Files
clang-p2996/llvm/lib/Target/AMDGPU/SIMachineFunctionInfo.cpp
Matt Arsenault 722b8e0e5a AMDGPU: Invert ABI attribute handling
Previously we assumed all callable functions did not need any
implicitly passed inputs, and added attributes to functions to
indicate when they were necessary. Requiring attributes for
correctness is pretty ugly, and it makes supporting indirect and
external calls more complicated.

This inverts the direction of the attributes, so an undecorated
function is assumed to need all implicit imputs. This enables
AMDGPUAttributor by default to mark when functions are proven to not
need a given input. This strips the equivalent functionality from the
legacy AMDGPUAnnotateKernelFeatures pass.

However, AMDGPUAnnotateKernelFeatures is not fully removed at this
point although it should be in the future. It is still necessary for
the two hacky amdgpu-calls and amdgpu-stack-objects attributes, which
would be better served by a trivial analysis on the IR during
selection. Additionally, AMDGPUAnnotateKernelFeatures still
redundantly handles the uniform-work-group-size attribute to be
removed in a future commit.

At this point when not using -amdgpu-fixed-function-abi, we are still
modifying the ABI based on these newly negated attributes. In the
future, this option will be removed and the locations for implicit
inputs will always be fixed. We will then use the new attributes to
avoid passing the values when unnecessary.
2021-09-09 18:24:28 -04:00

648 lines
22 KiB
C++

//===- SIMachineFunctionInfo.cpp - SI Machine Function Info ---------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "SIMachineFunctionInfo.h"
#include "AMDGPUTargetMachine.h"
#include "AMDGPUSubtarget.h"
#include "SIRegisterInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/Optional.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MIRParser/MIParser.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/Function.h"
#include <cassert>
#include <vector>
#define MAX_LANES 64
using namespace llvm;
SIMachineFunctionInfo::SIMachineFunctionInfo(const MachineFunction &MF)
: AMDGPUMachineFunction(MF),
PrivateSegmentBuffer(false),
DispatchPtr(false),
QueuePtr(false),
KernargSegmentPtr(false),
DispatchID(false),
FlatScratchInit(false),
WorkGroupIDX(false),
WorkGroupIDY(false),
WorkGroupIDZ(false),
WorkGroupInfo(false),
PrivateSegmentWaveByteOffset(false),
WorkItemIDX(false),
WorkItemIDY(false),
WorkItemIDZ(false),
ImplicitBufferPtr(false),
ImplicitArgPtr(false),
GITPtrHigh(0xffffffff),
HighBitsOf32BitAddress(0),
GDSSize(0) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const Function &F = MF.getFunction();
FlatWorkGroupSizes = ST.getFlatWorkGroupSizes(F);
WavesPerEU = ST.getWavesPerEU(F);
Occupancy = ST.computeOccupancy(F, getLDSSize());
CallingConv::ID CC = F.getCallingConv();
// FIXME: Should have analysis or something rather than attribute to detect
// calls.
const bool HasCalls = F.hasFnAttribute("amdgpu-calls");
// Enable all kernel inputs if we have the fixed ABI. Don't bother if we don't
// have any calls.
const bool UseFixedABI = AMDGPUTargetMachine::EnableFixedFunctionABI &&
CC != CallingConv::AMDGPU_Gfx &&
(!isEntryFunction() || HasCalls);
const bool IsKernel = CC == CallingConv::AMDGPU_KERNEL ||
CC == CallingConv::SPIR_KERNEL;
if (IsKernel) {
if (!F.arg_empty() || ST.getImplicitArgNumBytes(F) != 0)
KernargSegmentPtr = true;
WorkGroupIDX = true;
WorkItemIDX = true;
} else if (CC == CallingConv::AMDGPU_PS) {
PSInputAddr = AMDGPU::getInitialPSInputAddr(F);
}
if (!isEntryFunction()) {
if (UseFixedABI)
ArgInfo = AMDGPUArgumentUsageInfo::FixedABIFunctionInfo;
// TODO: Pick a high register, and shift down, similar to a kernel.
