These functions print a multi-line and sorted representation of unions
of polyhedra. Each polyhedron (basic_{ast/map}) has its own line.
First sort key is the polyhedron's hierachical space structure.
Secondary sort key is the lower bound of the polyhedron, which should
ensure that the polyhedral are printed in approximately ascending order.
Example output of dumpPw():
[p_0, p_1, p_2] -> {
Stmt0[0] -> [0, 0];
Stmt0[i0] -> [i0, 0] : 0 < i0 <= 5 - p_2;
Stmt1[0] -> [0, 2] : p_1 = 1 and p_0 = -1;
Stmt2[0] -> [0, 1] : p_1 >= 3 + p_0;
Stmt3[0] -> [0, 3];
}
In contrast dumpExpanded() prints each point in the sets, unless there
is an unbounded dimension that cannot be expandend.
This is useful for reduced test cases where the loop counts are set to
some constant to understand a bug.
Example output of dumpExpanded(
{ [MemRef_A[i0] -> [i1]] : (exists (e0 = floor((1 + i1)/3): i0 = 1 and
3e0 <= i1 and 3e0 >= -1 + i1 and i1 >= 15 and i1 <= 25)) or (exists (e0
= floor((i1)/3): i0 = 0 and 3e0 < i1 and 3e0 >= -2 + i1 and i1 > 0 and
i1 <= 11)) }):
{
[MemRef_A[0] ->[1]];
[MemRef_A[0] ->[2]];
[MemRef_A[0] ->[4]];
[MemRef_A[0] ->[5]];
[MemRef_A[0] ->[7]];
[MemRef_A[0] ->[8]];
[MemRef_A[0] ->[10]];
[MemRef_A[0] ->[11]];
[MemRef_A[1] ->[15]];
[MemRef_A[1] ->[16]];
[MemRef_A[1] ->[18]];
[MemRef_A[1] ->[19]];
[MemRef_A[1] ->[21]];
[MemRef_A[1] ->[22]];
[MemRef_A[1] ->[24]];
[MemRef_A[1] ->[25]]
}
Differential Revision: https://reviews.llvm.org/D38349
llvm-svn: 314525
343 lines
13 KiB
C++
343 lines
13 KiB
C++
//===------ FlattenAlgo.cpp ------------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Main algorithm of the FlattenSchedulePass. This is a separate file to avoid
|
|
// the unittest for this requiring linking against LLVM.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "polly/FlattenAlgo.h"
|
|
#include "polly/Support/ISLOStream.h"
|
|
#include "polly/Support/ISLTools.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#define DEBUG_TYPE "polly-flatten-algo"
|
|
|
|
using namespace polly;
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
/// Whether a dimension of a set is bounded (lower and upper) by a constant,
|
|
/// i.e. there are two constants Min and Max, such that every value x of the
|
|
/// chosen dimensions is Min <= x <= Max.
|
|
bool isDimBoundedByConstant(isl::set Set, unsigned dim) {
|
|
auto ParamDims = Set.dim(isl::dim::param);
|
|
Set = Set.project_out(isl::dim::param, 0, ParamDims);
|
|
Set = Set.project_out(isl::dim::set, 0, dim);
|
|
auto SetDims = Set.dim(isl::dim::set);
|
|
Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
|
|
return bool(Set.is_bounded());
|
|
}
|
|
|
|
/// Whether a dimension of a set is (lower and upper) bounded by a constant or
|
|
/// parameters, i.e. there are two expressions Min_p and Max_p of the parameters
|
|
/// p, such that every value x of the chosen dimensions is
|
|
/// Min_p <= x <= Max_p.
|
|
bool isDimBoundedByParameter(isl::set Set, unsigned dim) {
|
|
Set = Set.project_out(isl::dim::set, 0, dim);
|
|
auto SetDims = Set.dim(isl::dim::set);
|
|
Set = Set.project_out(isl::dim::set, 1, SetDims - 1);
|
|
return bool(Set.is_bounded());
|
|
}
|
|
|
|
/// Whether BMap's first out-dimension is not a constant.
