInt64Ty(BasePtr->getContext()), V)));
addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType,
true, Subscripts, SizesSCEV, Val);
return true;
}
bool ScopBuilder::buildAccessMultiDimParam(MemAccInst Inst, ScopStmt *Stmt) {
if (!PollyDelinearize)
return false;
Value *Address = Inst.getPointerOperand();
Value *Val = Inst.getValueOperand();
Type *ElementType = Val->getType();
unsigned ElementSize = DL.getTypeAllocSize(ElementType);
enum MemoryAccess::AccessType AccType =
isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
const SCEV *AccessFunction =
SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent()));
const SCEVUnknown *BasePointer =
dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
assert(BasePointer && "Could not find base pointer");
auto &InsnToMemAcc = scop->getInsnToMemAccMap();
auto AccItr = InsnToMemAcc.find(Inst);
if (AccItr == InsnToMemAcc.end())
return false;
std::vector<const SCEV *> Sizes = {nullptr};
Sizes.insert(Sizes.end(), AccItr->second.Shape->DelinearizedSizes.begin(),
AccItr->second.Shape->DelinearizedSizes.end());
// In case only the element size is contained in the 'Sizes' array, the
// access does not access a real multi-dimensional array. Hence, we allow
// the normal single-dimensional access construction to handle this.
if (Sizes.size() == 1)
return false;
// Remove the element size. This information is already provided by the
// ElementSize parameter. In case the element size of this access and the
// element size used for delinearization differs the delinearization is
// incorrect. Hence, we invalidate the scop.
//
// TODO: Handle delinearization with differing element sizes.
auto DelinearizedSize =
cast<SCEVConstant>(Sizes.back())->getAPInt().getSExtValue();
Sizes.pop_back();
if (ElementSize != DelinearizedSize)
scop->invalidate(DELINEARIZATION, Inst->getDebugLoc(), Inst->getParent());
addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType,
true, AccItr->second.DelinearizedSubscripts, Sizes, Val);
return true;
}
bool ScopBuilder::buildAccessMemIntrinsic(MemAccInst Inst, ScopStmt *Stmt) {
auto *MemIntr = dyn_cast_or_null<MemIntrinsic>(Inst);
if (MemIntr == nullptr)
return false;
auto *L = LI.getLoopFor(Inst->getParent());
auto *LengthVal = SE.getSCEVAtScope(MemIntr->getLength(), L);
assert(LengthVal);
// Check if the length val is actually affine or if we overapproximate it
InvariantLoadsSetTy AccessILS;
const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
Loop *SurroundingLoop = Stmt->getSurroundingLoop();
bool LengthIsAffine = isAffineExpr(&scop->getRegion(), SurroundingLoop,
LengthVal, SE, &AccessILS);
for (LoadInst *LInst : AccessILS)
if (!ScopRIL.count(LInst))
LengthIsAffine = false;
if (!LengthIsAffine)
LengthVal = nullptr;
auto *DestPtrVal = MemIntr->getDest();
assert(DestPtrVal);
auto *DestAccFunc = SE.getSCEVAtScope(DestPtrVal, L);
assert(DestAccFunc);
// Ignore accesses to "NULL".
// TODO: We could use this to optimize the region further, e.g., intersect
// the context with
// isl_set_complement(isl_set_params(getDomain()))
// as we know it would be undefined to execute this instruction anyway.
if (DestAccFunc->isZero())
return true;
auto *DestPtrSCEV = dyn_cast<SCEVUnknown>(SE.getPointerBase(DestAccFunc));
assert(DestPtrSCEV);
DestAccFunc = SE.getMinusSCEV(DestAccFunc, DestPtrSCEV);
addArrayAccess(Stmt, Inst, MemoryAccess::MUST_WRITE, DestPtrSCEV->getValue(),
IntegerType::getInt8Ty(DestPtrVal->getContext()),
LengthIsAffine, {DestAccFunc, LengthVal}, {nullptr},
Inst.getValueOperand());
auto *MemTrans = dyn_cast<MemTransferInst>(MemIntr);
if (!MemTrans)
return true;
auto *SrcPtrVal = MemTrans->getSource();
assert(SrcPtrVal);
auto *SrcAccFunc = SE.getSCEVAtScope(SrcPtrVal, L);
assert(SrcAccFunc);
// Ignore accesses to "NULL".
