This has been a TODO for a long time, and it brings about many advantages (namely nice accessors, and less fragile code). The existing overloads that accept ArrayRef are now treated as deprecated and will be removed in a followup (after a small grace period). Most of the upstream MLIR usages have been fixed by this commit, the rest will be handled in a followup. Differential Revision: https://reviews.llvm.org/D110293
905 lines
36 KiB
C++
905 lines
36 KiB
C++
//===- SPIRVConversion.cpp - SPIR-V Conversion Utilities ------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements utilities used to lower to SPIR-V dialect.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/SPIRV/Transforms/SPIRVConversion.h"
|
|
#include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h"
|
|
#include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
|
|
#include "mlir/Transforms/DialectConversion.h"
|
|
#include "llvm/ADT/Sequence.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#include <functional>
|
|
|
|
#define DEBUG_TYPE "mlir-spirv-conversion"
|
|
|
|
using namespace mlir;
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Utility functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Checks that `candidates` extension requirements are possible to be satisfied
|
|
/// with the given `targetEnv`.
|
|
///
|
|
/// `candidates` is a vector of vector for extension requirements following
|
|
/// ((Extension::A OR Extension::B) AND (Extension::C OR Extension::D))
|
|
/// convention.
|
|
template <typename LabelT>
|
|
static LogicalResult checkExtensionRequirements(
|
|
LabelT label, const spirv::TargetEnv &targetEnv,
|
|
const spirv::SPIRVType::ExtensionArrayRefVector &candidates) {
|
|
for (const auto &ors : candidates) {
|
|
if (targetEnv.allows(ors))
|
|
continue;
|
|
|
|
LLVM_DEBUG({
|
|
SmallVector<StringRef> extStrings;
|
|
for (spirv::Extension ext : ors)
|
|
extStrings.push_back(spirv::stringifyExtension(ext));
|
|
|
|
llvm::dbgs() << label << " illegal: requires at least one extension in ["
|
|
<< llvm::join(extStrings, ", ")
|
|
<< "] but none allowed in target environment\n";
|
|
});
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Checks that `candidates`capability requirements are possible to be satisfied
|
|
/// with the given `isAllowedFn`.
|
|
///
|
|
/// `candidates` is a vector of vector for capability requirements following
|
|
/// ((Capability::A OR Capability::B) AND (Capability::C OR Capability::D))
|
|
/// convention.
|
|
template <typename LabelT>
|
|
static LogicalResult checkCapabilityRequirements(
|
|
LabelT label, const spirv::TargetEnv &targetEnv,
|
|
const spirv::SPIRVType::CapabilityArrayRefVector &candidates) {
|
|
for (const auto &ors : candidates) {
|
|
if (targetEnv.allows(ors))
|
|
continue;
|
|
|
|
LLVM_DEBUG({
|
|
SmallVector<StringRef> capStrings;
|
|
for (spirv::Capability cap : ors)
|
|
capStrings.push_back(spirv::stringifyCapability(cap));
|
|
|
|
llvm::dbgs() << label << " illegal: requires at least one capability in ["
|
|
<< llvm::join(capStrings, ", ")
|
|
<< "] but none allowed in target environment\n";
|
|
});
|
|
return failure();
|
|
}
|
|
return success();
|
|
}
|
|
|
|
/// Returns true if the given `storageClass` needs explicit layout when used in
|
|
/// Shader environments.
|
|
static bool needsExplicitLayout(spirv::StorageClass storageClass) {
|
|
switch (storageClass) {
|
|
case spirv::StorageClass::PhysicalStorageBuffer:
|
|
case spirv::StorageClass::PushConstant:
|
|
case spirv::StorageClass::StorageBuffer:
|
|
case spirv::StorageClass::Uniform:
|
|
return true;
|
|
default:
|
|
return false;
|
|
}
|
|
}
|
|
|
|
/// Wraps the given `elementType` in a struct and gets the pointer to the
|
|
/// struct. This is used to satisfy Vulkan interface requirements.
|
|
static spirv::PointerType
|
|
wrapInStructAndGetPointer(Type elementType, spirv::StorageClass storageClass) {
|
|
auto structType = needsExplicitLayout(storageClass)
|
|
? spirv::StructType::get(elementType, /*offsetInfo=*/0)
|
|
: spirv::StructType::get(elementType);
|
|
return spirv::PointerType::get(structType, storageClass);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Type Conversion
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Type SPIRVTypeConverter::getIndexType() const {
|
|
return IntegerType::get(getContext(), options.use64bitIndex ? 64 : 32);
|
|
}
|
|
|
|
/// Mapping between SPIR-V storage classes to memref memory spaces.
|
|
///
|
|
/// Note: memref does not have a defined semantics for each memory space; it
|
|
/// depends on the context where it is used. There are no particular reasons
|
|
/// behind the number assignments; we try to follow NVVM conventions and largely
|
|
/// give common storage classes a smaller number. The hope is use symbolic
|
|
/// memory space representation eventually after memref supports it.
|
|
// TODO: swap Generic and StorageBuffer assignment to be more akin
|
|
// to NVVM.
