The sparse constant provides a constant tensor in coordinate format. We first split the sparse constant into a constant tensor for indices and a constant tensor for values. We then generate a loop to fill a sparse tensor in coordinate format using the tensors for the indices and the values. Finally, we convert the sparse tensor in coordinate format to the destination sparse tensor format. Add tests. Reviewed By: aartbik Differential Revision: https://reviews.llvm.org/D110373
140 lines
5.3 KiB
C++
140 lines
5.3 KiB
C++
//===- SparseTensorPasses.cpp - Pass for autogen sparse tensor code -------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
|
|
#include "mlir/Dialect/Linalg/Transforms/Transforms.h"
|
|
#include "mlir/Dialect/SparseTensor/IR/SparseTensor.h"
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h"
|
|
#include "mlir/Dialect/StandardOps/Transforms/FuncConversions.h"
|
|
#include "mlir/Transforms/GreedyPatternRewriteDriver.h"
|
|
|
|
using namespace mlir;
|
|
using namespace mlir::sparse_tensor;
|
|
|
|
namespace {
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Passes declaration.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define GEN_PASS_CLASSES
|
|
#include "mlir/Dialect/SparseTensor/Transforms/Passes.h.inc"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Passes implementation.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
struct SparsificationPass : public SparsificationBase<SparsificationPass> {
|
|
|
|
SparsificationPass() = default;
|
|
SparsificationPass(const SparsificationPass &pass)
|
|
: SparsificationBase<SparsificationPass>() {}
|
|
|
|
/// Returns parallelization strategy given on command line.
|
|
SparseParallelizationStrategy parallelOption() {
|
|
switch (parallelization) {
|
|
default:
|
|
return SparseParallelizationStrategy::kNone;
|
|
case 1:
|
|
return SparseParallelizationStrategy::kDenseOuterLoop;
|
|
case 2:
|
|
return SparseParallelizationStrategy::kAnyStorageOuterLoop;
|
|
case 3:
|
|
return SparseParallelizationStrategy::kDenseAnyLoop;
|
|
case 4:
|
|
return SparseParallelizationStrategy::kAnyStorageAnyLoop;
|
|
}
|
|
}
|
|
|
|
/// Returns vectorization strategy given on command line.
|
|
SparseVectorizationStrategy vectorOption() {
|
|
switch (vectorization) {
|
|
default:
|
|
return SparseVectorizationStrategy::kNone;
|
|
case 1:
|
|
return SparseVectorizationStrategy::kDenseInnerLoop;
|
|
case 2:
|
|
return SparseVectorizationStrategy::kAnyStorageInnerLoop;
|
|
}
|
|
}
|
|
|
|
void runOnOperation() override {
|
|
auto *ctx = &getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
// Translate strategy flags to strategy options.
|
|
SparsificationOptions options(parallelOption(), vectorOption(),
|
|
vectorLength, enableSIMDIndex32);
|
|
// Apply rewriting.
|
|
populateSparsificationPatterns(patterns, options);
|
|
vector::populateVectorToVectorCanonicalizationPatterns(patterns);
|
|
(void)applyPatternsAndFoldGreedily(getOperation(), std::move(patterns));
|
|
}
|
|
};
|
|
|
|
class SparseTensorTypeConverter : public TypeConverter {
|
|
public:
|
|
SparseTensorTypeConverter() {
|
|
addConversion([](Type type) { return type; });
|
|
addConversion(convertSparseTensorTypes);
|
|
}
|
|
// Maps each sparse tensor type to an opaque pointer.
|
|
static Optional<Type> convertSparseTensorTypes(Type type) {
|
|
if (getSparseTensorEncoding(type) != nullptr)
|
|
return LLVM::LLVMPointerType::get(IntegerType::get(type.getContext(), 8));
|
|
return llvm::None;
|
|
}
|
|
};
|
|
|
|
struct SparseTensorConversionPass
|
|
: public SparseTensorConversionBase<SparseTensorConversionPass> {
|
|
void runOnOperation() override {
|
|
auto *ctx = &getContext();
|
|
RewritePatternSet patterns(ctx);
|
|
SparseTensorTypeConverter converter;
|
|
ConversionTarget target(*ctx);
|
|
target.addIllegalOp<NewOp, ConvertOp, ToPointersOp, ToIndicesOp, ToValuesOp,
|
|
ToTensorOp>();
|
|
// All dynamic rules below accept new function, call, return, and dimop
|
|
// operations as legal output of the rewriting provided that all sparse
|
|
// tensor types have been fully rewritten.
|
|
target.addDynamicallyLegalOp<FuncOp>(
|
|
[&](FuncOp op) { return converter.isSignatureLegal(op.getType()); });
|
|
target.addDynamicallyLegalOp<CallOp>([&](CallOp op) {
|
|
return converter.isSignatureLegal(op.getCalleeType());
|
|
});
|
|
target.addDynamicallyLegalOp<ReturnOp>(
|
|
[&](ReturnOp op) { return converter.isLegal(op.getOperandTypes()); });
|
|
target.addDynamicallyLegalOp<tensor::DimOp>([&](tensor::DimOp op) {
|
|
return converter.isLegal(op.getOperandTypes());
|
|
});
|
|
// The following operations and dialects may be introduced by the
|
|
// rewriting rules, and are therefore marked as legal.
|
|
target.addLegalOp<ConstantOp, IndexCastOp, tensor::CastOp,
|
|
tensor::ExtractOp, CmpFOp, CmpIOp>();
|
|
target.addLegalDialect<scf::SCFDialect, LLVM::LLVMDialect,
|
|
memref::MemRefDialect>();
|
|
// Populate with rules and apply rewriting rules.
|
|
populateFuncOpTypeConversionPattern(patterns, converter);
|
|
populateCallOpTypeConversionPattern(patterns, converter);
|
|
populateSparseTensorConversionPatterns(converter, patterns);
|
|
if (failed(applyPartialConversion(getOperation(), target,
|
|
std::move(patterns))))
|
|
signalPassFailure();
|
|
}
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::unique_ptr<Pass> mlir::createSparsificationPass() {
|
|
return std::make_unique<SparsificationPass>();
|
|
}
|
|
|
|
std::unique_ptr<Pass> mlir::createSparseTensorConversionPass() {
|
|
return std::make_unique<SparseTensorConversionPass>();
|
|
}
|