It can happen that after widening of the IV, flattening may not be possible, e.g. when it is deemed unprofitable. We were not properly checking this, which resulted in flattening being applied when it shouldn't, also leading to incorrect results (miscompilation). This should fix PR51980 (https://bugs.llvm.org/show_bug.cgi?id=51980) Differential Revision: https://reviews.llvm.org/D110712
867 lines
34 KiB
C++
867 lines
34 KiB
C++
//===- LoopFlatten.cpp - Loop flattening pass------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass flattens pairs nested loops into a single loop.
|
|
//
|
|
// The intention is to optimise loop nests like this, which together access an
|
|
// array linearly:
|
|
// for (int i = 0; i < N; ++i)
|
|
// for (int j = 0; j < M; ++j)
|
|
// f(A[i*M+j]);
|
|
// into one loop:
|
|
// for (int i = 0; i < (N*M); ++i)
|
|
// f(A[i]);
|
|
//
|
|
// It can also flatten loops where the induction variables are not used in the
|
|
// loop. This is only worth doing if the induction variables are only used in an
|
|
// expression like i*M+j. If they had any other uses, we would have to insert a
|
|
// div/mod to reconstruct the original values, so this wouldn't be profitable.
|
|
//
|
|
// We also need to prove that N*M will not overflow.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar/LoopFlatten.h"
|
|
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AssumptionCache.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Verifier.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/Transforms/Utils/ScalarEvolutionExpander.h"
|
|
#include "llvm/Transforms/Utils/SimplifyIndVar.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "loop-flatten"
|
|
|
|
STATISTIC(NumFlattened, "Number of loops flattened");
|
|
|
|
static cl::opt<unsigned> RepeatedInstructionThreshold(
|
|
"loop-flatten-cost-threshold", cl::Hidden, cl::init(2),
|
|
cl::desc("Limit on the cost of instructions that can be repeated due to "
|
|
"loop flattening"));
|
|
|
|
static cl::opt<bool>
|
|
AssumeNoOverflow("loop-flatten-assume-no-overflow", cl::Hidden,
|
|
cl::init(false),
|
|
cl::desc("Assume that the product of the two iteration "
|
|
"trip counts will never overflow"));
|
|
|
|
static cl::opt<bool>
|
|
WidenIV("loop-flatten-widen-iv", cl::Hidden,
|
|
cl::init(true),
|
|
cl::desc("Widen the loop induction variables, if possible, so "
|
|
"overflow checks won't reject flattening"));
|
|
|
|
struct FlattenInfo {
|
|
Loop *OuterLoop = nullptr;
|
|
Loop *InnerLoop = nullptr;
|
|
// These PHINodes correspond to loop induction variables, which are expected
|
|
// to start at zero and increment by one on each loop.
|
|
PHINode *InnerInductionPHI = nullptr;
|
|
PHINode *OuterInductionPHI = nullptr;
|
|
Value *InnerTripCount = nullptr;
|
|
Value *OuterTripCount = nullptr;
|
|
BinaryOperator *InnerIncrement = nullptr;
|
|
BinaryOperator *OuterIncrement = nullptr;
|
|
BranchInst *InnerBranch = nullptr;
|
|
BranchInst *OuterBranch = nullptr;
|
|
SmallPtrSet<Value *, 4> LinearIVUses;
|
|
SmallPtrSet<PHINode *, 4> InnerPHIsToTransform;
|
|
|
|
// Whether this holds the flatten info before or after widening.
|
|
bool Widened = false;
|
|
|
|
// Holds the old/narrow induction phis, i.e. the Phis before IV widening has
|
|
// been applied. This bookkeeping is used so we can skip some checks on these
|
|
// phi nodes.
|
|
PHINode *NarrowInnerInductionPHI = nullptr;
|
|
PHINode *NarrowOuterInductionPHI = nullptr;
|
|
|
|
FlattenInfo(Loop *OL, Loop *IL) : OuterLoop(OL), InnerLoop(IL) {};
|
|
|
|
bool isNarrowInductionPhi(PHINode *Phi) {
|
|
// This can't be the narrow phi if we haven't widened the IV first.
|
|
if (!Widened)
|
|
return false;
|
|
return NarrowInnerInductionPHI == Phi || NarrowOuterInductionPHI == Phi;
|
|
}
|
|
};
|
|
|
|
static bool
|
|
setLoopComponents(Value *&TC, Value *&TripCount, BinaryOperator *&Increment,
|
|
SmallPtrSetImpl<Instruction *> &IterationInstructions) {
|
|
TripCount = TC;
|
|
IterationInstructions.insert(Increment);
|
|
LLVM_DEBUG(dbgs() << "Found Increment: "; Increment->dump());
|
|
LLVM_DEBUG(dbgs() << "Found trip count: "; TripCount->dump());
|
|
LLVM_DEBUG(dbgs() << "Successfully found all loop components\n");
|
|
return true;
|
|
}
|
|
|
|
// Finds the induction variable, increment and trip count for a simple loop that
|
|
// we can flatten.