|
|
#define STORAGE_SPACE_MAP_LIST(MAP_FN) \
|
|
MAP_FN(spirv::StorageClass::Generic, 1) \
|
|
MAP_FN(spirv::StorageClass::StorageBuffer, 0) \
|
|
MAP_FN(spirv::StorageClass::Workgroup, 3) \
|
|
MAP_FN(spirv::StorageClass::Uniform, 4) \
|
|
MAP_FN(spirv::StorageClass::Private, 5) \
|
|
MAP_FN(spirv::StorageClass::Function, 6) \
|
|
MAP_FN(spirv::StorageClass::PushConstant, 7) \
|
|
MAP_FN(spirv::StorageClass::UniformConstant, 8) \
|
|
MAP_FN(spirv::StorageClass::Input, 9) \
|
|
MAP_FN(spirv::StorageClass::Output, 10) \
|
|
MAP_FN(spirv::StorageClass::CrossWorkgroup, 11) \
|
|
MAP_FN(spirv::StorageClass::AtomicCounter, 12) \
|
|
MAP_FN(spirv::StorageClass::Image, 13) \
|
|
MAP_FN(spirv::StorageClass::CallableDataNV, 14) \
|
|
MAP_FN(spirv::StorageClass::IncomingCallableDataNV, 15) \
|
|
MAP_FN(spirv::StorageClass::RayPayloadNV, 16) \
|
|
MAP_FN(spirv::StorageClass::HitAttributeNV, 17) \
|
|
MAP_FN(spirv::StorageClass::IncomingRayPayloadNV, 18) \
|
|
MAP_FN(spirv::StorageClass::ShaderRecordBufferNV, 19) \
|
|
MAP_FN(spirv::StorageClass::PhysicalStorageBuffer, 20)
|
|
|
|
unsigned
|
|
SPIRVTypeConverter::getMemorySpaceForStorageClass(spirv::StorageClass storage) {
|
|
#define STORAGE_SPACE_MAP_FN(storage, space) \
|
|
case storage: \
|
|
return space;
|
|
|
|
switch (storage) { STORAGE_SPACE_MAP_LIST(STORAGE_SPACE_MAP_FN) }
|
|
#undef STORAGE_SPACE_MAP_FN
|
|
llvm_unreachable("unhandled storage class!");
|
|
}
|
|
|
|
Optional<spirv::StorageClass>
|
|
SPIRVTypeConverter::getStorageClassForMemorySpace(unsigned space) {
|
|
#define STORAGE_SPACE_MAP_FN(storage, space) \
|
|
case space: \
|
|
return storage;
|
|
|
|
switch (space) {
|
|
STORAGE_SPACE_MAP_LIST(STORAGE_SPACE_MAP_FN)
|
|
default:
|
|
return llvm::None;
|
|
}
|
|
#undef STORAGE_SPACE_MAP_FN
|
|
}
|
|
|
|
const SPIRVTypeConverter::Options &SPIRVTypeConverter::getOptions() const {
|
|
return options;
|
|
}
|
|
|
|
MLIRContext *SPIRVTypeConverter::getContext() const {
|
|
return targetEnv.getAttr().getContext();
|
|
}
|
|
|
|
#undef STORAGE_SPACE_MAP_LIST
|
|
|
|
// TODO: This is a utility function that should probably be exposed by the
|
|
// SPIR-V dialect. Keeping it local till the use case arises.
|
|
static Optional<int64_t>
|
|
getTypeNumBytes(const SPIRVTypeConverter::Options &options, Type type) {
|
|
if (type.isa<spirv::ScalarType>()) {
|
|
auto bitWidth = type.getIntOrFloatBitWidth();
|
|
// According to the SPIR-V spec:
|
|
// "There is no physical size or bit pattern defined for values with boolean
|
|
// type. If they are stored (in conjunction with OpVariable), they can only
|
|
// be used with logical addressing operations, not physical, and only with
|
|
// non-externally visible shader Storage Classes: Workgroup, CrossWorkgroup,
|
|
// Private, Function, Input, and Output."
|
|
if (bitWidth == 1)
|
|
return llvm::None;
|
|
return bitWidth / 8;
|
|
}
|
|
|
|
if (auto vecType = type.dyn_cast<VectorType>()) {
|
|
auto elementSize = getTypeNumBytes(options, vecType.getElementType());
|
|
if (!elementSize)
|
|
return llvm::None;
|
|
return vecType.getNumElements() * elementSize.getValue();
|
|
}
|
|
|
|
if (auto memRefType = type.dyn_cast<MemRefType>()) {
|
|
// TODO: Layout should also be controlled by the ABI attributes. For now
|
|
// using the layout from MemRef.
|
|
int64_t offset;
|
|
SmallVector<int64_t, 4> strides;
|
|
if (!memRefType.hasStaticShape() ||
|
|
failed(getStridesAndOffset(memRefType, strides, offset)))
|
|
return llvm::None;
|
|
|
|
// To get the size of the memref object in memory, the total size is the
|
|
// max(stride * dimension-size) computed for all dimensions times the size
|
|
// of the element.
