Files
clang-p2996/mlir/lib/Dialect/SparseTensor/Transforms/SparseTensorPasses.cpp
Aart Bik 1b15160ef3 [mlir][sparse] lower trivial tensor.cast on identical sparse tensors
Even though tensor.cast is not part of the sparse tensor dialect,
it may be used to cast static dimension sizes to dynamic dimension
sizes for sparse tensors without changing the actual sparse tensor
itself. Those cases should be lowered properly when replacing sparse
tensor types with their opaque pointers. Likewise, no op sparse
conversions are handled by this revision in a similar manner.

Reviewed By: bixia

Differential Revision: https://reviews.llvm.org/D112173
2021-10-25 10:30:19 -07:00

143 lines
5.5 KiB
C++

//===- SparseTensorPasses.cpp - Pass for autogen sparse tensor code -------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
#include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
using namespace mlir;
using namespace mlir::sparse_tensor;
namespace {
//===----------------------------------------------------------------------===//
// Passes declaration.
//===----------------------------------------------------------------------===//
#define GEN_PASS_CLASSES
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc"
//===----------------------------------------------------------------------===//
// Passes implementation.
//===----------------------------------------------------------------------===//
struct SparsificationPass : public SparsificationBase<SparsificationPass> {
SparsificationPass() = default;
SparsificationPass(const SparsificationPass &pass)
: SparsificationBase<SparsificationPass>() {}
/// Returns parallelization strategy given on command line.
SparseParallelizationStrategy parallelOption() {
switch (parallelization) {
default:
return SparseParallelizationStrategy::kNone;
case 1:
return SparseParallelizationStrategy::kDenseOuterLoop;
case 2:
return SparseParallelizationStrategy::kAnyStorageOuterLoop;
case 3:
return SparseParallelizationStrategy::kDenseAnyLoop;
case 4:
return SparseParallelizationStrategy::kAnyStorageAnyLoop;
}
}
/// Returns vectorization strategy given on command line.
SparseVectorizationStrategy vectorOption() {
switch (vectorization) {
default:
return SparseVectorizationStrategy::kNone;
case 1:
return SparseVectorizationStrategy::kDenseInnerLoop;
case 2:
return SparseVectorizationStrategy::kAnyStorageInnerLoop;
}
}
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
// Translate strategy flags to strategy options.
SparsificationOptions options(parallelOption(), vectorOption(),
vectorLength, enableSIMDIndex32);
// Apply rewriting.
populateSparsificationPatterns(patterns, options);
vector::populateVectorToVectorCanonicalizationPatterns(patterns);
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
}
};
class SparseTensorTypeConverter : public TypeConverter {
public:
SparseTensorTypeConverter() {
addConversion([](Type type) { return type; });
addConversion(convertSparseTensorTypes);
}
// Maps each sparse tensor type to an opaque pointer.
static Optional<Type> convertSparseTensorTypes(Type type) {
if (getSparseTensorEncoding(type) != nullptr)
return LLVM::LLVMPointerType::get(IntegerType::get(type.getContext(), 8));
return llvm::None;
}
};
struct SparseTensorConversionPass
: public SparseTensorConversionBase<SparseTensorConversionPass> {
void runOnOperation() override {
auto *ctx = &getContext();
RewritePatternSet patterns(ctx);
SparseTensorTypeConverter converter;
ConversionTarget target(*ctx);
// Everything in the sparse dialect must go!
target.addIllegalDialect<SparseTensorDialect>();
// All dynamic rules below accept new function, call, return, and tensor
// dim and cast operations as legal output of the rewriting provided that
// all sparse tensor types have been fully rewritten.
target.addDynamicallyLegalOp<FuncOp>(
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
target.addDynamicallyLegalOp<CallOp>([&](CallOp op) {
return converter.isSignatureLegal(op.getCalleeType());
});
target.addDynamicallyLegalOp<ReturnOp>(
[&](ReturnOp op) { return converter.isLegal(op.getOperandTypes()); });
target.addDynamicallyLegalOp<tensor::DimOp>([&](tensor::DimOp op) {
return converter.isLegal(op.getOperandTypes());
});
target.addDynamicallyLegalOp<tensor::CastOp>([&](tensor::CastOp op) {
return converter.isLegal(op.getOperand().getType());
});
// The following operations and dialects may be introduced by the
// rewriting rules, and are therefore marked as legal.
target.addLegalOp<arith::CmpFOp, arith::CmpIOp, arith::ConstantOp,
arith::IndexCastOp, tensor::ExtractOp>();
target.addLegalDialect<LLVM::LLVMDialect, memref::MemRefDialect,
scf::SCFDialect>();
// Populate with rules and apply rewriting rules.
populateFuncOpTypeConversionPattern(patterns, converter);
populateCallOpTypeConversionPattern(patterns, converter);
populateSparseTensorConversionPatterns(converter, patterns);
if (failed(applyPartialConversion(getOperation(), target,
std::move(patterns))))
signalPassFailure();
}
};
} // end anonymous namespace
std::unique_ptr<Pass> mlir::createSparsificationPass() {
return std::make_unique<SparsificationPass>();
}
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass() {
return std::make_unique<SparseTensorConversionPass>();
}