// TODO: See above TODO
if (SrcAccFunc->isZero())
return true;
auto *SrcPtrSCEV = dyn_cast<SCEVUnknown>(SE.getPointerBase(SrcAccFunc));
assert(SrcPtrSCEV);
SrcAccFunc = SE.getMinusSCEV(SrcAccFunc, SrcPtrSCEV);
addArrayAccess(Stmt, Inst, MemoryAccess::READ, SrcPtrSCEV->getValue(),
IntegerType::getInt8Ty(SrcPtrVal->getContext()),
LengthIsAffine, {SrcAccFunc, LengthVal}, {nullptr},
Inst.getValueOperand());
return true;
}
bool ScopBuilder::buildAccessCallInst(MemAccInst Inst, ScopStmt *Stmt) {
auto *CI = dyn_cast_or_null<CallInst>(Inst);
if (CI == nullptr)
return false;
if (CI->doesNotAccessMemory() || isIgnoredIntrinsic(CI))
return true;
bool ReadOnly = false;
auto *AF = SE.getConstant(IntegerType::getInt64Ty(CI->getContext()), 0);
auto *CalledFunction = CI->getCalledFunction();
switch (AA.getModRefBehavior(CalledFunction)) {
case FMRB_UnknownModRefBehavior:
llvm_unreachable("Unknown mod ref behaviour cannot be represented.");
case FMRB_DoesNotAccessMemory:
return true;
case FMRB_DoesNotReadMemory:
case FMRB_OnlyAccessesInaccessibleMem:
case FMRB_OnlyAccessesInaccessibleOrArgMem:
return false;
case FMRB_OnlyReadsMemory:
GlobalReads.emplace_back(Stmt, CI);
return true;
case FMRB_OnlyReadsArgumentPointees:
ReadOnly = true;
// Fall through
case FMRB_OnlyAccessesArgumentPointees: {
auto AccType = ReadOnly ? MemoryAccess::READ : MemoryAccess::MAY_WRITE;
Loop *L = LI.getLoopFor(Inst->getParent());
for (const auto &Arg : CI->arg_operands()) {
if (!Arg->getType()->isPointerTy())
continue;
auto *ArgSCEV = SE.getSCEVAtScope(Arg, L);
if (ArgSCEV->isZero())
continue;
auto *ArgBasePtr = cast<SCEVUnknown>(SE.getPointerBase(ArgSCEV));
addArrayAccess(Stmt, Inst, AccType, ArgBasePtr->getValue(),
ArgBasePtr->getType(), false, {AF}, {nullptr}, CI);
}
return true;
}
}
return true;
}
void ScopBuilder::buildAccessSingleDim(MemAccInst Inst, ScopStmt *Stmt) {
Value *Address = Inst.getPointerOperand();
Value *Val = Inst.getValueOperand();
Type *ElementType = Val->getType();
enum MemoryAccess::AccessType AccType =
isa<LoadInst>(Inst) ? MemoryAccess::READ : MemoryAccess::MUST_WRITE;
const SCEV *AccessFunction =
SE.getSCEVAtScope(Address, LI.getLoopFor(Inst->getParent()));
const SCEVUnknown *BasePointer =
dyn_cast<SCEVUnknown>(SE.getPointerBase(AccessFunction));
assert(BasePointer && "Could not find base pointer");
AccessFunction = SE.getMinusSCEV(AccessFunction, BasePointer);
// Check if the access depends on a loop contained in a non-affine subregion.
bool isVariantInNonAffineLoop = false;
SetVector<const Loop *> Loops;
findLoops(AccessFunction, Loops);
for (const Loop *L : Loops)
if (Stmt->contains(L)) {
isVariantInNonAffineLoop = true;
break;
}
InvariantLoadsSetTy AccessILS;
Loop *SurroundingLoop = Stmt->getSurroundingLoop();
bool IsAffine = !isVariantInNonAffineLoop &&
isAffineExpr(&scop->getRegion(), SurroundingLoop,
AccessFunction, SE, &AccessILS);
const InvariantLoadsSetTy &ScopRIL = scop->getRequiredInvariantLoads();
for (LoadInst *LInst : AccessILS)
if (!ScopRIL.count(LInst))
IsAffine = false;
if (!IsAffine && AccType == MemoryAccess::MUST_WRITE)
AccType = MemoryAccess::MAY_WRITE;
addArrayAccess(Stmt, Inst, AccType, BasePointer->getValue(), ElementType,
IsAffine, {AccessFunction}, {nullptr}, Val);
}
void ScopBuilder::buildMemoryAccess(MemAccInst Inst, ScopStmt *Stmt) {
if (buildAccessMemIntrinsic(Inst, Stmt))
return;
if (buildAccessCallInst(Inst, Stmt))
return;
if (buildAccessMultiDimFixed(Inst, Stmt))
return;
if (buildAccessMultiDimParam(Inst, Stmt))
return;
buildAccessSingleDim(Inst, Stmt);
}
void ScopBuilder::buildAccessFunctions() {
for (auto &Stmt : *scop) {
if (Stmt.isBlockStmt()) {
buildAccessFunctions(&Stmt, *Stmt.getBasicBlock());
continue;
}
Region *R = Stmt.getRegion();
for (BasicBlock *BB : R->blocks())
buildAccessFunctions(&Stmt, *BB, R);
}
// Build write accesses for values that are used after the SCoP.
// The instructions defining them might be synthesizable and therefore not
// contained in any statement, hence we iterate over the original instructions
// to identify all escaping values.
for (BasicBlock *BB : scop->getRegion().blocks()) {
for (Instruction &Inst : *BB)
buildEscapingDependences(&Inst);
}
}
bool ScopBuilder::shouldModelInst(Instruction *Inst, Loop *L) {
return !isa<TerminatorInst>(Inst) && !isIgnoredIntrinsic(Inst) &&
!canSynthesize(Inst, *scop, &SE, L);
}
/// Generate a name for a statement.
///
/// @param BB The basic block the statement will represent.
/// @param BBIdx The index of the @p BB relative to other BBs/regions.
/// @param Count The index of the created statement in @p BB.
/// @param IsMain Whether this is the main of all statement for @p BB. If true,
/// no suffix will be added.
/// @param IsLast Uses a special indicator for the last statement of a BB.
static std::string makeStmtName(BasicBlock *BB, long BBIdx, int Count,
bool IsMain, bool IsLast = false) {
std::string Suffix;
if (!IsMain) {
if (UseInstructionNames)
Suffix = '_';
if (IsLast)
Suffix += "last";
else if (Count < 26)
Suffix += 'a' + Count;
else
Suffix += std::to_string(Count);
}
return getIslCompatibleName("Stmt", BB, BBIdx, Suffix, UseInstructionNames);
}
/// Generate a name for a statement that represents a non-affine subregion.
///
/// @param R The region the statement will represent.