|
|
auto elementSize = getTypeNumBytes(options, memRefType.getElementType());
|
|
if (!elementSize)
|
|
return llvm::None;
|
|
|
|
if (memRefType.getRank() == 0)
|
|
return elementSize;
|
|
|
|
auto dims = memRefType.getShape();
|
|
if (llvm::is_contained(dims, ShapedType::kDynamicSize) ||
|
|
offset == MemRefType::getDynamicStrideOrOffset() ||
|
|
llvm::is_contained(strides, MemRefType::getDynamicStrideOrOffset()))
|
|
return llvm::None;
|
|
|
|
int64_t memrefSize = -1;
|
|
for (auto shape : enumerate(dims))
|
|
memrefSize = std::max(memrefSize, shape.value() * strides[shape.index()]);
|
|
|
|
return (offset + memrefSize) * elementSize.getValue();
|
|
}
|
|
|
|
if (auto tensorType = type.dyn_cast<TensorType>()) {
|
|
if (!tensorType.hasStaticShape())
|
|
return llvm::None;
|
|
|
|
auto elementSize = getTypeNumBytes(options, tensorType.getElementType());
|
|
if (!elementSize)
|
|
return llvm::None;
|
|
|
|
int64_t size = elementSize.getValue();
|
|
for (auto shape : tensorType.getShape())
|
|
size *= shape;
|
|
|
|
return size;
|
|
}
|
|
|
|
// TODO: Add size computation for other types.
|
|
return llvm::None;
|
|
}
|
|
|
|
/// Converts a scalar `type` to a suitable type under the given `targetEnv`.
|
|
static Type convertScalarType(const spirv::TargetEnv &targetEnv,
|
|
const SPIRVTypeConverter::Options &options,
|
|
spirv::ScalarType type,
|
|
Optional<spirv::StorageClass> storageClass = {}) {
|
|
// Get extension and capability requirements for the given type.
|
|
SmallVector<ArrayRef<spirv::Extension>, 1> extensions;
|
|
SmallVector<ArrayRef<spirv::Capability>, 2> capabilities;
|
|
type.getExtensions(extensions, storageClass);
|
|
type.getCapabilities(capabilities, storageClass);
|
|
|
|
// If all requirements are met, then we can accept this type as-is.
|
|
if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) &&
|
|
succeeded(checkExtensionRequirements(type, targetEnv, extensions)))
|
|
return type;
|
|
|
|
// Otherwise we need to adjust the type, which really means adjusting the
|
|
// bitwidth given this is a scalar type.
|
|
|
|
if (!options.emulateNon32BitScalarTypes)
|
|
return nullptr;
|
|
|
|
if (auto floatType = type.dyn_cast<FloatType>()) {
|
|
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
|
|
return Builder(targetEnv.getContext()).getF32Type();
|
|
}
|
|
|
|
auto intType = type.cast<IntegerType>();
|
|
LLVM_DEBUG(llvm::dbgs() << type << " converted to 32-bit for SPIR-V\n");
|
|
return IntegerType::get(targetEnv.getContext(), /*width=*/32,
|
|
intType.getSignedness());
|
|
}
|
|
|
|
/// Converts a vector `type` to a suitable type under the given `targetEnv`.
|
|
static Type convertVectorType(const spirv::TargetEnv &targetEnv,
|
|
const SPIRVTypeConverter::Options &options,
|
|
VectorType type,
|
|
Optional<spirv::StorageClass> storageClass = {}) {
|
|
if (type.getRank() == 1 && type.getNumElements() == 1)
|
|
return type.getElementType();
|
|
|
|
if (!spirv::CompositeType::isValid(type)) {
|
|
// TODO: Vector types with more than four elements can be translated into
|
|
// array types.
|
|
LLVM_DEBUG(llvm::dbgs() << type << " illegal: > 4-element unimplemented\n");
|
|
return nullptr;
|
|
}
|
|
|
|
// Get extension and capability requirements for the given type.
|
|
SmallVector<ArrayRef<spirv::Extension>, 1> extensions;
|
|
SmallVector<ArrayRef<spirv::Capability>, 2> capabilities;
|
|
type.cast<spirv::CompositeType>().getExtensions(extensions, storageClass);
|
|
type.cast<spirv::CompositeType>().getCapabilities(capabilities, storageClass);
|
|
|
|
// If all requirements are met, then we can accept this type as-is.
|
|
if (succeeded(checkCapabilityRequirements(type, targetEnv, capabilities)) &&
|
|
succeeded(checkExtensionRequirements(type, targetEnv, extensions)))
|
|
return type;
|
|
|
|
auto elementType = convertScalarType(
|
|
targetEnv, options, type.getElementType().cast<spirv::ScalarType>(),
|
|
storageClass);
|
|
if (elementType)
|
|
return VectorType::get(type.getShape(), elementType);
|
|
return nullptr;
|
|
}
|
|
|
|
/// Converts a tensor `type` to a suitable type under the given `targetEnv`.
|
|
///
|
|
/// Note that this is mainly for lowering constant tensors. In SPIR-V one can
|
|
/// create composite constants with OpConstantComposite to embed relative large
|
|
/// constant values and use OpCompositeExtract and OpCompositeInsert to
|
|
/// manipulate, like what we do for vectors.