FrameOffsetReg = AMDGPU::SGPR33;
StackPtrOffsetReg = AMDGPU::SGPR32;
if (!ST.enableFlatScratch()) {
// Non-entry functions have no special inputs for now, other registers
// required for scratch access.
ScratchRSrcReg = AMDGPU::SGPR0_SGPR1_SGPR2_SGPR3;
ArgInfo.PrivateSegmentBuffer =
ArgDescriptor::createRegister(ScratchRSrcReg);
}
if (!F.hasFnAttribute("amdgpu-no-implicitarg-ptr"))
ImplicitArgPtr = true;
} else {
ImplicitArgPtr = false;
MaxKernArgAlign = std::max(ST.getAlignmentForImplicitArgPtr(),
MaxKernArgAlign);
}
bool isAmdHsaOrMesa = ST.isAmdHsaOrMesa(F);
if (isAmdHsaOrMesa && !ST.enableFlatScratch())
PrivateSegmentBuffer = true;
else if (ST.isMesaGfxShader(F))
ImplicitBufferPtr = true;
if (UseFixedABI) {
DispatchPtr = true;
QueuePtr = true;
ImplicitArgPtr = true;
WorkGroupIDX = true;
WorkGroupIDY = true;
WorkGroupIDZ = true;
WorkItemIDX = true;
WorkItemIDY = true;
WorkItemIDZ = true;
// FIXME: We don't need this?
DispatchID = true;
} else if (!AMDGPU::isGraphics(CC)) {
if (IsKernel || !F.hasFnAttribute("amdgpu-no-workgroup-id-x"))
WorkGroupIDX = true;
if (!F.hasFnAttribute("amdgpu-no-workgroup-id-y"))
WorkGroupIDY = true;
if (!F.hasFnAttribute("amdgpu-no-workgroup-id-z"))
WorkGroupIDZ = true;
if (IsKernel || !F.hasFnAttribute("amdgpu-no-workitem-id-x"))
WorkItemIDX = true;
if (!F.hasFnAttribute("amdgpu-no-workitem-id-y"))
WorkItemIDY = true;
if (!F.hasFnAttribute("amdgpu-no-workitem-id-z"))
WorkItemIDZ = true;
if (!F.hasFnAttribute("amdgpu-no-dispatch-ptr"))
DispatchPtr = true;
if (!F.hasFnAttribute("amdgpu-no-queue-ptr"))
QueuePtr = true;
if (!F.hasFnAttribute("amdgpu-no-dispatch-id"))
DispatchID = true;
}
// FIXME: This attribute is a hack, we just need an analysis on the function
// to look for allocas.
bool HasStackObjects = F.hasFnAttribute("amdgpu-stack-objects");
// TODO: This could be refined a lot. The attribute is a poor way of
// detecting calls or stack objects that may require it before argument
// lowering.
if (ST.hasFlatAddressSpace() && isEntryFunction() &&
(isAmdHsaOrMesa || ST.enableFlatScratch()) &&
(HasCalls || HasStackObjects || ST.enableFlatScratch()) &&
!ST.flatScratchIsArchitected()) {
FlatScratchInit = true;
}
if (isEntryFunction()) {
// X, XY, and XYZ are the only supported combinations, so make sure Y is
// enabled if Z is.
if (WorkItemIDZ)
WorkItemIDY = true;
if (!ST.flatScratchIsArchitected()) {
PrivateSegmentWaveByteOffset = true;
// HS and GS always have the scratch wave offset in SGPR5 on GFX9.
