We have several ways to materialize sparse tensors (new and convert) but no explicit operation to release the underlying sparse storage scheme at runtime (other than making an explicit delSparseTensor() library call). To simplify memory management, a sparse_tensor.release operation has been introduced that lowers to the runtime library call while keeping tensors, opague pointers, and memrefs transparent in the initial IR. *Note* There is obviously some tension between the concept of immutable tensors and memory management methods. This tension is addressed by simply stating that after the "release" call, no further memref related operations are allowed on the tensor value. We expect the design to evolve over time, however, and arrive at a more satisfactory view of tensors and buffers eventually. Bug: http://llvm.org/pr52046 Reviewed By: bixia Differential Revision: https://reviews.llvm.org/D111099
120 lines
4.2 KiB
MLIR
120 lines
4.2 KiB
MLIR
// RUN: mlir-opt %s \
|
|
// RUN: --sparsification --sparse-tensor-conversion \
|
|
// RUN: --convert-vector-to-scf --convert-scf-to-std \
|
|
// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
|
|
// RUN: --std-bufferize --finalizing-bufferize \
|
|
// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \
|
|
// RUN: TENSOR0="%mlir_integration_test_dir/data/wide.mtx" \
|
|
// RUN: mlir-cpu-runner \
|
|
// RUN: -e entry -entry-point-result=void \
|
|
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
|
// RUN: FileCheck %s
|
|
//
|
|
// Do the same run, but now with SIMDization as well. This should not change the outcome.
|
|
//
|
|
// RUN: mlir-opt %s \
|
|
// RUN: --sparsification="vectorization-strategy=2 vl=16 enable-simd-index32" --sparse-tensor-conversion \
|
|
// RUN: --convert-vector-to-scf --convert-scf-to-std \
|
|
// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
|
|
// RUN: --std-bufferize --finalizing-bufferize --lower-affine \
|
|
// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \
|
|
// RUN: TENSOR0="%mlir_integration_test_dir/data/wide.mtx" \
|
|
// RUN: mlir-cpu-runner \
|
|
// RUN: -e entry -entry-point-result=void \
|
|
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
|
// RUN: FileCheck %s
|
|
|
|
!Filename = type !llvm.ptr<i8>
|
|
|
|
#SparseMatrix = #sparse_tensor.encoding<{
|
|
dimLevelType = [ "dense", "compressed" ],
|
|
pointerBitWidth = 8,
|
|
indexBitWidth = 8
|
|
}>
|
|
|
|
#matvec = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (i,j)>, // A
|
|
affine_map<(i,j) -> (j)>, // b
|
|
affine_map<(i,j) -> (i)> // x (out)
|
|
],
|
|
iterator_types = ["parallel", "reduction"],
|
|
doc = "X(i) += A(i,j) * B(j)"
|
|
}
|
|
|
|
//
|
|
// Integration test that lowers a kernel annotated as sparse to
|
|
// actual sparse code, initializes a matching sparse storage scheme
|
|
// from file, and runs the resulting code with the JIT compiler.
|
|
//
|
|
module {
|
|
//
|
|
// A kernel that multiplies a sparse matrix A with a dense vector b
|
|
// into a dense vector x.
|
|
//
|
|
func @kernel_matvec(%arga: tensor<?x?xi32, #SparseMatrix>,
|
|
%argb: tensor<?xi32>,
|
|
%argx: tensor<?xi32> {linalg.inplaceable = true})
|
|
-> tensor<?xi32> {
|
|
%0 = linalg.generic #matvec
|
|
ins(%arga, %argb: tensor<?x?xi32, #SparseMatrix>, tensor<?xi32>)
|
|
outs(%argx: tensor<?xi32>) {
|
|
^bb(%a: i32, %b: i32, %x: i32):
|
|
%0 = muli %a, %b : i32
|
|
%1 = addi %x, %0 : i32
|
|
linalg.yield %1 : i32
|
|
} -> tensor<?xi32>
|
|
return %0 : tensor<?xi32>
|
|
}
|
|
|
|
func private @getTensorFilename(index) -> (!Filename)
|
|
|
|
//
|
|
// Main driver that reads matrix from file and calls the sparse kernel.
|
|
//
|
|
func @entry() {
|
|
%i0 = constant 0 : i32
|
|
%c0 = constant 0 : index
|
|
%c1 = constant 1 : index
|
|
%c4 = constant 4 : index
|
|
%c256 = constant 256 : index
|
|
|
|
// Read the sparse matrix from file, construct sparse storage.
|
|
%fileName = call @getTensorFilename(%c0) : (index) -> (!Filename)
|
|
%a = sparse_tensor.new %fileName : !Filename to tensor<?x?xi32, #SparseMatrix>
|
|
|
|
// Initialize dense vectors.
|
|
%bdata = memref.alloc(%c256) : memref<?xi32>
|
|
%xdata = memref.alloc(%c4) : memref<?xi32>
|
|
scf.for %i = %c0 to %c256 step %c1 {
|
|
%k = addi %i, %c1 : index
|
|
%j = index_cast %k : index to i32
|
|
memref.store %j, %bdata[%i] : memref<?xi32>
|
|
}
|
|
scf.for %i = %c0 to %c4 step %c1 {
|
|
memref.store %i0, %xdata[%i] : memref<?xi32>
|
|
}
|
|
%b = memref.tensor_load %bdata : memref<?xi32>
|
|
%x = memref.tensor_load %xdata : memref<?xi32>
|
|
|
|
// Call kernel.
|
|
%0 = call @kernel_matvec(%a, %b, %x)
|
|
: (tensor<?x?xi32, #SparseMatrix>, tensor<?xi32>, tensor<?xi32>) -> tensor<?xi32>
|
|
|
|
// Print the result for verification.
|
|
//
|
|
// CHECK: ( 889, 1514, -21, -3431 )
|
|
//
|
|
%m = memref.buffer_cast %0 : memref<?xi32>
|
|
%v = vector.transfer_read %m[%c0], %i0: memref<?xi32>, vector<4xi32>
|
|
vector.print %v : vector<4xi32>
|
|
|
|
// Release the resources.
|
|
memref.dealloc %bdata : memref<?xi32>
|
|
memref.dealloc %xdata : memref<?xi32>
|
|
sparse_tensor.release %a : tensor<?x?xi32, #SparseMatrix>
|
|
|
|
return
|
|
}
|
|
}
|