|
|
static Type convertTensorType(const spirv::TargetEnv &targetEnv,
|
|
const SPIRVTypeConverter::Options &options,
|
|
TensorType type) {
|
|
// TODO: Handle dynamic shapes.
|
|
if (!type.hasStaticShape()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< type << " illegal: dynamic shape unimplemented\n");
|
|
return nullptr;
|
|
}
|
|
|
|
auto scalarType = type.getElementType().dyn_cast<spirv::ScalarType>();
|
|
if (!scalarType) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< type << " illegal: cannot convert non-scalar element type\n");
|
|
return nullptr;
|
|
}
|
|
|
|
Optional<int64_t> scalarSize = getTypeNumBytes(options, scalarType);
|
|
Optional<int64_t> tensorSize = getTypeNumBytes(options, type);
|
|
if (!scalarSize || !tensorSize) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< type << " illegal: cannot deduce element count\n");
|
|
return nullptr;
|
|
}
|
|
|
|
auto arrayElemCount = *tensorSize / *scalarSize;
|
|
auto arrayElemType = convertScalarType(targetEnv, options, scalarType);
|
|
if (!arrayElemType)
|
|
return nullptr;
|
|
Optional<int64_t> arrayElemSize = getTypeNumBytes(options, arrayElemType);
|
|
if (!arrayElemSize) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< type << " illegal: cannot deduce converted element size\n");
|
|
return nullptr;
|
|
}
|
|
|
|
return spirv::ArrayType::get(arrayElemType, arrayElemCount, *arrayElemSize);
|
|
}
|
|
|
|
static Type convertBoolMemrefType(const spirv::TargetEnv &targetEnv,
|
|
const SPIRVTypeConverter::Options &options,
|
|
MemRefType type) {
|
|
Optional<spirv::StorageClass> storageClass =
|
|
SPIRVTypeConverter::getStorageClassForMemorySpace(
|
|
type.getMemorySpaceAsInt());
|
|
if (!storageClass) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< type << " illegal: cannot convert memory space\n");
|
|
return nullptr;
|
|
}
|
|
|
|
unsigned numBoolBits = options.boolNumBits;
|
|
if (numBoolBits != 8) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< "using non-8-bit storage for bool types unimplemented");
|
|
return nullptr;
|
|
}
|
|
auto elementType = IntegerType::get(type.getContext(), numBoolBits)
|
|
.dyn_cast<spirv::ScalarType>();
|
|
if (!elementType)
|
|
return nullptr;
|
|
Type arrayElemType =
|
|
convertScalarType(targetEnv, options, elementType, storageClass);
|
|
if (!arrayElemType)
|
|
return nullptr;
|
|
Optional<int64_t> arrayElemSize = getTypeNumBytes(options, arrayElemType);
|
|
if (!arrayElemSize) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< type << " illegal: cannot deduce converted element size\n");
|
|
return nullptr;
|
|
}
|
|
|
|
if (!type.hasStaticShape()) {
|
|
auto arrayType =
|
|
spirv::RuntimeArrayType::get(arrayElemType, *arrayElemSize);
|
|
return wrapInStructAndGetPointer(arrayType, *storageClass);
|
|
}
|
|
|
|
int64_t memrefSize = (type.getNumElements() * numBoolBits + 7) / 8;
|
|
auto arrayElemCount = (memrefSize + *arrayElemSize - 1) / *arrayElemSize;
|
|
auto arrayType =
|
|
spirv::ArrayType::get(arrayElemType, arrayElemCount, *arrayElemSize);
|
|
|
|
return wrapInStructAndGetPointer(arrayType, *storageClass);
|
|
}
|
|
|
|
static Type convertMemrefType(const spirv::TargetEnv &targetEnv,
|
|
const SPIRVTypeConverter::Options &options,
|
|
MemRefType type) {
|
|
if (type.getElementType().isa<IntegerType>() &&
|
|
type.getElementTypeBitWidth() == 1) {
|
|
return convertBoolMemrefType(targetEnv, options, type);
|
|
}
|
|
|
|
Optional<spirv::StorageClass> storageClass =
|
|
SPIRVTypeConverter::getStorageClassForMemorySpace(
|
|
type.getMemorySpaceAsInt());
|
|
if (!storageClass) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< type << " illegal: cannot convert memory space\n");
|
|
return nullptr;
|
|
}
|
|
|
|
Type arrayElemType;
|
|
Type elementType = type.getElementType();
|
|
if (auto vecType = elementType.dyn_cast<VectorType>()) {
|
|
arrayElemType =
|
|
convertVectorType(targetEnv, options, vecType, storageClass);
|
|
} else if (auto scalarType = elementType.dyn_cast<spirv::ScalarType>()) {
|
|
arrayElemType =
|
|
convertScalarType(targetEnv, options, scalarType, storageClass);
|
|
} else {
|
|
LLVM_DEBUG(
|
|
llvm::dbgs()
|
|
<< type
|
|
<< " unhandled: can only convert scalar or vector element type\n");
|
|
return nullptr;
|
|
}
|
|
if (!arrayElemType)
|
|
return nullptr;
|
|
|
|
Optional<int64_t> elementSize = getTypeNumBytes(options, elementType);
|
|