|
|
static bool findLoopComponents(
|
|
Loop *L, SmallPtrSetImpl<Instruction *> &IterationInstructions,
|
|
PHINode *&InductionPHI, Value *&TripCount, BinaryOperator *&Increment,
|
|
BranchInst *&BackBranch, ScalarEvolution *SE, bool IsWidened) {
|
|
LLVM_DEBUG(dbgs() << "Finding components of loop: " << L->getName() << "\n");
|
|
|
|
if (!L->isLoopSimplifyForm()) {
|
|
LLVM_DEBUG(dbgs() << "Loop is not in normal form\n");
|
|
return false;
|
|
}
|
|
|
|
// Currently, to simplify the implementation, the Loop induction variable must
|
|
// start at zero and increment with a step size of one.
|
|
if (!L->isCanonical(*SE)) {
|
|
LLVM_DEBUG(dbgs() << "Loop is not canonical\n");
|
|
return false;
|
|
}
|
|
|
|
// There must be exactly one exiting block, and it must be the same at the
|
|
// latch.
|
|
BasicBlock *Latch = L->getLoopLatch();
|
|
if (L->getExitingBlock() != Latch) {
|
|
LLVM_DEBUG(dbgs() << "Exiting and latch block are different\n");
|
|
return false;
|
|
}
|
|
|
|
// Find the induction PHI. If there is no induction PHI, we can't do the
|
|
// transformation. TODO: could other variables trigger this? Do we have to
|
|
// search for the best one?
|
|
InductionPHI = L->getInductionVariable(*SE);
|
|
if (!InductionPHI) {
|
|
LLVM_DEBUG(dbgs() << "Could not find induction PHI\n");
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Found induction PHI: "; InductionPHI->dump());
|
|
|
|
bool ContinueOnTrue = L->contains(Latch->getTerminator()->getSuccessor(0));
|
|
auto IsValidPredicate = [&](ICmpInst::Predicate Pred) {
|
|
if (ContinueOnTrue)
|
|
return Pred == CmpInst::ICMP_NE || Pred == CmpInst::ICMP_ULT;
|
|
else
|
|
return Pred == CmpInst::ICMP_EQ;
|
|
};
|
|
|
|
// Find Compare and make sure it is valid. getLatchCmpInst checks that the
|
|
// back branch of the latch is conditional.
|
|
ICmpInst *Compare = L->getLatchCmpInst();
|
|
if (!Compare || !IsValidPredicate(Compare->getUnsignedPredicate()) ||
|
|
Compare->hasNUsesOrMore(2)) {
|
|
LLVM_DEBUG(dbgs() << "Could not find valid comparison\n");
|
|
return false;
|
|
}
|
|
BackBranch = cast<BranchInst>(Latch->getTerminator());
|
|
IterationInstructions.insert(BackBranch);
|
|
LLVM_DEBUG(dbgs() << "Found back branch: "; BackBranch->dump());
|
|
IterationInstructions.insert(Compare);
|
|
LLVM_DEBUG(dbgs() << "Found comparison: "; Compare->dump());
|
|
|
|
// Find increment and trip count.
|
|
// There are exactly 2 incoming values to the induction phi; one from the
|
|
// pre-header and one from the latch. The incoming latch value is the
|
|
// increment variable.
|
|
Increment =
|
|
dyn_cast<BinaryOperator>(InductionPHI->getIncomingValueForBlock(Latch));
|
|
if (Increment->hasNUsesOrMore(3)) {
|
|
LLVM_DEBUG(dbgs() << "Could not find valid increment\n");
|
|
return false;
|
|
}
|
|
// The trip count is the RHS of the compare. If this doesn't match the trip
|
|
// count computed by SCEV then this is because the trip count variable
|
|
// has been widened so the types don't match, or because it is a constant and
|
|
// another transformation has changed the compare (e.g. icmp ult %inc,
|
|
// tripcount -> icmp ult %j, tripcount-1), or both.
|
|
Value *RHS = Compare->getOperand(1);
|
|
const SCEV *BackedgeTakenCount = SE->getBackedgeTakenCount(L);
|
|
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount)) {
|
|
LLVM_DEBUG(dbgs() << "Backedge-taken count is not predictable\n");
|
|
return false;
|
|
}
|
|
const SCEV *SCEVTripCount = SE->getTripCountFromExitCount(BackedgeTakenCount);
|
|
const SCEV *SCEVRHS = SE->getSCEV(RHS);
|
|
if (SCEVRHS == SCEVTripCount)
|
|
return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
|
|
ConstantInt *ConstantRHS = dyn_cast<ConstantInt>(RHS);
|
|
if (ConstantRHS) {
|
|
const SCEV *BackedgeTCExt = nullptr;
|
|
if (IsWidened) {
|
|
const SCEV *SCEVTripCountExt;
|
|
// Find the extended backedge taken count and extended trip count using
|
|
// SCEV. One of these should now match the RHS of the compare.
|
|
BackedgeTCExt = SE->getZeroExtendExpr(BackedgeTakenCount, RHS->getType());
|
|
SCEVTripCountExt = SE->getTripCountFromExitCount(BackedgeTCExt);
|
|
if (SCEVRHS != BackedgeTCExt && SCEVRHS != SCEVTripCountExt) {
|
|
LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
|
|
return false;
|
|
}
|
|
}
|
|
// If the RHS of the compare is equal to the backedge taken count we need
|
|
// to add one to get the trip count.