if (ST.getGeneration() >= AMDGPUSubtarget::GFX9 &&
(CC == CallingConv::AMDGPU_HS || CC == CallingConv::AMDGPU_GS))
ArgInfo.PrivateSegmentWaveByteOffset =
ArgDescriptor::createRegister(AMDGPU::SGPR5);
}
}
Attribute A = F.getFnAttribute("amdgpu-git-ptr-high");
StringRef S = A.getValueAsString();
if (!S.empty())
S.consumeInteger(0, GITPtrHigh);
A = F.getFnAttribute("amdgpu-32bit-address-high-bits");
S = A.getValueAsString();
if (!S.empty())
S.consumeInteger(0, HighBitsOf32BitAddress);
S = F.getFnAttribute("amdgpu-gds-size").getValueAsString();
if (!S.empty())
S.consumeInteger(0, GDSSize);
}
void SIMachineFunctionInfo::limitOccupancy(const MachineFunction &MF) {
limitOccupancy(getMaxWavesPerEU());
const GCNSubtarget& ST = MF.getSubtarget<GCNSubtarget>();
limitOccupancy(ST.getOccupancyWithLocalMemSize(getLDSSize(),
MF.getFunction()));
}
Register SIMachineFunctionInfo::addPrivateSegmentBuffer(
const SIRegisterInfo &TRI) {
ArgInfo.PrivateSegmentBuffer =
ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SGPR_128RegClass));
NumUserSGPRs += 4;
return ArgInfo.PrivateSegmentBuffer.getRegister();
}
Register SIMachineFunctionInfo::addDispatchPtr(const SIRegisterInfo &TRI) {
ArgInfo.DispatchPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.DispatchPtr.getRegister();
}
Register SIMachineFunctionInfo::addQueuePtr(const SIRegisterInfo &TRI) {
ArgInfo.QueuePtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.QueuePtr.getRegister();
}
Register SIMachineFunctionInfo::addKernargSegmentPtr(const SIRegisterInfo &TRI) {
ArgInfo.KernargSegmentPtr
= ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.KernargSegmentPtr.getRegister();
}
Register SIMachineFunctionInfo::addDispatchID(const SIRegisterInfo &TRI) {
ArgInfo.DispatchID = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.DispatchID.getRegister();
}
Register SIMachineFunctionInfo::addFlatScratchInit(const SIRegisterInfo &TRI) {
ArgInfo.FlatScratchInit = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.FlatScratchInit.getRegister();
}
Register SIMachineFunctionInfo::addImplicitBufferPtr(const SIRegisterInfo &TRI) {
ArgInfo.ImplicitBufferPtr = ArgDescriptor::createRegister(TRI.getMatchingSuperReg(
getNextUserSGPR(), AMDGPU::sub0, &AMDGPU::SReg_64RegClass));
NumUserSGPRs += 2;
return ArgInfo.ImplicitBufferPtr.getRegister();
}
bool SIMachineFunctionInfo::isCalleeSavedReg(const MCPhysReg *CSRegs,
MCPhysReg Reg) {
for (unsigned I = 0; CSRegs[I]; ++I) {
if (CSRegs[I] == Reg)
return true;
}
return false;
}
/// \p returns true if \p NumLanes slots are available in VGPRs already used for
/// SGPR spilling.
//
// FIXME: This only works after processFunctionBeforeFrameFinalized
bool SIMachineFunctionInfo::haveFreeLanesForSGPRSpill(const MachineFunction &MF,
unsigned NumNeed) const {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
unsigned WaveSize = ST.getWavefrontSize();
return NumVGPRSpillLanes + NumNeed <= WaveSize * SpillVGPRs.size();
}
/// Reserve a slice of a VGPR to support spilling for FrameIndex \p FI.
bool SIMachineFunctionInfo::allocateSGPRSpillToVGPR(MachineFunction &MF,
int FI) {
std::vector<SpilledReg> &SpillLanes = SGPRToVGPRSpills[FI];
// This has already been allocated.
if (!SpillLanes.empty())
return true;
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned WaveSize = ST.getWavefrontSize();
SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
unsigned Size = FrameInfo.getObjectSize(FI);
unsigned NumLanes = Size / 4;
if (NumLanes > WaveSize)
return false;
assert(Size >= 4 && "invalid sgpr spill size");
assert(TRI->spillSGPRToVGPR() && "not spilling SGPRs to VGPRs");
// Make sure to handle the case where a wide SGPR spill may span between two
// VGPRs.