/// @param RIdx The index of the @p R relative to other BBs/regions.
static std::string makeStmtName(Region *R, long RIdx) {
return getIslCompatibleName("Stmt", R->getNameStr(), RIdx, "",
UseInstructionNames);
}
void ScopBuilder::buildSequentialBlockStmts(BasicBlock *BB, bool SplitOnStore) {
Loop *SurroundingLoop = LI.getLoopFor(BB);
int Count = 0;
long BBIdx = scop->getNextStmtIdx();
std::vector<Instruction *> Instructions;
for (Instruction &Inst : *BB) {
if (shouldModelInst(&Inst, SurroundingLoop))
Instructions.push_back(&Inst);
if (Inst.getMetadata("polly_split_after") ||
(SplitOnStore && isa<StoreInst>(Inst))) {
std::string Name = makeStmtName(BB, BBIdx, Count, Count == 0);
scop->addScopStmt(BB, Name, SurroundingLoop, Instructions);
Count++;
Instructions.clear();
}
}
std::string Name = makeStmtName(BB, BBIdx, Count, Count == 0);
scop->addScopStmt(BB, Name, SurroundingLoop, Instructions);
}
/// Is @p Inst an ordered instruction?
///
/// An unordered instruction is an instruction, such that a sequence of
/// unordered instructions can be permuted without changing semantics. Any
/// instruction for which this is not always the case is ordered.
static bool isOrderedInstruction(Instruction *Inst) {
return Inst->mayHaveSideEffects() || Inst->mayReadOrWriteMemory();
}
/// Join instructions to the same statement if one uses the scalar result of the
/// other.
static void joinOperandTree(EquivalenceClasses<Instruction *> &UnionFind,
ArrayRef<Instruction *> ModeledInsts) {
for (Instruction *Inst : ModeledInsts) {
if (isa<PHINode>(Inst))
continue;
for (Use &Op : Inst->operands()) {
Instruction *OpInst = dyn_cast<Instruction>(Op.get());
if (!OpInst)
continue;
// Check if OpInst is in the BB and is a modeled instruction.
auto OpVal = UnionFind.findValue(OpInst);
if (OpVal == UnionFind.end())
continue;
UnionFind.unionSets(Inst, OpInst);
}
}
}
/// Ensure that the order of ordered instructions does not change.
///
/// If we encounter an ordered instruction enclosed in instructions belonging to
/// a different statement (which might as well contain ordered instructions, but
/// this is not tested here), join them.
static void
joinOrderedInstructions(EquivalenceClasses<Instruction *> &UnionFind,
ArrayRef<Instruction *> ModeledInsts) {
SetVector<Instruction *> SeenLeaders;
for (Instruction *Inst : ModeledInsts) {
if (!isOrderedInstruction(Inst))
continue;
Instruction *Leader = UnionFind.getLeaderValue(Inst);
bool Inserted = SeenLeaders.insert(Leader);
if (Inserted)
continue;
// Merge statements to close holes. Say, we have already seen statements A
// and B, in this order. Then we see an instruction of A again and we would
// see the pattern "A B A". This function joins all statements until the
// only seen occurrence of A.
for (Instruction *Prev : reverse(SeenLeaders)) {
// Items added to 'SeenLeaders' are leaders, but may have lost their
// leadership status when merged into another statement.
Instruction *PrevLeader = UnionFind.getLeaderValue(SeenLeaders.back());
if (PrevLeader == Leader)
break;
UnionFind.unionSets(Prev, Leader);
}
}
}
/// If the BasicBlock has an edge from itself, ensure that the PHI WRITEs for
/// the incoming values from this block are executed after the PHI READ.
///
/// Otherwise it could overwrite the incoming value from before the BB with the
/// value for the next execution. This can happen if the PHI WRITE is added to
/// the statement with the instruction that defines the incoming value (instead
/// of the last statement of the same BB). To ensure that the PHI READ and WRITE
/// are in order, we put both into the statement. PHI WRITEs are always executed
/// after PHI READs when they are in the same statement.
///
/// TODO: This is an overpessimization. We only have to ensure that the PHI
/// WRITE is not put into a statement containing the PHI itself. That could also
/// be done by
/// - having all (strongly connected) PHIs in a single statement,
/// - unite only the PHIs in the operand tree of the PHI WRITE (because it only
/// has a chance of being lifted before a PHI by being in a statement with a
/// PHI that comes before in the basic block), or
/// - when uniting statements, ensure that no (relevant) PHIs are overtaken.
static void joinOrderedPHIs(EquivalenceClasses<Instruction *> &UnionFind,
ArrayRef<Instruction *> ModeledInsts) {
for (Instruction *Inst : ModeledInsts) {
PHINode *PHI = dyn_cast<PHINode>(Inst);
if (!PHI)
continue;
int Idx = PHI->getBasicBlockIndex(PHI->getParent());
if (Idx < 0)
continue;
Instruction *IncomingVal =
dyn_cast<Instruction>(PHI->getIncomingValue(Idx));
if (!IncomingVal)
continue;
UnionFind.unionSets(PHI, IncomingVal);
}
}
void ScopBuilder::buildEqivClassBlockStmts(BasicBlock *BB) {
Loop *L = LI.getLoopFor(BB);
// Extracting out modeled instructions saves us from checking
// shouldModelInst() repeatedly.
SmallVector<Instruction *, 32> ModeledInsts;
EquivalenceClasses<Instruction *> UnionFind;
Instruction *MainInst = nullptr;
for (Instruction &Inst : *BB) {
if (!shouldModelInst(&Inst, L))
continue;
ModeledInsts.push_back(&Inst);
UnionFind.insert(&Inst);
// When a BB is split into multiple statements, the main statement is the
// one containing the 'main' instruction. We select the first instruction
// that is unlikely to be removed (because it has side-effects) as the main
// one. It is used to ensure that at least one statement from the bb has the
// same name as with -polly-stmt-granularity=bb.
if (!MainInst && (isa<StoreInst>(Inst) ||
(isa<CallInst>(Inst) && !isa<IntrinsicInst>(Inst))))
MainInst = &Inst;
}
joinOperandTree(UnionFind, ModeledInsts);
joinOrderedInstructions(UnionFind, ModeledInsts);
joinOrderedPHIs(UnionFind, ModeledInsts);
// The list of instructions for statement (statement represented by the leader
// instruction). The order of statements instructions is reversed such that
// the epilogue is first. This makes it easier to ensure that the epilogue is
// the last statement.