|
|
if (SCEVRHS == BackedgeTCExt || SCEVRHS == BackedgeTakenCount) {
|
|
ConstantInt *One = ConstantInt::get(ConstantRHS->getType(), 1);
|
|
Value *NewRHS = ConstantInt::get(
|
|
ConstantRHS->getContext(), ConstantRHS->getValue() + One->getValue());
|
|
return setLoopComponents(NewRHS, TripCount, Increment,
|
|
IterationInstructions);
|
|
}
|
|
return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
|
|
}
|
|
// If the RHS isn't a constant then check that the reason it doesn't match
|
|
// the SCEV trip count is because the RHS is a ZExt or SExt instruction
|
|
// (and take the trip count to be the RHS).
|
|
if (!IsWidened) {
|
|
LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
|
|
return false;
|
|
}
|
|
auto *TripCountInst = dyn_cast<Instruction>(RHS);
|
|
if (!TripCountInst) {
|
|
LLVM_DEBUG(dbgs() << "Could not find valid trip count\n");
|
|
return false;
|
|
}
|
|
if ((!isa<ZExtInst>(TripCountInst) && !isa<SExtInst>(TripCountInst)) ||
|
|
SE->getSCEV(TripCountInst->getOperand(0)) != SCEVTripCount) {
|
|
LLVM_DEBUG(dbgs() << "Could not find valid extended trip count\n");
|
|
return false;
|
|
}
|
|
return setLoopComponents(RHS, TripCount, Increment, IterationInstructions);
|
|
}
|
|
|
|
static bool checkPHIs(FlattenInfo &FI, const TargetTransformInfo *TTI) {
|
|
// All PHIs in the inner and outer headers must either be:
|
|
// - The induction PHI, which we are going to rewrite as one induction in
|
|
// the new loop. This is already checked by findLoopComponents.
|
|
// - An outer header PHI with all incoming values from outside the loop.
|
|
// LoopSimplify guarantees we have a pre-header, so we don't need to
|
|
// worry about that here.
|
|
// - Pairs of PHIs in the inner and outer headers, which implement a
|
|
// loop-carried dependency that will still be valid in the new loop. To
|
|
// be valid, this variable must be modified only in the inner loop.
|
|
|
|
// The set of PHI nodes in the outer loop header that we know will still be
|
|
// valid after the transformation. These will not need to be modified (with
|
|
// the exception of the induction variable), but we do need to check that
|
|
// there are no unsafe PHI nodes.
|
|
SmallPtrSet<PHINode *, 4> SafeOuterPHIs;
|
|
SafeOuterPHIs.insert(FI.OuterInductionPHI);
|
|
|
|
// Check that all PHI nodes in the inner loop header match one of the valid
|
|
// patterns.
|
|
for (PHINode &InnerPHI : FI.InnerLoop->getHeader()->phis()) {
|
|
// The induction PHIs break these rules, and that's OK because we treat
|
|
// them specially when doing the transformation.
|
|
if (&InnerPHI == FI.InnerInductionPHI)
|
|
continue;
|
|
if (FI.isNarrowInductionPhi(&InnerPHI))
|
|
continue;
|
|
|
|
// Each inner loop PHI node must have two incoming values/blocks - one
|
|
// from the pre-header, and one from the latch.
|
|
assert(InnerPHI.getNumIncomingValues() == 2);
|
|
Value *PreHeaderValue =
|
|
InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopPreheader());
|
|
Value *LatchValue =
|
|
InnerPHI.getIncomingValueForBlock(FI.InnerLoop->getLoopLatch());
|
|
|
|
// The incoming value from the outer loop must be the PHI node in the
|
|
// outer loop header, with no modifications made in the top of the outer
|
|
// loop.
|
|
PHINode *OuterPHI = dyn_cast<PHINode>(PreHeaderValue);
|
|
if (!OuterPHI || OuterPHI->getParent() != FI.OuterLoop->getHeader()) {
|
|
LLVM_DEBUG(dbgs() << "value modified in top of outer loop\n");
|
|
return false;
|
|
}
|
|
|
|
// The other incoming value must come from the inner loop, without any
|
|
// modifications in the tail end of the outer loop. We are in LCSSA form,
|
|
// so this will actually be a PHI in the inner loop's exit block, which
|
|
// only uses values from inside the inner loop.
|
|
PHINode *LCSSAPHI = dyn_cast<PHINode>(
|
|
OuterPHI->getIncomingValueForBlock(FI.OuterLoop->getLoopLatch()));
|
|
if (!LCSSAPHI) {
|
|
LLVM_DEBUG(dbgs() << "could not find LCSSA PHI\n");
|
|
return false;
|
|
}
|
|
|
|
// The value used by the LCSSA PHI must be the same one that the inner
|
|
// loop's PHI uses.