|
|
bool isVariableDim(const isl::basic_map &BMap) {
|
|
auto FixedVal = BMap.plain_get_val_if_fixed(isl::dim::out, 0);
|
|
return !FixedVal || FixedVal.is_nan();
|
|
}
|
|
|
|
/// Whether Map's first out dimension is no constant nor piecewise constant.
|
|
bool isVariableDim(const isl::map &Map) {
|
|
return Map.foreach_basic_map([](isl::basic_map BMap) -> isl::stat {
|
|
if (isVariableDim(BMap))
|
|
return isl::stat::error;
|
|
return isl::stat::ok;
|
|
}) == isl::stat::ok;
|
|
}
|
|
|
|
/// Whether UMap's first out dimension is no (piecewise) constant.
|
|
bool isVariableDim(const isl::union_map &UMap) {
|
|
return UMap.foreach_map([](isl::map Map) -> isl::stat {
|
|
if (isVariableDim(Map))
|
|
return isl::stat::error;
|
|
return isl::stat::ok;
|
|
}) == isl::stat::ok;
|
|
}
|
|
|
|
/// Compute @p UPwAff - @p Val.
|
|
isl::union_pw_aff subtract(isl::union_pw_aff UPwAff, isl::val Val) {
|
|
if (Val.is_zero())
|
|
return UPwAff;
|
|
|
|
auto Result = isl::union_pw_aff::empty(UPwAff.get_space());
|
|
UPwAff.foreach_pw_aff([=, &Result](isl::pw_aff PwAff) -> isl::stat {
|
|
auto ValAff =
|
|
isl::pw_aff(isl::set::universe(PwAff.get_space().domain()), Val);
|
|
auto Subtracted = PwAff.sub(ValAff);
|
|
Result = Result.union_add(isl::union_pw_aff(Subtracted));
|
|
return isl::stat::ok;
|
|
});
|
|
return Result;
|
|
}
|
|
|
|
/// Compute @UPwAff * @p Val.
|
|
isl::union_pw_aff multiply(isl::union_pw_aff UPwAff, isl::val Val) {
|
|
if (Val.is_one())
|
|
return UPwAff;
|
|
|
|
auto Result = isl::union_pw_aff::empty(UPwAff.get_space());
|
|
UPwAff.foreach_pw_aff([=, &Result](isl::pw_aff PwAff) -> isl::stat {
|
|
auto ValAff =
|
|
isl::pw_aff(isl::set::universe(PwAff.get_space().domain()), Val);
|
|
auto Multiplied = PwAff.mul(ValAff);
|
|
Result = Result.union_add(Multiplied);
|
|
return isl::stat::ok;
|
|
});
|
|
return Result;
|
|
}
|
|
|
|
/// Remove @p n dimensions from @p UMap's range, starting at @p first.
|
|
///
|
|
/// It is assumed that all maps in the maps have at least the necessary number
|
|
/// of out dimensions.
|
|
isl::union_map scheduleProjectOut(const isl::union_map &UMap, unsigned first,
|
|
unsigned n) {
|
|
if (n == 0)
|
|
return UMap; /* isl_map_project_out would also reset the tuple, which should
|
|
have no effect on schedule ranges */
|
|
|
|
auto Result = isl::union_map::empty(UMap.get_space());
|
|
UMap.foreach_map([=, &Result](isl::map Map) -> isl::stat {
|
|
auto Outprojected = Map.project_out(isl::dim::out, first, n);
|
|
Result = Result.add_map(Outprojected);
|
|
return isl::stat::ok;
|
|
});
|
|
return Result;
|
|
}
|
|
|
|
/// Return the number of dimensions in the input map's range.
|
|
///
|
|
/// Because this function takes an isl_union_map, the out dimensions could be
|
|
/// different. We return the maximum number in this case. However, a different
|
|
/// number of dimensions is not supported by the other code in this file.