for (unsigned I = 0; I < NumLanes; ++I, ++NumVGPRSpillLanes) {
Register LaneVGPR;
unsigned VGPRIndex = (NumVGPRSpillLanes % WaveSize);
// Reserve a VGPR (when NumVGPRSpillLanes = 0, WaveSize, 2*WaveSize, ..) and
// when one of the two conditions is true:
// 1. One reserved VGPR being tracked by VGPRReservedForSGPRSpill is not yet
// reserved.
// 2. All spill lanes of reserved VGPR(s) are full and another spill lane is
// required.
if (FuncInfo->VGPRReservedForSGPRSpill && NumVGPRSpillLanes < WaveSize) {
assert(FuncInfo->VGPRReservedForSGPRSpill == SpillVGPRs.back().VGPR);
LaneVGPR = FuncInfo->VGPRReservedForSGPRSpill;
} else if (VGPRIndex == 0) {
LaneVGPR = TRI->findUnusedRegister(MRI, &AMDGPU::VGPR_32RegClass, MF);
if (LaneVGPR == AMDGPU::NoRegister) {
// We have no VGPRs left for spilling SGPRs. Reset because we will not
// partially spill the SGPR to VGPRs.
SGPRToVGPRSpills.erase(FI);
NumVGPRSpillLanes -= I;
#if 0
DiagnosticInfoResourceLimit DiagOutOfRegs(MF.getFunction(),
"VGPRs for SGPR spilling",
0, DS_Error);
MF.getFunction().getContext().diagnose(DiagOutOfRegs);
#endif
return false;
}
Optional<int> SpillFI;
// We need to preserve inactive lanes, so always save, even caller-save
// registers.
if (!isEntryFunction()) {
SpillFI = FrameInfo.CreateSpillStackObject(4, Align(4));
}
SpillVGPRs.push_back(SGPRSpillVGPR(LaneVGPR, SpillFI));
// Add this register as live-in to all blocks to avoid machine verifer
// complaining about use of an undefined physical register.
for (MachineBasicBlock &BB : MF)
BB.addLiveIn(LaneVGPR);
} else {
LaneVGPR = SpillVGPRs.back().VGPR;
}
SpillLanes.push_back(SpilledReg(LaneVGPR, VGPRIndex));
}
return true;
}
/// Reserve a VGPR for spilling of SGPRs
bool SIMachineFunctionInfo::reserveVGPRforSGPRSpills(MachineFunction &MF) {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const SIRegisterInfo *TRI = ST.getRegisterInfo();
SIMachineFunctionInfo *FuncInfo = MF.getInfo<SIMachineFunctionInfo>();
Register LaneVGPR = TRI->findUnusedRegister(
MF.getRegInfo(), &AMDGPU::VGPR_32RegClass, MF, true);
if (LaneVGPR == Register())
return false;
SpillVGPRs.push_back(SGPRSpillVGPR(LaneVGPR, None));
FuncInfo->VGPRReservedForSGPRSpill = LaneVGPR;
return true;
}
/// Reserve AGPRs or VGPRs to support spilling for FrameIndex \p FI.
/// Either AGPR is spilled to VGPR to vice versa.
/// Returns true if a \p FI can be eliminated completely.
bool SIMachineFunctionInfo::allocateVGPRSpillToAGPR(MachineFunction &MF,
int FI,
bool isAGPRtoVGPR) {
MachineRegisterInfo &MRI = MF.getRegInfo();
MachineFrameInfo &FrameInfo = MF.getFrameInfo();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
assert(ST.hasMAIInsts() && FrameInfo.isSpillSlotObjectIndex(FI));
auto &Spill = VGPRToAGPRSpills[FI];
// This has already been allocated.