MapVector<Instruction *, std::vector<Instruction *>> LeaderToInstList;
// Collect the instructions of all leaders. UnionFind's member iterator
// unfortunately are not in any specific order.
for (Instruction &Inst : reverse(*BB)) {
auto LeaderIt = UnionFind.findLeader(&Inst);
if (LeaderIt == UnionFind.member_end())
continue;
std::vector<Instruction *> &InstList = LeaderToInstList[*LeaderIt];
InstList.push_back(&Inst);
}
// Finally build the statements.
int Count = 0;
long BBIdx = scop->getNextStmtIdx();
bool MainFound = false;
for (auto &Instructions : reverse(LeaderToInstList)) {
std::vector<Instruction *> &InstList = Instructions.second;
// If there is no main instruction, make the first statement the main.
bool IsMain;
if (MainInst)
IsMain = std::find(InstList.begin(), InstList.end(), MainInst) !=
InstList.end();
else
IsMain = (Count == 0);
if (IsMain)
MainFound = true;
std::reverse(InstList.begin(), InstList.end());
std::string Name = makeStmtName(BB, BBIdx, Count, IsMain);
scop->addScopStmt(BB, Name, L, std::move(InstList));
Count += 1;
}
// Unconditionally add an epilogue (last statement). It contains no
// instructions, but holds the PHI write accesses for successor basic blocks,
// if the incoming value is not defined in another statement if the same BB.
// The epilogue will be removed if no PHIWrite is added to it.
std::string EpilogueName = makeStmtName(BB, BBIdx, Count, !MainFound, true);
scop->addScopStmt(BB, EpilogueName, L, {});
}
void ScopBuilder::buildStmts(Region &SR) {
if (scop->isNonAffineSubRegion(&SR)) {
std::vector<Instruction *> Instructions;
Loop *SurroundingLoop =
getFirstNonBoxedLoopFor(SR.getEntry(), LI, scop->getBoxedLoops());
for (Instruction &Inst : *SR.getEntry())
if (shouldModelInst(&Inst, SurroundingLoop))
Instructions.push_back(&Inst);
long RIdx = scop->getNextStmtIdx();
std::string Name = makeStmtName(&SR, RIdx);
scop->addScopStmt(&SR, Name, SurroundingLoop, Instructions);
return;
}
for (auto I = SR.element_begin(), E = SR.element_end(); I != E; ++I)
if (I->isSubRegion())
buildStmts(*I->getNodeAs<Region>());
else {
BasicBlock *BB = I->getNodeAs<BasicBlock>();
switch (StmtGranularity) {
case GranularityChoice::BasicBlocks:
buildSequentialBlockStmts(BB);
break;
case GranularityChoice::ScalarIndependence:
buildEqivClassBlockStmts(BB);
break;
case GranularityChoice::Stores:
buildSequentialBlockStmts(BB, true);
break;
}
}
}
void ScopBuilder::buildAccessFunctions(ScopStmt *Stmt, BasicBlock &BB,
Region *NonAffineSubRegion) {
assert(
Stmt &&
"The exit BB is the only one that cannot be represented by a statement");
assert(Stmt->represents(&BB));
// We do not build access functions for error blocks, as they may contain
// instructions we can not model.
if (isErrorBlock(BB, scop->getRegion(), LI, DT))
return;
auto BuildAccessesForInst = [this, Stmt,
NonAffineSubRegion](Instruction *Inst) {
PHINode *PHI = dyn_cast<PHINode>(Inst);
if (PHI)
buildPHIAccesses(Stmt, PHI, NonAffineSubRegion, false);
if (auto MemInst = MemAccInst::dyn_cast(*Inst)) {
assert(Stmt && "Cannot build access function in non-existing statement");
buildMemoryAccess(MemInst, Stmt);
}
// PHI nodes have already been modeled above and TerminatorInsts that are
// not part of a non-affine subregion are fully modeled and regenerated
// from the polyhedral domains. Hence, they do not need to be modeled as
// explicit data dependences.
if (!PHI)
buildScalarDependences(Stmt, Inst);
};
const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads();
bool IsEntryBlock = (Stmt->getEntryBlock() == &BB);
if (IsEntryBlock) {
for (Instruction *Inst : Stmt->getInstructions())
BuildAccessesForInst(Inst);
if (Stmt->isRegionStmt())
BuildAccessesForInst(BB.getTerminator());
} else {
for (Instruction &Inst : BB) {
if (isIgnoredIntrinsic(&Inst))
continue;
// Invariant loads already have been processed.
if (isa<LoadInst>(Inst) && RIL.count(cast<LoadInst>(&Inst)))
continue;
BuildAccessesForInst(&Inst);
}
}
}
MemoryAccess *ScopBuilder::addMemoryAccess(
ScopStmt *Stmt, Instruction *Inst, MemoryAccess::AccessType AccType,
Value *BaseAddress, Type *ElementType, bool Affine, Value *AccessValue,
ArrayRef<const SCEV *> Subscripts, ArrayRef<const SCEV *> Sizes,
MemoryKind Kind) {
bool isKnownMustAccess = false;
// Accesses in single-basic block statements are always executed.