|
|
size_t scheduleScatterDims(const isl::union_map &Schedule) {
|
|
unsigned Dims = 0;
|
|
Schedule.foreach_map([&Dims](isl::map Map) -> isl::stat {
|
|
Dims = std::max(Dims, Map.dim(isl::dim::out));
|
|
return isl::stat::ok;
|
|
});
|
|
return Dims;
|
|
}
|
|
|
|
/// Return the @p pos' range dimension, converted to an isl_union_pw_aff.
|
|
isl::union_pw_aff scheduleExtractDimAff(isl::union_map UMap, unsigned pos) {
|
|
auto SingleUMap = isl::union_map::empty(UMap.get_space());
|
|
UMap.foreach_map([=, &SingleUMap](isl::map Map) -> isl::stat {
|
|
auto MapDims = Map.dim(isl::dim::out);
|
|
auto SingleMap = Map.project_out(isl::dim::out, 0, pos);
|
|
SingleMap = SingleMap.project_out(isl::dim::out, 1, MapDims - pos - 1);
|
|
SingleUMap = SingleUMap.add_map(SingleMap);
|
|
return isl::stat::ok;
|
|
});
|
|
|
|
auto UAff = isl::union_pw_multi_aff(SingleUMap);
|
|
auto FirstMAff = isl::multi_union_pw_aff(UAff);
|
|
return FirstMAff.get_union_pw_aff(0);
|
|
}
|
|
|
|
/// Flatten a sequence-like first dimension.
|
|
///
|
|
/// A sequence-like scatter dimension is constant, or at least only small
|
|
/// variation, typically the result of ordering a sequence of different
|
|
/// statements. An example would be:
|
|
/// { Stmt_A[] -> [0, X, ...]; Stmt_B[] -> [1, Y, ...] }
|
|
/// to schedule all instances of Stmt_A before any instance of Stmt_B.
|
|
///
|
|
/// To flatten, first begin with an offset of zero. Then determine the lowest
|
|
/// possible value of the dimension, call it "i" [In the example we start at 0].
|
|
/// Considering only schedules with that value, consider only instances with
|
|
/// that value and determine the extent of the next dimension. Let l_X(i) and
|
|
/// u_X(i) its minimum (lower bound) and maximum (upper bound) value. Add them
|
|
/// as "Offset + X - l_X(i)" to the new schedule, then add "u_X(i) - l_X(i) + 1"
|
|
/// to Offset and remove all i-instances from the old schedule. Repeat with the
|
|
/// remaining lowest value i' until there are no instances in the old schedule
|
|
/// left.
|
|
/// The example schedule would be transformed to:
|
|
/// { Stmt_X[] -> [X - l_X, ...]; Stmt_B -> [l_X - u_X + 1 + Y - l_Y, ...] }
|
|
isl::union_map tryFlattenSequence(isl::union_map Schedule) {
|
|
auto IslCtx = Schedule.get_ctx();
|
|
auto ScatterSet = isl::set(Schedule.range());
|
|
|
|
auto ParamSpace = Schedule.get_space().params();
|
|
auto Dims = ScatterSet.dim(isl::dim::set);
|
|
assert(Dims >= 2);
|
|
|
|
// Would cause an infinite loop.
