Files
clang-p2996/mlir/lib/Dialect/AMX/Transforms/LegalizeForLLVMExport.cpp
River Riddle b54c724be0 [mlir:OpConversionPattern] Add overloads for taking an Adaptor instead of ArrayRef
This has been a TODO for a long time, and it brings about many advantages (namely nice accessors, and less fragile code). The existing overloads that accept ArrayRef are now treated as deprecated and will be removed in a followup (after a small grace period). Most of the upstream MLIR usages have been fixed by this commit, the rest will be handled in a followup.

Differential Revision: https://reviews.llvm.org/D110293
2021-09-24 17:51:41 +00:00

228 lines
9.6 KiB
C++

//===- LegalizeForLLVMExport.cpp - Prepare AMX for LLVM translation ----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/AMX/Transforms.h"
#include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
#include "mlir/Conversion/LLVMCommon/Pattern.h"
#include "mlir/Dialect/AMX/AMXDialect.h"
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "mlir/Dialect/StandardOps/IR/Ops.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/PatternMatch.h"
using namespace mlir;
using namespace mlir::amx;
namespace {
/// Maps the 2-dim vector shape to the two 16-bit tile sizes. The first
/// dimension directly translates into the number of rows of the tiles.
/// The second dimensions needs to be scaled by the number of bytes.
std::pair<Value, Value> getTileSizes(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter,
VectorType vType, Location loc) {
Type llvmInt16Type = IntegerType::get(&typeConverter.getContext(), 16);
unsigned width = vType.getElementType().getIntOrFloatBitWidth();
assert(llvm::isPowerOf2_64(width) && width >= 8);
unsigned bytes = width >> 3;
auto mattr = rewriter.getI16IntegerAttr(vType.getDimSize(0));
auto nattr = rewriter.getI16IntegerAttr(vType.getDimSize(1) * bytes);
return std::make_pair(
rewriter.create<LLVM::ConstantOp>(loc, llvmInt16Type, mattr),
rewriter.create<LLVM::ConstantOp>(loc, llvmInt16Type, nattr));
}
/// Verifies if the stride matches proper tile access.
LogicalResult verifyStride(MemRefType mType) {
if (mType.getRank() < 2)
return failure();
int64_t last = mType.getRank() - 1;
int64_t offset;
SmallVector<int64_t, 4> strides;
if (failed(getStridesAndOffset(mType, strides, offset)) || strides[last] != 1)
return failure();
return success();
}
/// Maps the 2-dim memref shape to the 64-bit stride. Note that the buffer
/// shape may "envelop" the actual tile shape, and may be dynamically sized.
Value getStride(ConversionPatternRewriter &rewriter,
LLVMTypeConverter &typeConverter, MemRefType mType, Value base,
Location loc) {
assert(mType.getRank() >= 2);
int64_t last = mType.getRank() - 1;
Type llvmInt64Type = IntegerType::get(&typeConverter.getContext(), 64);
unsigned width = mType.getElementType().getIntOrFloatBitWidth();
assert(llvm::isPowerOf2_64(width) && width >= 8);
unsigned bytes = width >> 3;
if (mType.isDynamicDim(last)) {
// Dynamic size needs code to compute the stride at runtime.
MemRefDescriptor memrefDescriptor(base);
auto attr = rewriter.getI64IntegerAttr(bytes);
Value scale = rewriter.create<LLVM::ConstantOp>(loc, llvmInt64Type, attr);
return rewriter.create<LLVM::MulOp>(
loc, llvmInt64Type, scale, memrefDescriptor.size(rewriter, loc, last));
}
// Use direct constant for static size.
auto attr = rewriter.getI64IntegerAttr(mType.getDimSize(last) * bytes);
return rewriter.create<LLVM::ConstantOp>(loc, llvmInt64Type, attr);
}
/// Cast any pointer to the !llvm.ptr<i8> pointer type.
Value castPtr(ConversionPatternRewriter &rewriter, Location loc, Value ptr) {
auto i8Ptr =
LLVM::LLVMPointerType::get(IntegerType::get(ptr.getContext(), 8));
return rewriter.create<LLVM::BitcastOp>(loc, i8Ptr, ptr);
}
struct TileZeroConversion : public ConvertOpToLLVMPattern<TileZeroOp> {
using ConvertOpToLLVMPattern<TileZeroOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileZeroOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType vType = op.getVectorType();
// Determine m x n tile sizes.
std::pair<Value, Value> tsz =
getTileSizes(rewriter, *getTypeConverter(), vType, op.getLoc());
// Replace operation with intrinsic.
Type resType = typeConverter->convertType(vType);
rewriter.replaceOpWithNewOp<amx::x86_amx_tilezero>(op, resType, tsz.first,
tsz.second);
return success();
}
};
struct TileLoadConversion : public ConvertOpToLLVMPattern<TileLoadOp> {
using ConvertOpToLLVMPattern<TileLoadOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileLoadOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MemRefType mType = op.getMemRefType();