if (!elementSize) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< type << " illegal: cannot deduce element size\n");
|
|
return nullptr;
|
|
}
|
|
|
|
Optional<int64_t> arrayElemSize = getTypeNumBytes(options, arrayElemType);
|
|
if (!arrayElemSize) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< type << " illegal: cannot deduce converted element size\n");
|
|
return nullptr;
|
|
}
|
|
|
|
if (!type.hasStaticShape()) {
|
|
auto arrayType =
|
|
spirv::RuntimeArrayType::get(arrayElemType, *arrayElemSize);
|
|
return wrapInStructAndGetPointer(arrayType, *storageClass);
|
|
}
|
|
|
|
Optional<int64_t> memrefSize = getTypeNumBytes(options, type);
|
|
if (!memrefSize) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< type << " illegal: cannot deduce element count\n");
|
|
return nullptr;
|
|
}
|
|
|
|
auto arrayElemCount = *memrefSize / *elementSize;
|
|
|
|
|
|
auto arrayType =
|
|
spirv::ArrayType::get(arrayElemType, arrayElemCount, *arrayElemSize);
|
|
|
|
return wrapInStructAndGetPointer(arrayType, *storageClass);
|
|
}
|
|
|
|
SPIRVTypeConverter::SPIRVTypeConverter(spirv::TargetEnvAttr targetAttr,
|
|
Options options)
|
|
: targetEnv(targetAttr), options(options) {
|
|
// Add conversions. The order matters here: later ones will be tried earlier.
|
|
|
|
// Allow all SPIR-V dialect specific types. This assumes all builtin types
|
|
// adopted in the SPIR-V dialect (i.e., IntegerType, FloatType, VectorType)
|
|
// were tried before.
|
|
//
|
|
// TODO: this assumes that the SPIR-V types are valid to use in
|
|
// the given target environment, which should be the case if the whole
|
|
// pipeline is driven by the same target environment. Still, we probably still
|
|
// want to validate and convert to be safe.
|
|
addConversion([](spirv::SPIRVType type) { return type; });
|
|
|
|
addConversion([this](IndexType /*indexType*/) { return getIndexType(); });
|
|
|
|
addConversion([this](IntegerType intType) -> Optional<Type> {
|
|
if (auto scalarType = intType.dyn_cast<spirv::ScalarType>())
|
|
return convertScalarType(this->targetEnv, this->options, scalarType);
|
|
return Type();
|
|
});
|
|
|
|
addConversion([this](FloatType floatType) -> Optional<Type> {
|
|
if (auto scalarType = floatType.dyn_cast<spirv::ScalarType>())
|
|
return convertScalarType(this->targetEnv, this->options, scalarType);
|
|
return Type();
|
|
});
|
|
|
|
addConversion([this](VectorType vectorType) {
|
|
return convertVectorType(this->targetEnv, this->options, vectorType);
|
|
});
|
|
|
|
addConversion([this](TensorType tensorType) {
|
|
return convertTensorType(this->targetEnv, this->options, tensorType);
|
|
});
|
|
|
|
addConversion([this](MemRefType memRefType) {
|
|
return convertMemrefType(this->targetEnv, this->options, memRefType);
|
|
});
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// FuncOp Conversion Patterns
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
/// A pattern for rewriting function signature to convert arguments of functions
|
|
/// to be of valid SPIR-V types.
|
|
class FuncOpConversion final : public OpConversionPattern<FuncOp> {
|
|
public:
|
|
using OpConversionPattern<FuncOp>::OpConversionPattern;
|
|
|
|
LogicalResult
|
|
matchAndRewrite(FuncOp funcOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const override;
|
|
};
|
|
} // namespace
|
|
|
|
LogicalResult
|
|
FuncOpConversion::matchAndRewrite(FuncOp funcOp, OpAdaptor adaptor,
|
|
ConversionPatternRewriter &rewriter) const {
|
|
auto fnType = funcOp.getType();
|
|
if (fnType.getNumResults() > 1)
|
|
return failure();
|
|
|
|
TypeConverter::SignatureConversion signatureConverter(fnType.getNumInputs());
|
|
for (auto argType : enumerate(fnType.getInputs())) {
|
|
auto convertedType = getTypeConverter()->convertType(argType.value());
|
|
if (!convertedType)
|
|
return failure();
|
|
signatureConverter.addInputs(argType.index(), convertedType);
|
|
}
|
|
|
|
Type resultType;
|
|
if (fnType.getNumResults() == 1) {
|
|
resultType = getTypeConverter()->convertType(fnType.getResult(0));
|
|
if (!resultType)
|
|
return failure();
|
|
}
|
|
|
|
// Create the converted spv.func op.
|
|
auto newFuncOp = rewriter.create<spirv::FuncOp>(
|
|
funcOp.getLoc(), funcOp.getName(),
|
|
rewriter.getFunctionType(signatureConverter.getConvertedTypes(),
|
|
resultType ? TypeRange(resultType)
|
|
: TypeRange()));
|
|
|
|
// Copy over all attributes other than the function name and type.