if (!Spill.Lanes.empty())
return Spill.FullyAllocated;
unsigned Size = FrameInfo.getObjectSize(FI);
unsigned NumLanes = Size / 4;
Spill.Lanes.resize(NumLanes, AMDGPU::NoRegister);
const TargetRegisterClass &RC =
isAGPRtoVGPR ? AMDGPU::VGPR_32RegClass : AMDGPU::AGPR_32RegClass;
auto Regs = RC.getRegisters();
auto &SpillRegs = isAGPRtoVGPR ? SpillAGPR : SpillVGPR;
const SIRegisterInfo *TRI = ST.getRegisterInfo();
Spill.FullyAllocated = true;
// FIXME: Move allocation logic out of MachineFunctionInfo and initialize
// once.
BitVector OtherUsedRegs;
OtherUsedRegs.resize(TRI->getNumRegs());
const uint32_t *CSRMask =
TRI->getCallPreservedMask(MF, MF.getFunction().getCallingConv());
if (CSRMask)
OtherUsedRegs.setBitsInMask(CSRMask);
// TODO: Should include register tuples, but doesn't matter with current
// usage.
for (MCPhysReg Reg : SpillAGPR)
OtherUsedRegs.set(Reg);
for (MCPhysReg Reg : SpillVGPR)
OtherUsedRegs.set(Reg);
SmallVectorImpl<MCPhysReg>::const_iterator NextSpillReg = Regs.begin();
for (int I = NumLanes - 1; I >= 0; --I) {
NextSpillReg = std::find_if(
NextSpillReg, Regs.end(), [&MRI, &OtherUsedRegs](MCPhysReg Reg) {
return MRI.isAllocatable(Reg) && !MRI.isPhysRegUsed(Reg) &&
!OtherUsedRegs[Reg];
});
if (NextSpillReg == Regs.end()) { // Registers exhausted
Spill.FullyAllocated = false;
break;
}
OtherUsedRegs.set(*NextSpillReg);
SpillRegs.push_back(*NextSpillReg);
Spill.Lanes[I] = *NextSpillReg++;
}
return Spill.FullyAllocated;
}
void SIMachineFunctionInfo::removeDeadFrameIndices(MachineFrameInfo &MFI) {
// The FP & BP spills haven't been inserted yet, so keep them around.
for (auto &R : SGPRToVGPRSpills) {
if (R.first != FramePointerSaveIndex && R.first != BasePointerSaveIndex)
MFI.RemoveStackObject(R.first);
}
// All other SPGRs must be allocated on the default stack, so reset the stack
// ID.
for (int i = MFI.getObjectIndexBegin(), e = MFI.getObjectIndexEnd(); i != e;
++i)
if (i != FramePointerSaveIndex && i != BasePointerSaveIndex)
MFI.setStackID(i, TargetStackID::Default);
for (auto &R : VGPRToAGPRSpills) {
if (R.second.FullyAllocated)
MFI.RemoveStackObject(R.first);
}
}
int SIMachineFunctionInfo::getScavengeFI(MachineFrameInfo &MFI,
const SIRegisterInfo &TRI) {
if (ScavengeFI)
return *ScavengeFI;
if (isEntryFunction()) {
ScavengeFI = MFI.CreateFixedObject(
TRI.getSpillSize(AMDGPU::SGPR_32RegClass), 0, false);
} else {
ScavengeFI = MFI.CreateStackObject(
TRI.getSpillSize(AMDGPU::SGPR_32RegClass),
TRI.getSpillAlign(AMDGPU::SGPR_32RegClass), false);
}
return *ScavengeFI;
}
MCPhysReg SIMachineFunctionInfo::getNextUserSGPR() const {
assert(NumSystemSGPRs == 0 && "System SGPRs must be added after user SGPRs");
return AMDGPU::SGPR0 + NumUserSGPRs;
}
MCPhysReg SIMachineFunctionInfo::getNextSystemSGPR() const {
return AMDGPU::SGPR0 + NumUserSGPRs + NumSystemSGPRs;
}
Register
SIMachineFunctionInfo::getGITPtrLoReg(const MachineFunction &MF) const {
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
if (!ST.isAmdPalOS())
return Register();
Register GitPtrLo = AMDGPU::SGPR0; // Low GIT address passed in
if (ST.hasMergedShaders()) {
switch (MF.getFunction().getCallingConv()) {
case CallingConv::AMDGPU_HS:
case CallingConv::AMDGPU_GS:
// Low GIT address is passed in s8 rather than s0 for an LS+HS or
// ES+GS merged shader on gfx9+.