VectorType vType = op.getVectorType();
// Determine m x n tile sizes.
std::pair<Value, Value> tsz =
getTileSizes(rewriter, *getTypeConverter(), vType, op.getLoc());
// Determine stride.
if (failed(verifyStride(mType)))
return failure();
Value stride = getStride(rewriter, *getTypeConverter(), mType,
adaptor.base(), op.getLoc());
// Replace operation with intrinsic.
Value ptr = getStridedElementPtr(op.getLoc(), mType, adaptor.base(),
adaptor.indices(), rewriter);
ptr = castPtr(rewriter, op.getLoc(), ptr);
Type resType = typeConverter->convertType(vType);
rewriter.replaceOpWithNewOp<amx::x86_amx_tileloadd64>(
op, resType, tsz.first, tsz.second, ptr, stride);
return success();
}
};
struct TileStoreConversion : public ConvertOpToLLVMPattern<TileStoreOp> {
using ConvertOpToLLVMPattern<TileStoreOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileStoreOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
MemRefType mType = op.getMemRefType();
VectorType vType = op.getVectorType();
// Determine m x n tile sizes.
std::pair<Value, Value> tsz =
getTileSizes(rewriter, *getTypeConverter(), vType, op.getLoc());
// Determine stride.
if (failed(verifyStride(mType)))
return failure();
Value stride = getStride(rewriter, *getTypeConverter(), mType,
adaptor.base(), op.getLoc());
// Replace operation with intrinsic.
Value ptr = getStridedElementPtr(op.getLoc(), mType, adaptor.base(),
adaptor.indices(), rewriter);
ptr = castPtr(rewriter, op.getLoc(), ptr);
rewriter.replaceOpWithNewOp<amx::x86_amx_tilestored64>(
op, tsz.first, tsz.second, ptr, stride, adaptor.val());
return success();
}
};
struct TileMulFConversion : public ConvertOpToLLVMPattern<TileMulFOp> {
using ConvertOpToLLVMPattern<TileMulFOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileMulFOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType aType = op.getLhsVectorType();
VectorType bType = op.getRhsVectorType();
VectorType cType = op.getVectorType();
// Determine m x n x k tile sizes.
std::pair<Value, Value> tsza =
getTileSizes(rewriter, *getTypeConverter(), aType, op.getLoc());
std::pair<Value, Value> tszb =
getTileSizes(rewriter, *getTypeConverter(), bType, op.getLoc());
// Replace operation with intrinsic.
Type resType = typeConverter->convertType(cType);
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbf16ps>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.acc(),
adaptor.lhs(), adaptor.rhs());
return success();
}
};
struct TileMulIConversion : public ConvertOpToLLVMPattern<TileMulIOp> {
using ConvertOpToLLVMPattern<TileMulIOp>::ConvertOpToLLVMPattern;
LogicalResult
matchAndRewrite(TileMulIOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
VectorType aType = op.getLhsVectorType();
VectorType bType = op.getRhsVectorType();
VectorType cType = op.getVectorType();
// Determine m x n x k tile sizes.
std::pair<Value, Value> tsza =
getTileSizes(rewriter, *getTypeConverter(), aType, op.getLoc());
std::pair<Value, Value> tszb =
getTileSizes(rewriter, *getTypeConverter(), bType, op.getLoc());
// Replace operation with intrinsic.
Type resType = typeConverter->convertType(cType);
bool zexta = op.isZextLhs();
bool zextb = op.isZextRhs();
if (zexta && zextb)
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbuud>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.acc(),
adaptor.lhs(), adaptor.rhs());
else if (zexta && !zextb)
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbusd>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.acc(),
adaptor.lhs(), adaptor.rhs());
else if (!zexta && zextb)
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbsud>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.acc(),
adaptor.lhs(), adaptor.rhs());
else
rewriter.replaceOpWithNewOp<amx::x86_amx_tdpbssd>(
op, resType, tsza.first, tszb.second, tsza.second, adaptor.acc(),
adaptor.lhs(), adaptor.rhs());
return success();
}
};
} // namespace
void mlir::populateAMXLegalizeForLLVMExportPatterns(
LLVMTypeConverter &converter, RewritePatternSet &patterns) {
patterns.add<TileZeroConversion, TileLoadConversion, TileStoreConversion,
TileMulFConversion, TileMulIConversion>(converter);
}
void mlir::configureAMXLegalizeForExportTarget(LLVMConversionTarget &target) {
target.addLegalOp<x86_amx_tilezero, x86_amx_tileloadd64, x86_amx_tilestored64,
x86_amx_tdpbf16ps, x86_amx_tdpbssd, x86_amx_tdpbsud,
x86_amx_tdpbusd, x86_amx_tdpbuud>();
target.addIllegalOp<TileZeroOp, TileLoadOp, TileStoreOp, TileMulIOp,
TileMulFOp>();
}