if (Stmt->isBlockStmt())
isKnownMustAccess = true;
if (Stmt->isRegionStmt()) {
// Accesses that dominate the exit block of a non-affine region are always
// executed. In non-affine regions there may exist MemoryKind::Values that
// do not dominate the exit. MemoryKind::Values will always dominate the
// exit and MemoryKind::PHIs only if there is at most one PHI_WRITE in the
// non-affine region.
if (Inst && DT.dominates(Inst->getParent(), Stmt->getRegion()->getExit()))
isKnownMustAccess = true;
}
// Non-affine PHI writes do not "happen" at a particular instruction, but
// after exiting the statement. Therefore they are guaranteed to execute and
// overwrite the old value.
if (Kind == MemoryKind::PHI || Kind == MemoryKind::ExitPHI)
isKnownMustAccess = true;
if (!isKnownMustAccess && AccType == MemoryAccess::MUST_WRITE)
AccType = MemoryAccess::MAY_WRITE;
auto *Access = new MemoryAccess(Stmt, Inst, AccType, BaseAddress, ElementType,
Affine, Subscripts, Sizes, AccessValue, Kind);
scop->addAccessFunction(Access);
Stmt->addAccess(Access);
return Access;
}
void ScopBuilder::addArrayAccess(ScopStmt *Stmt, MemAccInst MemAccInst,
MemoryAccess::AccessType AccType,
Value *BaseAddress, Type *ElementType,
bool IsAffine,
ArrayRef<const SCEV *> Subscripts,
ArrayRef<const SCEV *> Sizes,
Value *AccessValue) {
ArrayBasePointers.insert(BaseAddress);
auto *MemAccess = addMemoryAccess(Stmt, MemAccInst, AccType, BaseAddress,
ElementType, IsAffine, AccessValue,
Subscripts, Sizes, MemoryKind::Array);
if (!DetectFortranArrays)
return;
if (Value *FAD = findFADAllocationInvisible(MemAccInst))
MemAccess->setFortranArrayDescriptor(FAD);
else if (Value *FAD = findFADAllocationVisible(MemAccInst))
MemAccess->setFortranArrayDescriptor(FAD);
}
void ScopBuilder::ensureValueWrite(Instruction *Inst) {
// Find the statement that defines the value of Inst. That statement has to
// write the value to make it available to those statements that read it.
ScopStmt *Stmt = scop->getStmtFor(Inst);
// It is possible that the value is synthesizable within a loop (such that it
// is not part of any statement), but not after the loop (where you need the
// number of loop round-trips to synthesize it). In LCSSA-form a PHI node will
// avoid this. In case the IR has no such PHI, use the last statement (where
// the value is synthesizable) to write the value.
if (!Stmt)
Stmt = scop->getLastStmtFor(Inst->getParent());
// Inst not defined within this SCoP.
if (!Stmt)
return;
// Do not process further if the instruction is already written.
if (Stmt->lookupValueWriteOf(Inst))
return;
addMemoryAccess(Stmt, Inst, MemoryAccess::MUST_WRITE, Inst, Inst->getType(),
true, Inst, ArrayRef<const SCEV *>(),
ArrayRef<const SCEV *>(), MemoryKind::Value);
}
void ScopBuilder::ensureValueRead(Value *V, ScopStmt *UserStmt) {
// TODO: Make ScopStmt::ensureValueRead(Value*) offer the same functionality
// to be able to replace this one. Currently, there is a split responsibility.
// In a first step, the MemoryAccess is created, but without the
// AccessRelation. In the second step by ScopStmt::buildAccessRelations(), the
// AccessRelation is created. At least for scalar accesses, there is no new
// information available at ScopStmt::buildAccessRelations(), so we could
// create the AccessRelation right away. This is what
// ScopStmt::ensureValueRead(Value*) does.
auto *Scope = UserStmt->getSurroundingLoop();
auto VUse = VirtualUse::create(scop.get(), UserStmt, Scope, V, false);
switch (VUse.getKind()) {
case VirtualUse::Constant:
case VirtualUse::Block:
case VirtualUse::Synthesizable:
case VirtualUse::Hoisted:
case VirtualUse::Intra:
// Uses of these kinds do not need a MemoryAccess.
break;
case VirtualUse::ReadOnly:
// Add MemoryAccess for invariant values only if requested.
if (!ModelReadOnlyScalars)
break;
LLVM_FALLTHROUGH;
case VirtualUse::Inter:
// Do not create another MemoryAccess for reloading the value if one already
// exists.
if (UserStmt->lookupValueReadOf(V))
break;
addMemoryAccess(UserStmt, nullptr, MemoryAccess::READ, V, V->getType(),
true, V, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
MemoryKind::Value);
// Inter-statement uses need to write the value in their defining statement.
if (VUse.isInter())
ensureValueWrite(cast<Instruction>(V));
break;
}
}
void ScopBuilder::ensurePHIWrite(PHINode *PHI, ScopStmt *IncomingStmt,
BasicBlock *IncomingBlock,
Value *IncomingValue, bool IsExitBlock) {
// As the incoming block might turn out to be an error statement ensure we
// will create an exit PHI SAI object. It is needed during code generation
// and would be created later anyway.
if (IsExitBlock)
scop->getOrCreateScopArrayInfo(PHI, PHI->getType(), {},
MemoryKind::ExitPHI);
// This is possible if PHI is in the SCoP's entry block. The incoming blocks
// from outside the SCoP's region have no statement representation.
if (!IncomingStmt)
return;
// Take care for the incoming value being available in the incoming block.
