We have several ways to materialize sparse tensors (new and convert) but no explicit operation to release the underlying sparse storage scheme at runtime (other than making an explicit delSparseTensor() library call). To simplify memory management, a sparse_tensor.release operation has been introduced that lowers to the runtime library call while keeping tensors, opague pointers, and memrefs transparent in the initial IR. *Note* There is obviously some tension between the concept of immutable tensors and memory management methods. This tension is addressed by simply stating that after the "release" call, no further memref related operations are allowed on the tensor value. We expect the design to evolve over time, however, and arrive at a more satisfactory view of tensors and buffers eventually. Bug: http://llvm.org/pr52046 Reviewed By: bixia Differential Revision: https://reviews.llvm.org/D111099
83 lines
2.8 KiB
MLIR
83 lines
2.8 KiB
MLIR
// RUN: mlir-opt %s \
|
|
// RUN: --sparsification --sparse-tensor-conversion \
|
|
// RUN: --convert-vector-to-scf --convert-scf-to-std \
|
|
// RUN: --func-bufferize --tensor-constant-bufferize --tensor-bufferize \
|
|
// RUN: --std-bufferize --finalizing-bufferize \
|
|
// RUN: --convert-vector-to-llvm --convert-memref-to-llvm --convert-std-to-llvm --reconcile-unrealized-casts | \
|
|
// RUN: mlir-cpu-runner \
|
|
// RUN: -e entry -entry-point-result=void \
|
|
// RUN: -shared-libs=%mlir_integration_test_dir/libmlir_c_runner_utils%shlibext | \
|
|
// RUN: FileCheck %s
|
|
|
|
#CSR = #sparse_tensor.encoding<{ dimLevelType = [ "dense", "compressed" ] }>
|
|
|
|
#trait_scale = {
|
|
indexing_maps = [
|
|
affine_map<(i,j) -> (i,j)> // X (out)
|
|
],
|
|
iterator_types = ["parallel", "parallel"],
|
|
doc = "X(i,j) = X(i,j) * 2"
|
|
}
|
|
|
|
//
|
|
// Integration test that lowers a kernel annotated as sparse to actual sparse
|
|
// code, initializes a matching sparse storage scheme from a dense tensor,
|
|
// and runs the resulting code with the JIT compiler.
|
|
//
|
|
module {
|
|
//
|
|
// A kernel that scales a sparse matrix A by a factor of 2.0.
|
|
//
|
|
func @sparse_scale(%argx: tensor<8x8xf32, #CSR>
|
|
{linalg.inplaceable = true}) -> tensor<8x8xf32, #CSR> {
|
|
%c = constant 2.0 : f32
|
|
%0 = linalg.generic #trait_scale
|
|
outs(%argx: tensor<8x8xf32, #CSR>) {
|
|
^bb(%x: f32):
|
|
%1 = mulf %x, %c : f32
|
|
linalg.yield %1 : f32
|
|
} -> tensor<8x8xf32, #CSR>
|
|
return %0 : tensor<8x8xf32, #CSR>
|
|
}
|
|
|
|
//
|
|
// Main driver that converts a dense tensor into a sparse tensor
|
|
// and then calls the sparse scaling kernel with the sparse tensor
|
|
// as input argument.
|
|
//
|
|
func @entry() {
|
|
%c0 = constant 0 : index
|
|
%f0 = constant 0.0 : f32
|
|
|
|
// Initialize a dense tensor.
|
|
%0 = constant dense<[
|
|
[1.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0],
|
|
[0.0, 2.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
|
[0.0, 0.0, 3.0, 0.0, 0.0, 0.0, 0.0, 0.0],
|
|
[0.0, 0.0, 0.0, 4.0, 0.0, 0.0, 0.0, 0.0],
|
|
[0.0, 1.0, 0.0, 0.0, 5.0, 0.0, 0.0, 0.0],
|
|
[0.0, 1.0, 1.0, 0.0, 0.0, 6.0, 0.0, 0.0],
|
|
[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 7.0, 1.0],
|
|
[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 8.0]
|
|
]> : tensor<8x8xf32>
|
|
|
|
// Convert dense tensor to sparse tensor and call sparse kernel.
|
|
%1 = sparse_tensor.convert %0 : tensor<8x8xf32> to tensor<8x8xf32, #CSR>
|
|
%2 = call @sparse_scale(%1)
|
|
: (tensor<8x8xf32, #CSR>) -> tensor<8x8xf32, #CSR>
|
|
|
|
// Print the resulting compacted values for verification.
|
|
//
|
|
// CHECK: ( 2, 2, 2, 4, 6, 8, 2, 10, 2, 2, 12, 2, 14, 2, 2, 16 )
|
|
//
|
|
%m = sparse_tensor.values %2 : tensor<8x8xf32, #CSR> to memref<?xf32>
|
|
%v = vector.transfer_read %m[%c0], %f0: memref<?xf32>, vector<16xf32>
|
|
vector.print %v : vector<16xf32>
|
|
|
|
// Release the resources.
|
|
sparse_tensor.release %1 : tensor<8x8xf32, #CSR>
|
|
|
|
return
|
|
}
|
|
}
|