Files
clang-p2996/lldb/tools/debugserver/source/MacOSX/MachThread.cpp
Jason Molenda 1c73911d42 Change debugserver from using the mach port number (in debugserver's
own port namepsace) as the thread identifier to using the system-wide
globally unique thread id as the thread identifier number.

MachThread.cpp keeps both the unique id and the mach port number
for each thread.  All layers outside MachThread class use the unique
id with three exceptions: (1) Mach exceptions come in with the port
number (thread_port) which needs to be translated, (2) any calls to
low-level thread_get_state/thread_set_state/thread_suspend etc need
to use the mach port number, (3) MachThreadList::UpdateThreadList 
which creates the MachThread objects gets the unique id and passes
it to the MachThread ctor as an argument.

In general, any time nub_thread_t is used, it is now referring to a
unique thread id.  Any time a thread_t is used, it is now referring
to a mach port number.  There was some interchangability of these 
types previously.  nub_thread_t has also been changed to a 64-bit
type which necessitated some printf specification string changes.

I haven't been able to test these changes extensively yet but want
to checkpoint the work.  The scenarios I've been testing are all
working correctly so while there may be some corner cases I haven't
hit yet, I think it is substantially correct.

<rdar://problem/12931414> 

llvm-svn: 175870
2013-02-22 07:27:08 +00:00

784 lines
23 KiB
C++

//===-- MachThread.cpp ------------------------------------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Created by Greg Clayton on 6/19/07.
//
//===----------------------------------------------------------------------===//
#include <inttypes.h>
#include "MachThread.h"
#include "MachProcess.h"
#include "DNBLog.h"
#include "DNB.h"
static uint32_t
GetSequenceID()
{
static uint32_t g_nextID = 0;
return ++g_nextID;
}
MachThread::MachThread (MachProcess *process, uint64_t unique_thread_id, thread_t mach_port_num) :
m_process (process),
m_unique_id (unique_thread_id),
m_mach_port_number (mach_port_num),
m_seq_id (GetSequenceID()),
m_state (eStateUnloaded),
m_state_mutex (PTHREAD_MUTEX_RECURSIVE),
m_break_id (INVALID_NUB_BREAK_ID),
m_suspend_count (0),
m_stop_exception (),
m_arch_ap (DNBArchProtocol::Create (this)),
m_reg_sets (NULL),
m_num_reg_sets (0),
m_ident_info(),
m_proc_threadinfo(),
m_dispatch_queue_name()
{
nub_size_t num_reg_sets = 0;
m_reg_sets = m_arch_ap->GetRegisterSetInfo (&num_reg_sets);
m_num_reg_sets = num_reg_sets;
// Get the thread state so we know if a thread is in a state where we can't
// muck with it and also so we get the suspend count correct in case it was
// already suspended
GetBasicInfo();
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::MachThread ( process = %p, tid = 0x%8.8" PRIx64 ", seq_id = %u )", &m_process, m_unique_id, m_seq_id);
}
MachThread::~MachThread()
{
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::~MachThread() for tid = 0x%8.8" PRIx64 " (%u)", m_unique_id, m_seq_id);
}
void
MachThread::Suspend()
{
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__);
if (MachPortNumberIsValid(m_mach_port_number))
{
DNBError err(::thread_suspend (m_mach_port_number), DNBError::MachKernel);
if (err.Success())
m_suspend_count++;
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::thread_suspend (%4.4" PRIx32 ")", m_mach_port_number);
}
}
void
MachThread::Resume(bool others_stopped)
{
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__);