|
|
for (const auto &namedAttr : funcOp->getAttrs()) {
|
|
if (namedAttr.first != function_like_impl::getTypeAttrName() &&
|
|
namedAttr.first != SymbolTable::getSymbolAttrName())
|
|
newFuncOp->setAttr(namedAttr.first, namedAttr.second);
|
|
}
|
|
|
|
rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(),
|
|
newFuncOp.end());
|
|
if (failed(rewriter.convertRegionTypes(
|
|
&newFuncOp.getBody(), *getTypeConverter(), &signatureConverter)))
|
|
return failure();
|
|
rewriter.eraseOp(funcOp);
|
|
return success();
|
|
}
|
|
|
|
void mlir::populateBuiltinFuncToSPIRVPatterns(SPIRVTypeConverter &typeConverter,
|
|
RewritePatternSet &patterns) {
|
|
patterns.add<FuncOpConversion>(typeConverter, patterns.getContext());
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Builtin Variables
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static spirv::GlobalVariableOp getBuiltinVariable(Block &body,
|
|
spirv::BuiltIn builtin) {
|
|
// Look through all global variables in the given `body` block and check if
|
|
// there is a spv.GlobalVariable that has the same `builtin` attribute.
|
|
for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) {
|
|
if (auto builtinAttr = varOp->getAttrOfType<StringAttr>(
|
|
spirv::SPIRVDialect::getAttributeName(
|
|
spirv::Decoration::BuiltIn))) {
|
|
auto varBuiltIn = spirv::symbolizeBuiltIn(builtinAttr.getValue());
|
|
if (varBuiltIn && varBuiltIn.getValue() == builtin) {
|
|
return varOp;
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Gets name of global variable for a builtin.
|
|
static std::string getBuiltinVarName(spirv::BuiltIn builtin) {
|
|
return std::string("__builtin_var_") + stringifyBuiltIn(builtin).str() + "__";
|
|
}
|
|
|
|
/// Gets or inserts a global variable for a builtin within `body` block.
|
|
static spirv::GlobalVariableOp
|
|
getOrInsertBuiltinVariable(Block &body, Location loc, spirv::BuiltIn builtin,
|
|
Type integerType, OpBuilder &builder) {
|
|
if (auto varOp = getBuiltinVariable(body, builtin))
|
|
return varOp;
|
|
|
|
OpBuilder::InsertionGuard guard(builder);
|
|
builder.setInsertionPointToStart(&body);
|
|
|
|
spirv::GlobalVariableOp newVarOp;
|
|
switch (builtin) {
|
|
case spirv::BuiltIn::NumWorkgroups:
|
|
case spirv::BuiltIn::WorkgroupSize:
|
|
case spirv::BuiltIn::WorkgroupId:
|
|
case spirv::BuiltIn::LocalInvocationId:
|
|
case spirv::BuiltIn::GlobalInvocationId: {
|
|
auto ptrType = spirv::PointerType::get(VectorType::get({3}, integerType),
|
|
spirv::StorageClass::Input);
|
|
std::string name = getBuiltinVarName(builtin);
|
|
newVarOp =
|
|
builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin);
|
|
break;
|
|
}
|
|
case spirv::BuiltIn::SubgroupId:
|
|
case spirv::BuiltIn::NumSubgroups:
|
|
case spirv::BuiltIn::SubgroupSize: {
|
|
auto ptrType =
|
|
spirv::PointerType::get(integerType, spirv::StorageClass::Input);
|
|
std::string name = getBuiltinVarName(builtin);
|
|
newVarOp =
|
|
builder.create<spirv::GlobalVariableOp>(loc, ptrType, name, builtin);
|
|
break;
|
|
}
|
|
default:
|
|
emitError(loc, "unimplemented builtin variable generation for ")
|
|
<< stringifyBuiltIn(builtin);
|
|
}
|
|
return newVarOp;
|
|
}
|
|
|
|
Value mlir::spirv::getBuiltinVariableValue(Operation *op,
|
|
spirv::BuiltIn builtin,
|
|
Type integerType,
|
|
OpBuilder &builder) {
|
|
Operation *parent = SymbolTable::getNearestSymbolTable(op->getParentOp());
|
|
if (!parent) {
|
|
op->emitError("expected operation to be within a module-like op");
|
|
return nullptr;
|
|
}
|
|
|
|
spirv::GlobalVariableOp varOp =
|
|
getOrInsertBuiltinVariable(*parent->getRegion(0).begin(), op->getLoc(),
|
|
builtin, integerType, builder);
|
|
Value ptr = builder.create<spirv::AddressOfOp>(op->getLoc(), varOp);
|
|
return builder.create<spirv::LoadOp>(op->getLoc(), ptr);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Push constant storage
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
/// Returns the pointer type for the push constant storage containing
|
|
/// `elementCount` 32-bit integer values.