// This must be done before the check for multiple PHI writes because multiple
// exiting edges from subregion each can be the effective written value of the
// subregion. As such, all of them must be made available in the subregion
// statement.
ensureValueRead(IncomingValue, IncomingStmt);
// Do not add more than one MemoryAccess per PHINode and ScopStmt.
if (MemoryAccess *Acc = IncomingStmt->lookupPHIWriteOf(PHI)) {
assert(Acc->getAccessInstruction() == PHI);
Acc->addIncoming(IncomingBlock, IncomingValue);
return;
}
MemoryAccess *Acc = addMemoryAccess(
IncomingStmt, PHI, MemoryAccess::MUST_WRITE, PHI, PHI->getType(), true,
PHI, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
IsExitBlock ? MemoryKind::ExitPHI : MemoryKind::PHI);
assert(Acc);
Acc->addIncoming(IncomingBlock, IncomingValue);
}
void ScopBuilder::addPHIReadAccess(ScopStmt *PHIStmt, PHINode *PHI) {
addMemoryAccess(PHIStmt, PHI, MemoryAccess::READ, PHI, PHI->getType(), true,
PHI, ArrayRef<const SCEV *>(), ArrayRef<const SCEV *>(),
MemoryKind::PHI);
}
void ScopBuilder::buildDomain(ScopStmt &Stmt) {
isl::id Id = isl::id::alloc(scop->getIslCtx(), Stmt.getBaseName(), &Stmt);
Stmt.Domain = scop->getDomainConditions(&Stmt);
Stmt.Domain = Stmt.Domain.set_tuple_id(Id);
}
void ScopBuilder::collectSurroundingLoops(ScopStmt &Stmt) {
isl::set Domain = Stmt.getDomain();
for (unsigned u = 0, e = Domain.dim(isl::dim::set); u < e; u++) {
isl::id DimId = Domain.get_dim_id(isl::dim::set, u);
Stmt.NestLoops.push_back(static_cast<Loop *>(DimId.get_user()));
}
}
/// Return the reduction type for a given binary operator.
static MemoryAccess::ReductionType getReductionType(const BinaryOperator *BinOp,
const Instruction *Load) {
if (!BinOp)
return MemoryAccess::RT_NONE;
switch (BinOp->getOpcode()) {
case Instruction::FAdd:
if (!BinOp->isFast())
return MemoryAccess::RT_NONE;
// Fall through
case Instruction::Add:
return MemoryAccess::RT_ADD;
case Instruction::Or:
return MemoryAccess::RT_BOR;
case Instruction::Xor:
return MemoryAccess::RT_BXOR;
case Instruction::And:
return MemoryAccess::RT_BAND;
case Instruction::FMul:
if (!BinOp->isFast())
return MemoryAccess::RT_NONE;
// Fall through
case Instruction::Mul:
if (DisableMultiplicativeReductions)
return MemoryAccess::RT_NONE;
return MemoryAccess::RT_MUL;
default:
return MemoryAccess::RT_NONE;
}
}
void ScopBuilder::checkForReductions(ScopStmt &Stmt) {
SmallVector<MemoryAccess *, 2> Loads;
SmallVector<std::pair<MemoryAccess *, MemoryAccess *>, 4> Candidates;
// First collect candidate load-store reduction chains by iterating over all
// stores and collecting possible reduction loads.
for (MemoryAccess *StoreMA : Stmt) {
if (StoreMA->isRead())
continue;
Loads.clear();
collectCandidateReductionLoads(StoreMA, Loads);
for (MemoryAccess *LoadMA : Loads)
Candidates.push_back(std::make_pair(LoadMA, StoreMA));
}
// Then check each possible candidate pair.
for (const auto &CandidatePair : Candidates) {
bool Valid = true;
isl::map LoadAccs = CandidatePair.first->getAccessRelation();
isl::map StoreAccs = CandidatePair.second->getAccessRelation();
// Skip those with obviously unequal base addresses.
if (!LoadAccs.has_equal_space(StoreAccs)) {
continue;
}
// And check if the remaining for overlap with other memory accesses.
isl::map AllAccsRel = LoadAccs.unite(StoreAccs);
AllAccsRel = AllAccsRel.intersect_domain(Stmt.getDomain());
isl::set AllAccs = AllAccsRel.range();
for (MemoryAccess *MA : Stmt) {
if (MA == CandidatePair.first || MA == CandidatePair.second)
continue;
isl::map AccRel =
MA->getAccessRelation().intersect_domain(Stmt.getDomain());
isl::set Accs = AccRel.range();
if (AllAccs.has_equal_space(Accs)) {
isl::set OverlapAccs = Accs.intersect(AllAccs);
Valid = Valid && OverlapAccs.is_empty();
}
}
if (!Valid)
continue;
const LoadInst *Load =
dyn_cast<const LoadInst>(CandidatePair.first->getAccessInstruction());
MemoryAccess::ReductionType RT =
getReductionType(dyn_cast<BinaryOperator>(Load->user_back()), Load);
// If no overlapping access was found we mark the load and store as
// reduction like.