|
|
if (LCSSAPHI->hasConstantValue() != LatchValue) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "LCSSA PHI incoming value does not match latch value\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "PHI pair is safe:\n");
|
|
LLVM_DEBUG(dbgs() << " Inner: "; InnerPHI.dump());
|
|
LLVM_DEBUG(dbgs() << " Outer: "; OuterPHI->dump());
|
|
SafeOuterPHIs.insert(OuterPHI);
|
|
FI.InnerPHIsToTransform.insert(&InnerPHI);
|
|
}
|
|
|
|
for (PHINode &OuterPHI : FI.OuterLoop->getHeader()->phis()) {
|
|
if (FI.isNarrowInductionPhi(&OuterPHI))
|
|
continue;
|
|
if (!SafeOuterPHIs.count(&OuterPHI)) {
|
|
LLVM_DEBUG(dbgs() << "found unsafe PHI in outer loop: "; OuterPHI.dump());
|
|
return false;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "checkPHIs: OK\n");
|
|
return true;
|
|
}
|
|
|
|
static bool
|
|
checkOuterLoopInsts(FlattenInfo &FI,
|
|
SmallPtrSetImpl<Instruction *> &IterationInstructions,
|
|
const TargetTransformInfo *TTI) {
|
|
// Check for instructions in the outer but not inner loop. If any of these
|
|
// have side-effects then this transformation is not legal, and if there is
|
|
// a significant amount of code here which can't be optimised out that it's
|
|
// not profitable (as these instructions would get executed for each
|
|
// iteration of the inner loop).
|
|
InstructionCost RepeatedInstrCost = 0;
|
|
for (auto *B : FI.OuterLoop->getBlocks()) {
|
|
if (FI.InnerLoop->contains(B))
|
|
continue;
|
|
|
|
for (auto &I : *B) {
|
|
if (!isa<PHINode>(&I) && !I.isTerminator() &&
|
|
!isSafeToSpeculativelyExecute(&I)) {
|
|
LLVM_DEBUG(dbgs() << "Cannot flatten because instruction may have "
|
|
"side effects: ";
|
|
I.dump());
|
|
return false;
|
|
}
|
|
// The execution count of the outer loop's iteration instructions
|
|
// (increment, compare and branch) will be increased, but the
|
|
// equivalent instructions will be removed from the inner loop, so
|
|
// they make a net difference of zero.
|
|
if (IterationInstructions.count(&I))
|
|
continue;
|
|
// The uncoditional branch to the inner loop's header will turn into
|
|
// a fall-through, so adds no cost.
|
|
BranchInst *Br = dyn_cast<BranchInst>(&I);
|
|
if (Br && Br->isUnconditional() &&
|
|
Br->getSuccessor(0) == FI.InnerLoop->getHeader())
|
|
continue;
|
|
// Multiplies of the outer iteration variable and inner iteration
|
|
// count will be optimised out.
|
|
if (match(&I, m_c_Mul(m_Specific(FI.OuterInductionPHI),
|
|
m_Specific(FI.InnerTripCount))))
|
|
continue;
|
|
InstructionCost Cost =
|
|
TTI->getUserCost(&I, TargetTransformInfo::TCK_SizeAndLatency);
|
|
LLVM_DEBUG(dbgs() << "Cost " << Cost << ": "; I.dump());
|
|
RepeatedInstrCost += Cost;
|
|
}
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Cost of instructions that will be repeated: "
|
|
<< RepeatedInstrCost << "\n");
|
|
// Bail out if flattening the loops would cause instructions in the outer
|
|
// loop but not in the inner loop to be executed extra times.
|
|
if (RepeatedInstrCost > RepeatedInstructionThreshold) {
|
|
LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: not profitable, bailing.\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "checkOuterLoopInsts: OK\n");
|
|
return true;
|
|
}
|
|
|
|
static bool checkIVUsers(FlattenInfo &FI) {
|
|
// We require all uses of both induction variables to match this pattern:
|
|
//
|
|
// (OuterPHI * InnerTripCount) + InnerPHI
|
|
//
|
|
// Any uses of the induction variables not matching that pattern would
|
|
// require a div/mod to reconstruct in the flattened loop, so the
|
|
// transformation wouldn't be profitable.
|
|
|
|
Value *InnerTripCount = FI.InnerTripCount;
|
|
if (FI.Widened &&
|
|
(isa<SExtInst>(InnerTripCount) || isa<ZExtInst>(InnerTripCount)))
|
|
InnerTripCount = cast<Instruction>(InnerTripCount)->getOperand(0);
|
|
|
|
// Check that all uses of the inner loop's induction variable match the
|
|
// expected pattern, recording the uses of the outer IV.
|
|
SmallPtrSet<Value *, 4> ValidOuterPHIUses;
|
|
for (User *U : FI.InnerInductionPHI->users()) {
|
|
if (U == FI.InnerIncrement)
|
|
continue;
|
|
|
|
// After widening the IVs, a trunc instruction might have been introduced,
|
|
// so look through truncs.
|
|
if (isa<TruncInst>(U)) {
|
|
if (!U->hasOneUse())
|
|
return false;
|
|
U = *U->user_begin();
|
|
}
|
|
|
|
// If the use is in the compare (which is also the condition of the inner
|
|
// branch) then the compare has been altered by another transformation e.g
|
|
// icmp ult %inc, tripcount -> icmp ult %j, tripcount-1, where tripcount is
|
|
// a constant. Ignore this use as the compare gets removed later anyway.