|
|
if (!isDimBoundedByConstant(ScatterSet, 0)) {
|
|
DEBUG(dbgs() << "Abort; dimension is not of fixed size\n");
|
|
return nullptr;
|
|
}
|
|
|
|
auto AllDomains = Schedule.domain();
|
|
auto AllDomainsToNull = isl::union_pw_multi_aff(AllDomains);
|
|
|
|
auto NewSchedule = isl::union_map::empty(ParamSpace);
|
|
auto Counter = isl::pw_aff(isl::local_space(ParamSpace.set_from_params()));
|
|
|
|
while (!ScatterSet.is_empty()) {
|
|
DEBUG(dbgs() << "Next counter:\n " << Counter << "\n");
|
|
DEBUG(dbgs() << "Remaining scatter set:\n " << ScatterSet << "\n");
|
|
auto ThisSet = ScatterSet.project_out(isl::dim::set, 1, Dims - 1);
|
|
auto ThisFirst = ThisSet.lexmin();
|
|
auto ScatterFirst = ThisFirst.add_dims(isl::dim::set, Dims - 1);
|
|
|
|
auto SubSchedule = Schedule.intersect_range(ScatterFirst);
|
|
SubSchedule = scheduleProjectOut(SubSchedule, 0, 1);
|
|
SubSchedule = flattenSchedule(SubSchedule);
|
|
|
|
auto SubDims = scheduleScatterDims(SubSchedule);
|
|
auto FirstSubSchedule = scheduleProjectOut(SubSchedule, 1, SubDims - 1);
|
|
auto FirstScheduleAff = scheduleExtractDimAff(FirstSubSchedule, 0);
|
|
auto RemainingSubSchedule = scheduleProjectOut(SubSchedule, 0, 1);
|
|
|
|
auto FirstSubScatter = isl::set(FirstSubSchedule.range());
|
|
DEBUG(dbgs() << "Next step in sequence is:\n " << FirstSubScatter << "\n");
|
|
|
|
if (!isDimBoundedByParameter(FirstSubScatter, 0)) {
|
|
DEBUG(dbgs() << "Abort; sequence step is not bounded\n");
|
|
return nullptr;
|
|
}
|
|
|
|
auto FirstSubScatterMap = isl::map::from_range(FirstSubScatter);
|
|
|
|
// isl_set_dim_max returns a strange isl_pw_aff with domain tuple_id of
|
|
// 'none'. It doesn't match with any space including a 0-dimensional
|
|
// anonymous tuple.
|
|
// Interesting, one can create such a set using
|
|
// isl_set_universe(ParamSpace). Bug?
|
|
auto PartMin = FirstSubScatterMap.dim_min(0);
|
|
auto PartMax = FirstSubScatterMap.dim_max(0);
|
|
auto One = isl::pw_aff(isl::set::universe(ParamSpace.set_from_params()),
|
|
isl::val::one(IslCtx));
|
|
auto PartLen = PartMax.add(PartMin.neg()).add(One);
|
|
|
|
auto AllPartMin = isl::union_pw_aff(PartMin).pullback(AllDomainsToNull);
|
|
auto FirstScheduleAffNormalized = FirstScheduleAff.sub(AllPartMin);
|
|
auto AllCounter = isl::union_pw_aff(Counter).pullback(AllDomainsToNull);
|
|
auto FirstScheduleAffWithOffset =
|
|
FirstScheduleAffNormalized.add(AllCounter);
|
|
|
|
auto ScheduleWithOffset = isl::union_map(FirstScheduleAffWithOffset)
|
|
.flat_range_product(RemainingSubSchedule);
|
|
NewSchedule = NewSchedule.unite(ScheduleWithOffset);
|
|
|
|
ScatterSet = ScatterSet.subtract(ScatterFirst);
|
|
Counter = Counter.add(PartLen);
|
|
}
|
|
|
|
DEBUG(dbgs() << "Sequence-flatten result is:\n " << NewSchedule << "\n");
|
|
return NewSchedule;
|
|
}
|
|
|
|
/// Flatten a loop-like first dimension.