CandidatePair.first->markAsReductionLike(RT);
CandidatePair.second->markAsReductionLike(RT);
}
}
void ScopBuilder::collectCandidateReductionLoads(
MemoryAccess *StoreMA, SmallVectorImpl<MemoryAccess *> &Loads) {
ScopStmt *Stmt = StoreMA->getStatement();
auto *Store = dyn_cast<StoreInst>(StoreMA->getAccessInstruction());
if (!Store)
return;
// Skip if there is not one binary operator between the load and the store
auto *BinOp = dyn_cast<BinaryOperator>(Store->getValueOperand());
if (!BinOp)
return;
// Skip if the binary operators has multiple uses
if (BinOp->getNumUses() != 1)
return;
// Skip if the opcode of the binary operator is not commutative/associative
if (!BinOp->isCommutative() || !BinOp->isAssociative())
return;
// Skip if the binary operator is outside the current SCoP
if (BinOp->getParent() != Store->getParent())
return;
// Skip if it is a multiplicative reduction and we disabled them
if (DisableMultiplicativeReductions &&
(BinOp->getOpcode() == Instruction::Mul ||
BinOp->getOpcode() == Instruction::FMul))
return;
// Check the binary operator operands for a candidate load
auto *PossibleLoad0 = dyn_cast<LoadInst>(BinOp->getOperand(0));
auto *PossibleLoad1 = dyn_cast<LoadInst>(BinOp->getOperand(1));
if (!PossibleLoad0 && !PossibleLoad1)
return;
// A load is only a candidate if it cannot escape (thus has only this use)
if (PossibleLoad0 && PossibleLoad0->getNumUses() == 1)
if (PossibleLoad0->getParent() == Store->getParent())
Loads.push_back(&Stmt->getArrayAccessFor(PossibleLoad0));
if (PossibleLoad1 && PossibleLoad1->getNumUses() == 1)
if (PossibleLoad1->getParent() == Store->getParent())
Loads.push_back(&Stmt->getArrayAccessFor(PossibleLoad1));
}
void ScopBuilder::buildAccessRelations(ScopStmt &Stmt) {
for (MemoryAccess *Access : Stmt.MemAccs) {
Type *ElementType = Access->getElementType();
MemoryKind Ty;
if (Access->isPHIKind())
Ty = MemoryKind::PHI;
else if (Access->isExitPHIKind())
Ty = MemoryKind::ExitPHI;
else if (Access->isValueKind())
Ty = MemoryKind::Value;
else
Ty = MemoryKind::Array;
auto *SAI = scop->getOrCreateScopArrayInfo(Access->getOriginalBaseAddr(),
ElementType, Access->Sizes, Ty);
Access->buildAccessRelation(SAI);
scop->addAccessData(Access);
}
}
#ifndef NDEBUG
static void verifyUse(Scop *S, Use &Op, LoopInfo &LI) {
auto PhysUse = VirtualUse::create(S, Op, &LI, false);
auto VirtUse = VirtualUse::create(S, Op, &LI, true);
assert(PhysUse.getKind() == VirtUse.getKind());
}
/// Check the consistency of every statement's MemoryAccesses.
///
/// The check is carried out by expecting the "physical" kind of use (derived
/// from the BasicBlocks instructions resides in) to be same as the "virtual"
/// kind of use (derived from a statement's MemoryAccess).
///
/// The "physical" uses are taken by ensureValueRead to determine whether to
/// create MemoryAccesses. When done, the kind of scalar access should be the
/// same no matter which way it was derived.
///
/// The MemoryAccesses might be changed by later SCoP-modifying passes and hence
/// can intentionally influence on the kind of uses (not corresponding to the
/// "physical" anymore, hence called "virtual"). The CodeGenerator therefore has
/// to pick up the virtual uses. But here in the code generator, this has not
/// happened yet, such that virtual and physical uses are equivalent.
static void verifyUses(Scop *S, LoopInfo &LI, DominatorTree &DT) {
for (auto *BB : S->getRegion().blocks()) {
for (auto &Inst : *BB) {
auto *Stmt = S->getStmtFor(&Inst);
if (!Stmt)
continue;
if (isIgnoredIntrinsic(&Inst))
continue;
// Branch conditions are encoded in the statement domains.
if (isa<TerminatorInst>(&Inst) && Stmt->isBlockStmt())
continue;
// Verify all uses.
for (auto &Op : Inst.operands())
verifyUse(S, Op, LI);
// Stores do not produce values used by other statements.
if (isa<StoreInst>(Inst))
continue;
// For every value defined in the block, also check that a use of that
// value in the same statement would not be an inter-statement use. It can
// still be synthesizable or load-hoisted, but these kind of instructions
// are not directly copied in code-generation.
auto VirtDef =
VirtualUse::create(S, Stmt, Stmt->getSurroundingLoop(), &Inst, true);
assert(VirtDef.getKind() == VirtualUse::Synthesizable ||
VirtDef.getKind() == VirtualUse::Intra ||
VirtDef.getKind() == VirtualUse::Hoisted);
}
}
if (S->hasSingleExitEdge())
return;
// PHINodes in the SCoP region's exit block are also uses to be checked.
if (!S->getRegion().isTopLevelRegion()) {
for (auto &Inst : *S->getRegion().getExit()) {
if (!isa<PHINode>(Inst))
break;
for (auto &Op : Inst.operands())
verifyUse(S, Op, LI);
}
}
}
#endif
/// Return the block that is the representing block for @p RN.
static inline BasicBlock *getRegionNodeBasicBlock(RegionNode *RN) {
return RN->isSubRegion() ? RN->getNodeAs<Region>()->getEntry()
: RN->getNodeAs<BasicBlock>();
}
void ScopBuilder::buildScop(Region &R, AssumptionCache &AC,
OptimizationRemarkEmitter &ORE) {
scop.reset(new Scop(R, SE, LI, DT, *SD.getDetectionContext(&R), ORE));
buildStmts(R);
// Create all invariant load instructions first. These are categorized as
// 'synthesizable', therefore are not part of any ScopStmt but need to be
// created somewhere.
const InvariantLoadsSetTy &RIL = scop->getRequiredInvariantLoads();
for (BasicBlock *BB : scop->getRegion().blocks()) {
if (isErrorBlock(*BB, scop->getRegion(), LI, DT))
continue;
for (Instruction &Inst : *BB) {
LoadInst *Load = dyn_cast<LoadInst>(&Inst);
if (!Load)
continue;
if (!RIL.count(Load))
continue;
// Invariant loads require a MemoryAccess to be created in some statement.