GitPtrLo = AMDGPU::SGPR8;
return GitPtrLo;
default:
return GitPtrLo;
}
}
return GitPtrLo;
}
static yaml::StringValue regToString(Register Reg,
const TargetRegisterInfo &TRI) {
yaml::StringValue Dest;
{
raw_string_ostream OS(Dest.Value);
OS << printReg(Reg, &TRI);
}
return Dest;
}
static Optional<yaml::SIArgumentInfo>
convertArgumentInfo(const AMDGPUFunctionArgInfo &ArgInfo,
const TargetRegisterInfo &TRI) {
yaml::SIArgumentInfo AI;
auto convertArg = [&](Optional<yaml::SIArgument> &A,
const ArgDescriptor &Arg) {
if (!Arg)
return false;
// Create a register or stack argument.
yaml::SIArgument SA = yaml::SIArgument::createArgument(Arg.isRegister());
if (Arg.isRegister()) {
raw_string_ostream OS(SA.RegisterName.Value);
OS << printReg(Arg.getRegister(), &TRI);
} else
SA.StackOffset = Arg.getStackOffset();
// Check and update the optional mask.
if (Arg.isMasked())
SA.Mask = Arg.getMask();
A = SA;
return true;
};
bool Any = false;
Any |= convertArg(AI.PrivateSegmentBuffer, ArgInfo.PrivateSegmentBuffer);
Any |= convertArg(AI.DispatchPtr, ArgInfo.DispatchPtr);
Any |= convertArg(AI.QueuePtr, ArgInfo.QueuePtr);
Any |= convertArg(AI.KernargSegmentPtr, ArgInfo.KernargSegmentPtr);
Any |= convertArg(AI.DispatchID, ArgInfo.DispatchID);
Any |= convertArg(AI.FlatScratchInit, ArgInfo.FlatScratchInit);
Any |= convertArg(AI.PrivateSegmentSize, ArgInfo.PrivateSegmentSize);
Any |= convertArg(AI.WorkGroupIDX, ArgInfo.WorkGroupIDX);
Any |= convertArg(AI.WorkGroupIDY, ArgInfo.WorkGroupIDY);
Any |= convertArg(AI.WorkGroupIDZ, ArgInfo.WorkGroupIDZ);
Any |= convertArg(AI.WorkGroupInfo, ArgInfo.WorkGroupInfo);
Any |= convertArg(AI.PrivateSegmentWaveByteOffset,
ArgInfo.PrivateSegmentWaveByteOffset);
Any |= convertArg(AI.ImplicitArgPtr, ArgInfo.ImplicitArgPtr);
Any |= convertArg(AI.ImplicitBufferPtr, ArgInfo.ImplicitBufferPtr);
Any |= convertArg(AI.WorkItemIDX, ArgInfo.WorkItemIDX);
Any |= convertArg(AI.WorkItemIDY, ArgInfo.WorkItemIDY);
Any |= convertArg(AI.WorkItemIDZ, ArgInfo.WorkItemIDZ);
if (Any)
return AI;
return None;
}
yaml::SIMachineFunctionInfo::SIMachineFunctionInfo(
const llvm::SIMachineFunctionInfo &MFI, const TargetRegisterInfo &TRI,
const llvm::MachineFunction &MF)
: ExplicitKernArgSize(MFI.getExplicitKernArgSize()),
MaxKernArgAlign(MFI.getMaxKernArgAlign()), LDSSize(MFI.getLDSSize()),
DynLDSAlign(MFI.getDynLDSAlign()), IsEntryFunction(MFI.isEntryFunction()),
NoSignedZerosFPMath(MFI.hasNoSignedZerosFPMath()),