|
|
static spirv::PointerType getPushConstantStorageType(unsigned elementCount,
|
|
Builder &builder,
|
|
Type indexType) {
|
|
auto arrayType = spirv::ArrayType::get(indexType, elementCount,
|
|
/*stride=*/4);
|
|
auto structType = spirv::StructType::get({arrayType}, /*offsetInfo=*/0);
|
|
return spirv::PointerType::get(structType, spirv::StorageClass::PushConstant);
|
|
}
|
|
|
|
/// Returns the push constant varible containing `elementCount` 32-bit integer
|
|
/// values in `body`. Returns null op if such an op does not exit.
|
|
static spirv::GlobalVariableOp getPushConstantVariable(Block &body,
|
|
unsigned elementCount) {
|
|
for (auto varOp : body.getOps<spirv::GlobalVariableOp>()) {
|
|
auto ptrType = varOp.type().dyn_cast<spirv::PointerType>();
|
|
if (!ptrType)
|
|
continue;
|
|
|
|
// Note that Vulkan requires "There must be no more than one push constant
|
|
// block statically used per shader entry point." So we should always reuse
|
|
// the existing one.
|
|
if (ptrType.getStorageClass() == spirv::StorageClass::PushConstant) {
|
|
auto numElements = ptrType.getPointeeType()
|
|
.cast<spirv::StructType>()
|
|
.getElementType(0)
|
|
.cast<spirv::ArrayType>()
|
|
.getNumElements();
|
|
if (numElements == elementCount)
|
|
return varOp;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
/// Gets or inserts a global variable for push constant storage containing
|
|
/// `elementCount` 32-bit integer values in `block`.
|
|
static spirv::GlobalVariableOp
|
|
getOrInsertPushConstantVariable(Location loc, Block &block,
|
|
unsigned elementCount, OpBuilder &b,
|
|
Type indexType) {
|
|
if (auto varOp = getPushConstantVariable(block, elementCount))
|
|
return varOp;
|
|
|
|
auto builder = OpBuilder::atBlockBegin(&block, b.getListener());
|
|
auto type = getPushConstantStorageType(elementCount, builder, indexType);
|
|
const char *name = "__push_constant_var__";
|
|
return builder.create<spirv::GlobalVariableOp>(loc, type, name,
|
|
/*initializer=*/nullptr);
|
|
}
|
|
|
|
Value spirv::getPushConstantValue(Operation *op, unsigned elementCount,
|
|
unsigned offset, Type integerType,
|
|
OpBuilder &builder) {
|
|
Location loc = op->getLoc();
|
|
Operation *parent = SymbolTable::getNearestSymbolTable(op->getParentOp());
|
|
if (!parent) {
|
|
op->emitError("expected operation to be within a module-like op");
|
|
return nullptr;
|
|
}
|
|
|
|
spirv::GlobalVariableOp varOp = getOrInsertPushConstantVariable(
|
|
loc, parent->getRegion(0).front(), elementCount, builder, integerType);
|
|
|
|
Value zeroOp = spirv::ConstantOp::getZero(integerType, loc, builder);
|
|
Value offsetOp = builder.create<spirv::ConstantOp>(
|
|
loc, integerType, builder.getI32IntegerAttr(offset));
|
|
auto addrOp = builder.create<spirv::AddressOfOp>(loc, varOp);
|
|
auto acOp = builder.create<spirv::AccessChainOp>(
|
|
loc, addrOp, llvm::makeArrayRef({zeroOp, offsetOp}));
|
|
return builder.create<spirv::LoadOp>(loc, acOp);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Index calculation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
Value mlir::spirv::linearizeIndex(ValueRange indices, ArrayRef<int64_t> strides,
|
|
int64_t offset, Type integerType,
|
|
Location loc, OpBuilder &builder) {
|
|
assert(indices.size() == strides.size() &&
|
|
"must provide indices for all dimensions");
|
|
|
|
// TODO: Consider moving to use affine.apply and patterns converting
|
|
// affine.apply to standard ops. This needs converting to SPIR-V passes to be
|
|
// broken down into progressive small steps so we can have intermediate steps
|
|
// using other dialects. At the moment SPIR-V is the final sink.
|
|
|
|
Value linearizedIndex = builder.create<spirv::ConstantOp>(
|
|
loc, integerType, IntegerAttr::get(integerType, offset));
|
|
for (auto index : llvm::enumerate(indices)) {
|
|
Value strideVal = builder.create<spirv::ConstantOp>(
|
|
loc, integerType,
|
|
IntegerAttr::get(integerType, strides[index.index()]));
|
|
Value update = builder.create<spirv::IMulOp>(loc, strideVal, index.value());
|
|
linearizedIndex =
|
|
builder.create<spirv::IAddOp>(loc, linearizedIndex, update);
|
|
}
|
|
return linearizedIndex;
|
|
}
|
|
|
|
spirv::AccessChainOp mlir::spirv::getElementPtr(
|
|
SPIRVTypeConverter &typeConverter, MemRefType baseType, Value basePtr,
|
|
ValueRange indices, Location loc, OpBuilder &builder) {
|
|
// Get base and offset of the MemRefType and verify they are static.