if (MachPortNumberIsValid(m_mach_port_number))
{
SetSuspendCountBeforeResume(others_stopped);
}
}
bool
MachThread::SetSuspendCountBeforeResume(bool others_stopped)
{
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__);
DNBError err;
if (MachPortNumberIsValid(m_mach_port_number) == false)
return false;
size_t times_to_resume;
if (others_stopped)
{
if (GetBasicInfo())
{
times_to_resume = m_basic_info.suspend_count;
m_suspend_count = - (times_to_resume - m_suspend_count);
}
else
times_to_resume = 0;
}
else
{
times_to_resume = m_suspend_count;
m_suspend_count = 0;
}
if (times_to_resume > 0)
{
while (times_to_resume > 0)
{
err = ::thread_resume (m_mach_port_number);
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::thread_resume (%4.4" PRIx32 ")", m_mach_port_number);
if (err.Success())
--times_to_resume;
else
{
if (GetBasicInfo())
times_to_resume = m_basic_info.suspend_count;
else
times_to_resume = 0;
}
}
}
return true;
}
bool
MachThread::RestoreSuspendCountAfterStop ()
{
DNBLogThreadedIf(LOG_THREAD | LOG_VERBOSE, "MachThread::%s ( )", __FUNCTION__);
DNBError err;
if (MachPortNumberIsValid(m_mach_port_number) == false)
return false;
if (m_suspend_count > 0)
{
while (m_suspend_count > 0)
{
err = ::thread_resume (m_mach_port_number);
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
err.LogThreaded("::thread_resume (%4.4" PRIx32 ")", m_mach_port_number);
if (err.Success())
--m_suspend_count;
else
{
if (GetBasicInfo())
m_suspend_count = m_basic_info.suspend_count;
else
m_suspend_count = 0;
return false; // ???
}
}
}
else if (m_suspend_count < 0)
{
while (m_suspend_count < 0)
{
err = ::thread_suspend (m_mach_port_number);
if (err.Success())
++m_suspend_count;
if (DNBLogCheckLogBit(LOG_THREAD) || err.Fail())
{
err.LogThreaded("::thread_suspend (%4.4" PRIx32 ")", m_mach_port_number);
return false;
}
}
}
return true;
}
const char *
MachThread::GetBasicInfoAsString () const
{
static char g_basic_info_string[1024];
struct thread_basic_info basicInfo;
if (GetBasicInfo(m_mach_port_number, &basicInfo))
{
// char run_state_str[32];
// size_t run_state_str_size = sizeof(run_state_str);
// switch (basicInfo.run_state)
// {
// case TH_STATE_RUNNING: strncpy(run_state_str, "running", run_state_str_size); break;
// case TH_STATE_STOPPED: strncpy(run_state_str, "stopped", run_state_str_size); break;
// case TH_STATE_WAITING: strncpy(run_state_str, "waiting", run_state_str_size); break;
// case TH_STATE_UNINTERRUPTIBLE: strncpy(run_state_str, "uninterruptible", run_state_str_size); break;
// case TH_STATE_HALTED: strncpy(run_state_str, "halted", run_state_str_size); break;
// default: snprintf(run_state_str, run_state_str_size, "%d", basicInfo.run_state); break; // ???
// }
float user = (float)basicInfo.user_time.seconds + (float)basicInfo.user_time.microseconds / 1000000.0f;
float system = (float)basicInfo.user_time.seconds + (float)basicInfo.user_time.microseconds / 1000000.0f;
snprintf(g_basic_info_string, sizeof(g_basic_info_string), "Thread 0x%8.8" PRIx64 ": user=%f system=%f cpu=%d sleep_time=%d",
m_unique_id,
user,
system,
basicInfo.cpu_usage,
basicInfo.sleep_time);
return g_basic_info_string;
}
return NULL;
}
// Finds the Mach port number for a given thread in the inferior process' port namespace.
thread_t
MachThread::InferiorThreadID() const
{
mach_msg_type_number_t i;
mach_port_name_array_t names;
mach_port_type_array_t types;
mach_msg_type_number_t ncount, tcount;
thread_t inferior_tid = INVALID_NUB_THREAD;