|
|
if (U == FI.InnerBranch->getCondition())
|
|
continue;
|
|
|
|
LLVM_DEBUG(dbgs() << "Found use of inner induction variable: "; U->dump());
|
|
|
|
Value *MatchedMul = nullptr;
|
|
Value *MatchedItCount = nullptr;
|
|
bool IsAdd = match(U, m_c_Add(m_Specific(FI.InnerInductionPHI),
|
|
m_Value(MatchedMul))) &&
|
|
match(MatchedMul, m_c_Mul(m_Specific(FI.OuterInductionPHI),
|
|
m_Value(MatchedItCount)));
|
|
|
|
// Matches the same pattern as above, except it also looks for truncs
|
|
// on the phi, which can be the result of widening the induction variables.
|
|
bool IsAddTrunc =
|
|
match(U, m_c_Add(m_Trunc(m_Specific(FI.InnerInductionPHI)),
|
|
m_Value(MatchedMul))) &&
|
|
match(MatchedMul, m_c_Mul(m_Trunc(m_Specific(FI.OuterInductionPHI)),
|
|
m_Value(MatchedItCount)));
|
|
|
|
if (!MatchedItCount)
|
|
return false;
|
|
// Look through extends if the IV has been widened.
|
|
if (FI.Widened &&
|
|
(isa<SExtInst>(MatchedItCount) || isa<ZExtInst>(MatchedItCount))) {
|
|
assert(MatchedItCount->getType() == FI.InnerInductionPHI->getType() &&
|
|
"Unexpected type mismatch in types after widening");
|
|
MatchedItCount = isa<SExtInst>(MatchedItCount)
|
|
? dyn_cast<SExtInst>(MatchedItCount)->getOperand(0)
|
|
: dyn_cast<ZExtInst>(MatchedItCount)->getOperand(0);
|
|
}
|
|
|
|
if ((IsAdd || IsAddTrunc) && MatchedItCount == InnerTripCount) {
|
|
LLVM_DEBUG(dbgs() << "Use is optimisable\n");
|
|
ValidOuterPHIUses.insert(MatchedMul);
|
|
FI.LinearIVUses.insert(U);
|
|
} else {
|
|
LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Check that there are no uses of the outer IV other than the ones found
|
|
// as part of the pattern above.
|
|
for (User *U : FI.OuterInductionPHI->users()) {
|
|
if (U == FI.OuterIncrement)
|
|
continue;
|
|
|
|
auto IsValidOuterPHIUses = [&] (User *U) -> bool {
|
|
LLVM_DEBUG(dbgs() << "Found use of outer induction variable: "; U->dump());
|
|
if (!ValidOuterPHIUses.count(U)) {
|
|
LLVM_DEBUG(dbgs() << "Did not match expected pattern, bailing\n");
|
|
return false;
|
|
}
|
|
LLVM_DEBUG(dbgs() << "Use is optimisable\n");
|
|
return true;
|
|
};
|
|
|
|
if (auto *V = dyn_cast<TruncInst>(U)) {
|
|
for (auto *K : V->users()) {
|
|
if (!IsValidOuterPHIUses(K))
|
|
return false;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
if (!IsValidOuterPHIUses(U))
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "checkIVUsers: OK\n";
|
|
dbgs() << "Found " << FI.LinearIVUses.size()
|
|
<< " value(s) that can be replaced:\n";
|
|
for (Value *V : FI.LinearIVUses) {
|
|
dbgs() << " ";
|
|
V->dump();
|
|
});
|
|
return true;
|
|
}
|
|
|
|
// Return an OverflowResult dependant on if overflow of the multiplication of
|
|
// InnerTripCount and OuterTripCount can be assumed not to happen.
|
|
static OverflowResult checkOverflow(FlattenInfo &FI, DominatorTree *DT,
|
|
AssumptionCache *AC) {
|
|
Function *F = FI.OuterLoop->getHeader()->getParent();
|
|
const DataLayout &DL = F->getParent()->getDataLayout();
|
|
|
|
// For debugging/testing.
|
|
if (AssumeNoOverflow)
|
|
return OverflowResult::NeverOverflows;
|
|
|
|
// Check if the multiply could not overflow due to known ranges of the
|
|
// input values.
|
|
OverflowResult OR = computeOverflowForUnsignedMul(
|
|
FI.InnerTripCount, FI.OuterTripCount, DL, AC,
|
|
FI.OuterLoop->getLoopPreheader()->getTerminator(), DT);
|
|
if (OR != OverflowResult::MayOverflow)
|
|
return OR;
|
|
|
|
for (Value *V : FI.LinearIVUses) {
|
|
for (Value *U : V->users()) {
|
|
if (auto *GEP = dyn_cast<GetElementPtrInst>(U)) {
|
|
for (Value *GEPUser : U->users()) {
|
|
Instruction *GEPUserInst = dyn_cast<Instruction>(GEPUser);
|
|
if (!isa<LoadInst>(GEPUserInst) &&
|
|
!(isa<StoreInst>(GEPUserInst) &&
|
|
GEP == GEPUserInst->getOperand(1)))
|
|
continue;
|
|
if (!isGuaranteedToExecuteForEveryIteration(GEPUserInst,
|
|
FI.InnerLoop))
|
|
continue;
|
|
// The IV is used as the operand of a GEP which dominates the loop
|
|
// latch, and the IV is at least as wide as the address space of the
|
|
// GEP. In this case, the GEP would wrap around the address space
|
|
// before the IV increment wraps, which would be UB.