|
|
|
|
int64_t offset;
|
|
SmallVector<int64_t, 4> strides;
|
|
if (failed(getStridesAndOffset(baseType, strides, offset)) ||
|
|
llvm::is_contained(strides, MemRefType::getDynamicStrideOrOffset()) ||
|
|
offset == MemRefType::getDynamicStrideOrOffset()) {
|
|
return nullptr;
|
|
}
|
|
|
|
auto indexType = typeConverter.getIndexType();
|
|
|
|
SmallVector<Value, 2> linearizedIndices;
|
|
auto zero = spirv::ConstantOp::getZero(indexType, loc, builder);
|
|
|
|
// Add a '0' at the start to index into the struct.
|
|
linearizedIndices.push_back(zero);
|
|
|
|
if (baseType.getRank() == 0) {
|
|
linearizedIndices.push_back(zero);
|
|
} else {
|
|
linearizedIndices.push_back(
|
|
linearizeIndex(indices, strides, offset, indexType, loc, builder));
|
|
}
|
|
return builder.create<spirv::AccessChainOp>(loc, basePtr, linearizedIndices);
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// SPIR-V ConversionTarget
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
std::unique_ptr<SPIRVConversionTarget>
|
|
SPIRVConversionTarget::get(spirv::TargetEnvAttr targetAttr) {
|
|
std::unique_ptr<SPIRVConversionTarget> target(
|
|
// std::make_unique does not work here because the constructor is private.
|
|
new SPIRVConversionTarget(targetAttr));
|
|
SPIRVConversionTarget *targetPtr = target.get();
|
|
target->addDynamicallyLegalDialect<spirv::SPIRVDialect>(
|
|
// We need to capture the raw pointer here because it is stable:
|
|
// target will be destroyed once this function is returned.
|
|
[targetPtr](Operation *op) { return targetPtr->isLegalOp(op); });
|
|
return target;
|
|
}
|
|
|
|
SPIRVConversionTarget::SPIRVConversionTarget(spirv::TargetEnvAttr targetAttr)
|
|
: ConversionTarget(*targetAttr.getContext()), targetEnv(targetAttr) {}
|
|
|
|
bool SPIRVConversionTarget::isLegalOp(Operation *op) {
|
|
// Make sure this op is available at the given version. Ops not implementing
|
|
// QueryMinVersionInterface/QueryMaxVersionInterface are available to all
|
|
// SPIR-V versions.
|
|
if (auto minVersion = dyn_cast<spirv::QueryMinVersionInterface>(op))
|
|
if (minVersion.getMinVersion() > this->targetEnv.getVersion()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< op->getName() << " illegal: requiring min version "
|
|
<< spirv::stringifyVersion(minVersion.getMinVersion())
|
|
<< "\n");
|
|
return false;
|
|
}
|
|
if (auto maxVersion = dyn_cast<spirv::QueryMaxVersionInterface>(op))
|
|
if (maxVersion.getMaxVersion() < this->targetEnv.getVersion()) {
|
|
LLVM_DEBUG(llvm::dbgs()
|
|
<< op->getName() << " illegal: requiring max version "
|
|
<< spirv::stringifyVersion(maxVersion.getMaxVersion())
|
|
<< "\n");
|
|
return false;
|
|
}
|
|
|
|
// Make sure this op's required extensions are allowed to use. Ops not
|
|
// implementing QueryExtensionInterface do not require extensions to be
|
|
// available.
|
|
if (auto extensions = dyn_cast<spirv::QueryExtensionInterface>(op))
|
|
if (failed(checkExtensionRequirements(op->getName(), this->targetEnv,
|
|
extensions.getExtensions())))
|
|
return false;
|
|
|
|
// Make sure this op's required extensions are allowed to use. Ops not
|
|
// implementing QueryCapabilityInterface do not require capabilities to be
|
|
// available.
|
|
if (auto capabilities = dyn_cast<spirv::QueryCapabilityInterface>(op))
|
|
if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv,
|
|
capabilities.getCapabilities())))
|
|
return false;
|
|
|
|
SmallVector<Type, 4> valueTypes;
|
|
valueTypes.append(op->operand_type_begin(), op->operand_type_end());
|
|
valueTypes.append(op->result_type_begin(), op->result_type_end());
|
|
|
|
// Special treatment for global variables, whose type requirements are
|
|
// conveyed by type attributes.
|
|
if (auto globalVar = dyn_cast<spirv::GlobalVariableOp>(op))
|
|
valueTypes.push_back(globalVar.type());
|
|
|
|
// Make sure the op's operands/results use types that are allowed by the
|
|
// target environment.
|
|
SmallVector<ArrayRef<spirv::Extension>, 4> typeExtensions;
|
|
SmallVector<ArrayRef<spirv::Capability>, 8> typeCapabilities;
|
|
for (Type valueType : valueTypes) {
|
|
typeExtensions.clear();
|
|
valueType.cast<spirv::SPIRVType>().getExtensions(typeExtensions);
|
|
if (failed(checkExtensionRequirements(op->getName(), this->targetEnv,
|
|
typeExtensions)))
|
|
return false;
|
|
|
|
typeCapabilities.clear();
|
|
valueType.cast<spirv::SPIRVType>().getCapabilities(typeCapabilities);
|
|
if (failed(checkCapabilityRequirements(op->getName(), this->targetEnv,
|
|
typeCapabilities)))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|