|
|
///
|
|
/// A loop-like dimension is one that depends on a variable (usually a loop's
|
|
/// induction variable). Let the input schedule look like this:
|
|
/// { Stmt[i] -> [i, X, ...] }
|
|
///
|
|
/// To flatten, we determine the largest extent of X which may not depend on the
|
|
/// actual value of i. Let l_X() the smallest possible value of X and u_X() its
|
|
/// largest value. Then, construct a new schedule
|
|
/// { Stmt[i] -> [i * (u_X() - l_X() + 1), ...] }
|
|
isl::union_map tryFlattenLoop(isl::union_map Schedule) {
|
|
assert(scheduleScatterDims(Schedule) >= 2);
|
|
|
|
auto Remaining = scheduleProjectOut(Schedule, 0, 1);
|
|
auto SubSchedule = flattenSchedule(Remaining);
|
|
auto SubDims = scheduleScatterDims(SubSchedule);
|
|
|
|
auto SubExtent = isl::set(SubSchedule.range());
|
|
auto SubExtentDims = SubExtent.dim(isl::dim::param);
|
|
SubExtent = SubExtent.project_out(isl::dim::param, 0, SubExtentDims);
|
|
SubExtent = SubExtent.project_out(isl::dim::set, 1, SubDims - 1);
|
|
|
|
if (!isDimBoundedByConstant(SubExtent, 0)) {
|
|
DEBUG(dbgs() << "Abort; dimension not bounded by constant\n");
|
|
return nullptr;
|
|
}
|
|
|
|
auto Min = SubExtent.dim_min(0);
|
|
DEBUG(dbgs() << "Min bound:\n " << Min << "\n");
|
|
auto MinVal = getConstant(Min, false, true);
|
|
auto Max = SubExtent.dim_max(0);
|
|
DEBUG(dbgs() << "Max bound:\n " << Max << "\n");
|
|
auto MaxVal = getConstant(Max, true, false);
|
|
|
|
if (!MinVal || !MaxVal || MinVal.is_nan() || MaxVal.is_nan()) {
|
|
DEBUG(dbgs() << "Abort; dimension bounds could not be determined\n");
|
|
return nullptr;
|
|
}
|
|
|
|
auto FirstSubScheduleAff = scheduleExtractDimAff(SubSchedule, 0);
|
|
auto RemainingSubSchedule = scheduleProjectOut(std::move(SubSchedule), 0, 1);
|
|
|
|
auto LenVal = MaxVal.sub(MinVal).add_ui(1);
|
|
auto FirstSubScheduleNormalized = subtract(FirstSubScheduleAff, MinVal);
|
|
|
|
// TODO: Normalize FirstAff to zero (convert to isl_map, determine minimum,
|
|
// subtract it)
|
|
auto FirstAff = scheduleExtractDimAff(Schedule, 0);
|
|
auto Offset = multiply(FirstAff, LenVal);
|
|
auto Index = FirstSubScheduleNormalized.add(Offset);
|
|
auto IndexMap = isl::union_map(Index);
|
|
|
|
auto Result = IndexMap.flat_range_product(RemainingSubSchedule);
|
|
DEBUG(dbgs() << "Loop-flatten result is:\n " << Result << "\n");
|
|
return Result;
|
|
}
|
|
} // anonymous namespace
|
|
|
|
isl::union_map polly::flattenSchedule(isl::union_map Schedule) {
|
|
auto Dims = scheduleScatterDims(Schedule);
|
|
DEBUG(dbgs() << "Recursive schedule to process:\n " << Schedule << "\n");
|
|
|
|
// Base case; no dimensions left
|
|
if (Dims == 0) {
|
|
// TODO: Add one dimension?
|
|
return Schedule;
|
|
}
|
|
|
|
// Base case; already one-dimensional
|
|
if (Dims == 1)
|
|
return Schedule;
|
|
|
|
// Fixed dimension; no need to preserve variabledness.
|
|
if (!isVariableDim(Schedule)) {
|
|
DEBUG(dbgs() << "Fixed dimension; try sequence flattening\n");
|
|
auto NewScheduleSequence = tryFlattenSequence(Schedule);
|
|
if (NewScheduleSequence)
|
|
return NewScheduleSequence;
|
|
}
|
|
|
|
// Constant stride
|
|
DEBUG(dbgs() << "Try loop flattening\n");
|
|
auto NewScheduleLoop = tryFlattenLoop(Schedule);
|
|
if (NewScheduleLoop)
|
|
return NewScheduleLoop;
|
|
|
|
// Try again without loop condition (may blow up the number of pieces!!)
|
|
DEBUG(dbgs() << "Try sequence flattening again\n");
|
|
auto NewScheduleSequence = tryFlattenSequence(Schedule);
|
|
if (NewScheduleSequence)
|
|
return NewScheduleSequence;
|
|
|
|
// Cannot flatten
|
|
return Schedule;
|
|
}
|