|
|
if (GEP->isInBounds() &&
|
|
V->getType()->getIntegerBitWidth() >=
|
|
DL.getPointerTypeSizeInBits(GEP->getType())) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "use of linear IV would be UB if overflow occurred: ";
|
|
GEP->dump());
|
|
return OverflowResult::NeverOverflows;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return OverflowResult::MayOverflow;
|
|
}
|
|
|
|
static bool CanFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
|
|
ScalarEvolution *SE, AssumptionCache *AC,
|
|
const TargetTransformInfo *TTI) {
|
|
SmallPtrSet<Instruction *, 8> IterationInstructions;
|
|
if (!findLoopComponents(FI.InnerLoop, IterationInstructions,
|
|
FI.InnerInductionPHI, FI.InnerTripCount,
|
|
FI.InnerIncrement, FI.InnerBranch, SE, FI.Widened))
|
|
return false;
|
|
if (!findLoopComponents(FI.OuterLoop, IterationInstructions,
|
|
FI.OuterInductionPHI, FI.OuterTripCount,
|
|
FI.OuterIncrement, FI.OuterBranch, SE, FI.Widened))
|
|
return false;
|
|
|
|
// Both of the loop trip count values must be invariant in the outer loop
|
|
// (non-instructions are all inherently invariant).
|
|
if (!FI.OuterLoop->isLoopInvariant(FI.InnerTripCount)) {
|
|
LLVM_DEBUG(dbgs() << "inner loop trip count not invariant\n");
|
|
return false;
|
|
}
|
|
if (!FI.OuterLoop->isLoopInvariant(FI.OuterTripCount)) {
|
|
LLVM_DEBUG(dbgs() << "outer loop trip count not invariant\n");
|
|
return false;
|
|
}
|
|
|
|
if (!checkPHIs(FI, TTI))
|
|
return false;
|
|
|
|
// FIXME: it should be possible to handle different types correctly.
|
|
if (FI.InnerInductionPHI->getType() != FI.OuterInductionPHI->getType())
|
|
return false;
|
|
|
|
if (!checkOuterLoopInsts(FI, IterationInstructions, TTI))
|
|
return false;
|
|
|
|
// Find the values in the loop that can be replaced with the linearized
|
|
// induction variable, and check that there are no other uses of the inner
|
|
// or outer induction variable. If there were, we could still do this
|
|
// transformation, but we'd have to insert a div/mod to calculate the
|
|
// original IVs, so it wouldn't be profitable.
|
|
if (!checkIVUsers(FI))
|
|
return false;
|
|
|
|
LLVM_DEBUG(dbgs() << "CanFlattenLoopPair: OK\n");
|
|
return true;
|
|
}
|
|
|
|
static bool DoFlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
|
|
ScalarEvolution *SE, AssumptionCache *AC,
|
|
const TargetTransformInfo *TTI) {
|
|
Function *F = FI.OuterLoop->getHeader()->getParent();
|
|
LLVM_DEBUG(dbgs() << "Checks all passed, doing the transformation\n");
|
|
{
|
|
using namespace ore;
|
|
OptimizationRemark Remark(DEBUG_TYPE, "Flattened", FI.InnerLoop->getStartLoc(),
|
|
FI.InnerLoop->getHeader());
|
|
OptimizationRemarkEmitter ORE(F);
|
|
Remark << "Flattened into outer loop";
|
|
ORE.emit(Remark);
|
|
}
|
|
|
|
Value *NewTripCount = BinaryOperator::CreateMul(
|
|
FI.InnerTripCount, FI.OuterTripCount, "flatten.tripcount",
|
|
FI.OuterLoop->getLoopPreheader()->getTerminator());
|
|
LLVM_DEBUG(dbgs() << "Created new trip count in preheader: ";
|
|
NewTripCount->dump());
|
|
|
|
// Fix up PHI nodes that take values from the inner loop back-edge, which
|
|
// we are about to remove.
|
|
FI.InnerInductionPHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
|
|
|
|
// The old Phi will be optimised away later, but for now we can't leave
|
|
// leave it in an invalid state, so are updating them too.
|
|
for (PHINode *PHI : FI.InnerPHIsToTransform)
|
|
PHI->removeIncomingValue(FI.InnerLoop->getLoopLatch());
|
|
|
|
// Modify the trip count of the outer loop to be the product of the two
|
|
// trip counts.
|
|
cast<User>(FI.OuterBranch->getCondition())->setOperand(1, NewTripCount);
|
|
|
|
// Replace the inner loop backedge with an unconditional branch to the exit.
|
|
BasicBlock *InnerExitBlock = FI.InnerLoop->getExitBlock();
|
|
BasicBlock *InnerExitingBlock = FI.InnerLoop->getExitingBlock();
|
|
InnerExitingBlock->getTerminator()->eraseFromParent();
|
|
BranchInst::Create(InnerExitBlock, InnerExitingBlock);
|
|
DT->deleteEdge(InnerExitingBlock, FI.InnerLoop->getHeader());
|
|
|
|
// Replace all uses of the polynomial calculated from the two induction
|
|
// variables with the one new one.