// It is not important to which statement the MemoryAccess is added
// because it will later be removed from the ScopStmt again. We chose the
// first statement of the basic block the LoadInst is in.
ArrayRef<ScopStmt *> List = scop->getStmtListFor(BB);
assert(!List.empty());
ScopStmt *RILStmt = List.front();
buildMemoryAccess(Load, RILStmt);
}
}
buildAccessFunctions();
// In case the region does not have an exiting block we will later (during
// code generation) split the exit block. This will move potential PHI nodes
// from the current exit block into the new region exiting block. Hence, PHI
// nodes that are at this point not part of the region will be.
// To handle these PHI nodes later we will now model their operands as scalar
// accesses. Note that we do not model anything in the exit block if we have
// an exiting block in the region, as there will not be any splitting later.
if (!R.isTopLevelRegion() && !scop->hasSingleExitEdge()) {
for (Instruction &Inst : *R.getExit()) {
PHINode *PHI = dyn_cast<PHINode>(&Inst);
if (!PHI)
break;
buildPHIAccesses(nullptr, PHI, nullptr, true);
}
}
// Create memory accesses for global reads since all arrays are now known.
auto *AF = SE.getConstant(IntegerType::getInt64Ty(SE.getContext()), 0);
for (auto GlobalReadPair : GlobalReads) {
ScopStmt *GlobalReadStmt = GlobalReadPair.first;
Instruction *GlobalRead = GlobalReadPair.second;
for (auto *BP : ArrayBasePointers)
addArrayAccess(GlobalReadStmt, MemAccInst(GlobalRead), MemoryAccess::READ,
BP, BP->getType(), false, {AF}, {nullptr}, GlobalRead);
}
scop->buildInvariantEquivalenceClasses();
/// A map from basic blocks to their invalid domains.
DenseMap<BasicBlock *, isl::set> InvalidDomainMap;
if (!scop->buildDomains(&R, DT, LI, InvalidDomainMap)) {
DEBUG(dbgs() << "Bailing-out because buildDomains encountered problems\n");
return;
}
scop->addUserAssumptions(AC, DT, LI, InvalidDomainMap);
// Initialize the invalid domain.
for (ScopStmt &Stmt : scop->Stmts)
if (Stmt.isBlockStmt())
Stmt.setInvalidDomain(InvalidDomainMap[Stmt.getEntryBlock()]);
else
Stmt.setInvalidDomain(InvalidDomainMap[getRegionNodeBasicBlock(
Stmt.getRegion()->getNode())]);
// Remove empty statements.
// Exit early in case there are no executable statements left in this scop.
scop->removeStmtNotInDomainMap();
scop->simplifySCoP(false);
if (scop->isEmpty()) {
DEBUG(dbgs() << "Bailing-out because SCoP is empty\n");
return;
}
// The ScopStmts now have enough information to initialize themselves.
for (ScopStmt &Stmt : *scop) {
buildDomain(Stmt);
collectSurroundingLoops(Stmt);
buildAccessRelations(Stmt);
if (DetectReductions)
checkForReductions(Stmt);
}
// Check early for a feasible runtime context.
if (!scop->hasFeasibleRuntimeContext()) {
DEBUG(dbgs() << "Bailing-out because of unfeasible context (early)\n");
return;
}
// Check early for profitability. Afterwards it cannot change anymore,
// only the runtime context could become infeasible.
if (!scop->isProfitable(UnprofitableScalarAccs)) {
scop->invalidate(PROFITABLE, DebugLoc());
DEBUG(dbgs() << "Bailing-out because SCoP is not considered profitable\n");
return;
}
scop->buildSchedule(LI);
scop->finalizeAccesses();
scop->realignParams();
scop->addUserContext();
// After the context was fully constructed, thus all our knowledge about
// the parameters is in there, we add all recorded assumptions to the
// assumed/invalid context.
scop->addRecordedAssumptions();
scop->simplifyContexts();
if (!scop->buildAliasChecks(AA)) {
DEBUG(dbgs() << "Bailing-out because could not build alias checks\n");
return;
}
scop->hoistInvariantLoads();
scop->canonicalizeDynamicBasePtrs();
scop->verifyInvariantLoads();
scop->simplifySCoP(true);
// Check late for a feasible runtime context because profitability did not
// change.
if (!scop->hasFeasibleRuntimeContext()) {
DEBUG(dbgs() << "Bailing-out because of unfeasible context (late)\n");
return;
}
#ifndef NDEBUG
verifyUses(scop.get(), LI, DT);
#endif
}
ScopBuilder::ScopBuilder(Region *R, AssumptionCache &AC, AliasAnalysis &AA,
const DataLayout &DL, DominatorTree &DT, LoopInfo &LI,
ScopDetection &SD, ScalarEvolution &SE,
OptimizationRemarkEmitter &ORE)
: AA(AA), DL(DL), DT(DT), LI(LI), SD(SD), SE(SE) {
DebugLoc Beg, End;
auto P = getBBPairForRegion(R);
getDebugLocations(P, Beg, End);
std::string Msg = "SCoP begins here.";
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEntry", Beg, P.first)
<< Msg);
buildScop(*R, AC, ORE);
DEBUG(dbgs() << *scop);
if (!scop->hasFeasibleRuntimeContext()) {
InfeasibleScops++;
Msg = "SCoP ends here but was dismissed.";
DEBUG(dbgs() << "SCoP detected but dismissed\n");
scop.reset();
} else {
Msg = "SCoP ends here.";
++ScopFound;
if (scop->getMaxLoopDepth() > 0)
++RichScopFound;
}
if (R->isTopLevelRegion())
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEnd", End, P.first)
<< Msg);
else
ORE.emit(OptimizationRemarkAnalysis(DEBUG_TYPE, "ScopEnd", End, P.second)
<< Msg);
}