MemoryBound(MFI.isMemoryBound()), WaveLimiter(MFI.needsWaveLimiter()),
HasSpilledSGPRs(MFI.hasSpilledSGPRs()),
HasSpilledVGPRs(MFI.hasSpilledVGPRs()),
HighBitsOf32BitAddress(MFI.get32BitAddressHighBits()),
Occupancy(MFI.getOccupancy()),
ScratchRSrcReg(regToString(MFI.getScratchRSrcReg(), TRI)),
FrameOffsetReg(regToString(MFI.getFrameOffsetReg(), TRI)),
StackPtrOffsetReg(regToString(MFI.getStackPtrOffsetReg(), TRI)),
ArgInfo(convertArgumentInfo(MFI.getArgInfo(), TRI)), Mode(MFI.getMode()) {
auto SFI = MFI.getOptionalScavengeFI();
if (SFI)
ScavengeFI = yaml::FrameIndex(*SFI, MF.getFrameInfo());
}
void yaml::SIMachineFunctionInfo::mappingImpl(yaml::IO &YamlIO) {
MappingTraits<SIMachineFunctionInfo>::mapping(YamlIO, *this);
}
bool SIMachineFunctionInfo::initializeBaseYamlFields(
const yaml::SIMachineFunctionInfo &YamlMFI, const MachineFunction &MF,
PerFunctionMIParsingState &PFS, SMDiagnostic &Error, SMRange &SourceRange) {
ExplicitKernArgSize = YamlMFI.ExplicitKernArgSize;
MaxKernArgAlign = assumeAligned(YamlMFI.MaxKernArgAlign);
LDSSize = YamlMFI.LDSSize;
DynLDSAlign = YamlMFI.DynLDSAlign;
HighBitsOf32BitAddress = YamlMFI.HighBitsOf32BitAddress;
Occupancy = YamlMFI.Occupancy;
IsEntryFunction = YamlMFI.IsEntryFunction;
NoSignedZerosFPMath = YamlMFI.NoSignedZerosFPMath;
MemoryBound = YamlMFI.MemoryBound;
WaveLimiter = YamlMFI.WaveLimiter;
HasSpilledSGPRs = YamlMFI.HasSpilledSGPRs;
HasSpilledVGPRs = YamlMFI.HasSpilledVGPRs;
if (YamlMFI.ScavengeFI) {
auto FIOrErr = YamlMFI.ScavengeFI->getFI(MF.getFrameInfo());
if (!FIOrErr) {
// Create a diagnostic for a the frame index.
const MemoryBuffer &Buffer =
*PFS.SM->getMemoryBuffer(PFS.SM->getMainFileID());
Error = SMDiagnostic(*PFS.SM, SMLoc(), Buffer.getBufferIdentifier(), 1, 1,
SourceMgr::DK_Error, toString(FIOrErr.takeError()),
"", None, None);
SourceRange = YamlMFI.ScavengeFI->SourceRange;
return true;
}
ScavengeFI = *FIOrErr;
} else {
ScavengeFI = None;
}
return false;
}
// Remove VGPR which was reserved for SGPR spills if there are no spilled SGPRs
bool SIMachineFunctionInfo::removeVGPRForSGPRSpill(Register ReservedVGPR,
MachineFunction &MF) {
for (auto *i = SpillVGPRs.begin(); i < SpillVGPRs.end(); i++) {
if (i->VGPR == ReservedVGPR) {
SpillVGPRs.erase(i);
for (MachineBasicBlock &MBB : MF) {
MBB.removeLiveIn(ReservedVGPR);
MBB.sortUniqueLiveIns();
}
this->VGPRReservedForSGPRSpill = AMDGPU::NoRegister;
return true;
}
}
return false;
}