|
|
IRBuilder<> Builder(FI.OuterInductionPHI->getParent()->getTerminator());
|
|
for (Value *V : FI.LinearIVUses) {
|
|
Value *OuterValue = FI.OuterInductionPHI;
|
|
if (FI.Widened)
|
|
OuterValue = Builder.CreateTrunc(FI.OuterInductionPHI, V->getType(),
|
|
"flatten.trunciv");
|
|
|
|
LLVM_DEBUG(dbgs() << "Replacing: "; V->dump();
|
|
dbgs() << "with: "; OuterValue->dump());
|
|
V->replaceAllUsesWith(OuterValue);
|
|
}
|
|
|
|
// Tell LoopInfo, SCEV and the pass manager that the inner loop has been
|
|
// deleted, and any information that have about the outer loop invalidated.
|
|
SE->forgetLoop(FI.OuterLoop);
|
|
SE->forgetLoop(FI.InnerLoop);
|
|
LI->erase(FI.InnerLoop);
|
|
|
|
// Increment statistic value.
|
|
NumFlattened++;
|
|
|
|
return true;
|
|
}
|
|
|
|
static bool CanWidenIV(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
|
|
ScalarEvolution *SE, AssumptionCache *AC,
|
|
const TargetTransformInfo *TTI) {
|
|
if (!WidenIV) {
|
|
LLVM_DEBUG(dbgs() << "Widening the IVs is disabled\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Try widening the IVs\n");
|
|
Module *M = FI.InnerLoop->getHeader()->getParent()->getParent();
|
|
auto &DL = M->getDataLayout();
|
|
auto *InnerType = FI.InnerInductionPHI->getType();
|
|
auto *OuterType = FI.OuterInductionPHI->getType();
|
|
unsigned MaxLegalSize = DL.getLargestLegalIntTypeSizeInBits();
|
|
auto *MaxLegalType = DL.getLargestLegalIntType(M->getContext());
|
|
|
|
// If both induction types are less than the maximum legal integer width,
|
|
// promote both to the widest type available so we know calculating
|
|
// (OuterTripCount * InnerTripCount) as the new trip count is safe.
|
|
if (InnerType != OuterType ||
|
|
InnerType->getScalarSizeInBits() >= MaxLegalSize ||
|
|
MaxLegalType->getScalarSizeInBits() < InnerType->getScalarSizeInBits() * 2) {
|
|
LLVM_DEBUG(dbgs() << "Can't widen the IV\n");
|
|
return false;
|
|
}
|
|
|
|
SCEVExpander Rewriter(*SE, DL, "loopflatten");
|
|
SmallVector<WeakTrackingVH, 4> DeadInsts;
|
|
unsigned ElimExt = 0;
|
|
unsigned Widened = 0;
|
|
|
|
auto CreateWideIV = [&] (WideIVInfo WideIV, bool &Deleted) -> bool {
|
|
PHINode *WidePhi = createWideIV(WideIV, LI, SE, Rewriter, DT, DeadInsts,
|
|
ElimExt, Widened, true /* HasGuards */,
|
|
true /* UsePostIncrementRanges */);
|
|
if (!WidePhi)
|
|
return false;
|
|
LLVM_DEBUG(dbgs() << "Created wide phi: "; WidePhi->dump());
|
|
LLVM_DEBUG(dbgs() << "Deleting old phi: "; WideIV.NarrowIV->dump());
|
|
Deleted = RecursivelyDeleteDeadPHINode(WideIV.NarrowIV);
|
|
return true;
|
|
};
|
|
|
|
bool Deleted;
|
|
if (!CreateWideIV({FI.InnerInductionPHI, MaxLegalType, false }, Deleted))
|
|
return false;
|
|
// Add the narrow phi to list, so that it will be adjusted later when the
|
|
// the transformation is performed.
|
|
if (!Deleted)
|
|
FI.InnerPHIsToTransform.insert(FI.InnerInductionPHI);
|
|
|
|
if (!CreateWideIV({FI.OuterInductionPHI, MaxLegalType, false }, Deleted))
|
|
return false;
|
|
|
|
assert(Widened && "Widened IV expected");
|
|
FI.Widened = true;
|
|
|
|
// Save the old/narrow induction phis, which we need to ignore in CheckPHIs.
|
|
FI.NarrowInnerInductionPHI = FI.InnerInductionPHI;
|
|
FI.NarrowOuterInductionPHI = FI.OuterInductionPHI;
|
|
|
|
// After widening, rediscover all the loop components.
|
|
return CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
|
|
}
|
|
|
|
static bool FlattenLoopPair(FlattenInfo &FI, DominatorTree *DT, LoopInfo *LI,
|
|
ScalarEvolution *SE, AssumptionCache *AC,
|
|
const TargetTransformInfo *TTI) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "Loop flattening running on outer loop "
|
|
<< FI.OuterLoop->getHeader()->getName() << " and inner loop "
|
|
<< FI.InnerLoop->getHeader()->getName() << " in "
|
|
<< FI.OuterLoop->getHeader()->getParent()->getName() << "\n");
|
|
|
|
if (!CanFlattenLoopPair(FI, DT, LI, SE, AC, TTI))
|
|
return false;
|
|
|
|
// Check if we can widen the induction variables to avoid overflow checks.
