Files
clang-p2996/polly/test/ForwardOpTree/forward_load_double_write.ll
Michael Kruse a43ba2d84f [ScopBuilder] Make -polly-stmt-granularity=scalar-indep the default.
Splitting basic blocks into multiple statements if there are now
additional scalar dependencies gives more freedom to the scheduler, but
more statements also means higher compile-time complexity. Switch to
finer statement granularity, the additional compile time should be
limited by the number of operations quota.

The regression tests are written for the -polly-stmt-granularity=bb
setting, therefore we add that flag to those tests that break with the
new default. Some of the tests only fail because the statements are
named differently due to a basic block resulting in multiple statements,
but which are removed during simplification of statements without
side-effects. Previous commits tried to reduce this effect, but it is
not completely avoidable.

Differential Revision: https://reviews.llvm.org/D42151

llvm-svn: 324169
2018-02-03 06:59:47 +00:00

57 lines
1.7 KiB
LLVM

; RUN: opt %loadPolly -polly-stmt-granularity=bb -polly-optree -analyze < %s | FileCheck %s -match-full-lines
;
; Rematerialize a load even in case two writes of identical values are in
; one scop statement.
;
define void @func(i32 %n, double* noalias nonnull %A, double* noalias nonnull %B) {
entry:
br label %for
for:
%j = phi i32 [0, %entry], [%j.inc, %inc]
%j.cmp = icmp slt i32 %j, %n
br i1 %j.cmp, label %bodyA, label %exit
bodyA:
%B_idx = getelementptr inbounds double, double* %B, i32 %j
%val = load double, double* %B_idx
br label %bodyB
bodyB:
%A_idx = getelementptr inbounds double, double* %A, i32 %j
store double %val, double* %A_idx
store double %val, double* %A_idx
br label %inc
inc:
%j.inc = add nuw nsw i32 %j, 1
br label %for
exit:
br label %return
return:
ret void
}
; CHECK: Statistics {
; CHECK: Known loads forwarded: 1
; CHECK: Operand trees forwarded: 1
; CHECK: Statements with forwarded operand trees: 1
; CHECK: }
; CHECK: Stmt_bodyB
; CHECK-NEXT: ReadAccess := [Reduction Type: NONE] [Scalar: 0]
; CHECK-NEXT: ;
; CHECK-NEXT: new: [n] -> { Stmt_bodyB[i0] -> MemRef_B[i0] };
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 0]
; CHECK-NEXT: [n] -> { Stmt_bodyB[i0] -> MemRef_A[i0] };
; CHECK-NEXT: MustWriteAccess := [Reduction Type: NONE] [Scalar: 0]
; CHECK-NEXT: [n] -> { Stmt_bodyB[i0] -> MemRef_A[i0] };
; CHECK-NEXT: Instructions {
; CHECK-NEXT: %val = load double, double* %B_idx
; CHECK-NEXT: store double %val, double* %A_idx
; CHECK-NEXT: store double %val, double* %A_idx
; CHECK-NEXT: }