|
|
bool CanFlatten = CanWidenIV(FI, DT, LI, SE, AC, TTI);
|
|
|
|
// It can happen that after widening of the IV, flattening may not be
|
|
// possible/happening, e.g. when it is deemed unprofitable. So bail here if
|
|
// that is the case.
|
|
// TODO: IV widening without performing the actual flattening transformation
|
|
// is not ideal. While this codegen change should not matter much, it is an
|
|
// unnecessary change which is better to avoid. It's unlikely this happens
|
|
// often, because if it's unprofitibale after widening, it should be
|
|
// unprofitabe before widening as checked in the first round of checks. But
|
|
// 'RepeatedInstructionThreshold' is set to only 2, which can probably be
|
|
// relaxed. Because this is making a code change (the IV widening, but not
|
|
// the flattening), we return true here.
|
|
if (FI.Widened && !CanFlatten)
|
|
return true;
|
|
|
|
// If we have widened and can perform the transformation, do that here.
|
|
if (CanFlatten)
|
|
return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
|
|
|
|
// Otherwise, if we haven't widened the IV, check if the new iteration
|
|
// variable might overflow. In this case, we need to version the loop, and
|
|
// select the original version at runtime if the iteration space is too
|
|
// large.
|
|
// TODO: We currently don't version the loop.
|
|
OverflowResult OR = checkOverflow(FI, DT, AC);
|
|
if (OR == OverflowResult::AlwaysOverflowsHigh ||
|
|
OR == OverflowResult::AlwaysOverflowsLow) {
|
|
LLVM_DEBUG(dbgs() << "Multiply would always overflow, so not profitable\n");
|
|
return false;
|
|
} else if (OR == OverflowResult::MayOverflow) {
|
|
LLVM_DEBUG(dbgs() << "Multiply might overflow, not flattening\n");
|
|
return false;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Multiply cannot overflow, modifying loop in-place\n");
|
|
return DoFlattenLoopPair(FI, DT, LI, SE, AC, TTI);
|
|
}
|
|
|
|
bool Flatten(LoopNest &LN, DominatorTree *DT, LoopInfo *LI, ScalarEvolution *SE,
|
|
AssumptionCache *AC, TargetTransformInfo *TTI) {
|
|
bool Changed = false;
|
|
for (Loop *InnerLoop : LN.getLoops()) {
|
|
auto *OuterLoop = InnerLoop->getParentLoop();
|
|
if (!OuterLoop)
|
|
continue;
|
|
FlattenInfo FI(OuterLoop, InnerLoop);
|
|
Changed |= FlattenLoopPair(FI, DT, LI, SE, AC, TTI);
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
PreservedAnalyses LoopFlattenPass::run(LoopNest &LN, LoopAnalysisManager &LAM,
|
|
LoopStandardAnalysisResults &AR,
|
|
LPMUpdater &U) {
|
|
|
|
bool Changed = false;
|
|
|
|
// The loop flattening pass requires loops to be
|
|
// in simplified form, and also needs LCSSA. Running
|
|
// this pass will simplify all loops that contain inner loops,
|
|
// regardless of whether anything ends up being flattened.
|
|
Changed |= Flatten(LN, &AR.DT, &AR.LI, &AR.SE, &AR.AC, &AR.TTI);
|
|
|
|
if (!Changed)
|
|
return PreservedAnalyses::all();
|
|
|
|
return PreservedAnalyses::none();
|
|
}
|
|
|
|
namespace {
|
|
class LoopFlattenLegacyPass : public FunctionPass {
|
|
public:
|
|
static char ID; // Pass ID, replacement for typeid
|
|
LoopFlattenLegacyPass() : FunctionPass(ID) {
|
|
initializeLoopFlattenLegacyPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
// Possibly flatten loop L into its child.
|
|
bool runOnFunction(Function &F) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
getLoopAnalysisUsage(AU);
|
|
AU.addRequired<TargetTransformInfoWrapperPass>();
|
|
AU.addPreserved<TargetTransformInfoWrapperPass>();
|
|
AU.addRequired<AssumptionCacheTracker>();
|
|
AU.addPreserved<AssumptionCacheTracker>();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
char LoopFlattenLegacyPass::ID = 0;
|
|
INITIALIZE_PASS_BEGIN(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
|
|
false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
|
|
INITIALIZE_PASS_END(LoopFlattenLegacyPass, "loop-flatten", "Flattens loops",
|
|
false, false)
|
|
|
|
FunctionPass *llvm::createLoopFlattenPass() { return new LoopFlattenLegacyPass(); }
|
|
|
|
bool LoopFlattenLegacyPass::runOnFunction(Function &F) {
|
|
ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
|
|
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
|
|
auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>();
|
|
DominatorTree *DT = DTWP ? &DTWP->getDomTree() : nullptr;
|
|
auto &TTIP = getAnalysis<TargetTransformInfoWrapperPass>();
|
|
auto *TTI = &TTIP.getTTI(F);
|
|
auto *AC = &getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
|
|
bool Changed = false;
|
|
for (Loop *L : *LI) {
|
|
auto LN = LoopNest::getLoopNest(*L, *SE);
|
|
Changed |= Flatten(*LN, DT, LI, SE, AC, TTI);
|
|
}
|
|
return Changed;
|
|
}
|