task_t my_task = ::mach_task_self();
task_t task = m_process->Task().TaskPort();
kern_return_t kret = ::mach_port_names (task, &names, &ncount, &types, &tcount);
if (kret == KERN_SUCCESS)
{
for (i = 0; i < ncount; i++)
{
mach_port_t my_name;
mach_msg_type_name_t my_type;
kret = ::mach_port_extract_right (task, names[i], MACH_MSG_TYPE_COPY_SEND, &my_name, &my_type);
if (kret == KERN_SUCCESS)
{
::mach_port_deallocate (my_task, my_name);
if (my_name == m_mach_port_number)
{
inferior_tid = names[i];
break;
}
}
}
// Free up the names and types
::vm_deallocate (my_task, (vm_address_t) names, ncount * sizeof (mach_port_name_t));
::vm_deallocate (my_task, (vm_address_t) types, tcount * sizeof (mach_port_type_t));
}
return inferior_tid;
}
bool
MachThread::IsUserReady()
{
if (m_basic_info.run_state == 0)
GetBasicInfo ();
switch (m_basic_info.run_state)
{
default:
case TH_STATE_UNINTERRUPTIBLE:
break;
case TH_STATE_RUNNING:
case TH_STATE_STOPPED:
case TH_STATE_WAITING:
case TH_STATE_HALTED:
return true;
}
return false;
}
struct thread_basic_info *
MachThread::GetBasicInfo ()
{
if (MachThread::GetBasicInfo(m_mach_port_number, &m_basic_info))
return &m_basic_info;
return NULL;
}
bool
MachThread::GetBasicInfo(thread_t thread, struct thread_basic_info *basicInfoPtr)
{
if (MachPortNumberIsValid(thread))
{
unsigned int info_count = THREAD_BASIC_INFO_COUNT;
kern_return_t err = ::thread_info (thread, THREAD_BASIC_INFO, (thread_info_t) basicInfoPtr, &info_count);
if (err == KERN_SUCCESS)
return true;
}
::memset (basicInfoPtr, 0, sizeof (struct thread_basic_info));
return false;
}
bool
MachThread::ThreadIDIsValid(uint64_t thread)
{
return thread != 0;
}
bool
MachThread::MachPortNumberIsValid(thread_t thread)
{
return thread != THREAD_NULL;
}
bool
MachThread::GetRegisterState(int flavor, bool force)
{
return m_arch_ap->GetRegisterState(flavor, force) == KERN_SUCCESS;
}
bool
MachThread::SetRegisterState(int flavor)
{
return m_arch_ap->SetRegisterState(flavor) == KERN_SUCCESS;
}
uint64_t
MachThread::GetPC(uint64_t failValue)
{
// Get program counter
return m_arch_ap->GetPC(failValue);
}
bool
MachThread::SetPC(uint64_t value)
{
// Set program counter
return m_arch_ap->SetPC(value);
}
uint64_t
MachThread::GetSP(uint64_t failValue)
{
// Get stack pointer
return m_arch_ap->GetSP(failValue);
}
nub_process_t
MachThread::ProcessID() const
{
if (m_process)
return m_process->ProcessID();
return INVALID_NUB_PROCESS;
}
void
MachThread::Dump(uint32_t index)
{
const char * thread_run_state = NULL;
switch (m_basic_info.run_state)
{
case TH_STATE_RUNNING: thread_run_state = "running"; break; // 1 thread is running normally
case TH_STATE_STOPPED: thread_run_state = "stopped"; break; // 2 thread is stopped
case TH_STATE_WAITING: thread_run_state = "waiting"; break; // 3 thread is waiting normally
case TH_STATE_UNINTERRUPTIBLE: thread_run_state = "uninter"; break; // 4 thread is in an uninterruptible wait
case TH_STATE_HALTED: thread_run_state = "halted "; break; // 5 thread is halted at a
default: thread_run_state = "???"; break;
}
DNBLogThreaded("[%3u] #%3u tid: 0x%8.8" PRIx64 ", pc: 0x%16.16" PRIx64 ", sp: 0x%16.16" PRIx64 ", breakID: %3d, user: %d.%6.6d, system: %d.%6.6d, cpu: %2d, policy: %2d, run_state: %2d (%s), flags: %2d, suspend_count: %2d (current %2d), sleep_time: %d",
index,
m_seq_id,
m_unique_id,
GetPC(INVALID_NUB_ADDRESS),
GetSP(INVALID_NUB_ADDRESS),
m_break_id,
m_basic_info.user_time.seconds, m_basic_info.user_time.microseconds,
m_basic_info.system_time.seconds, m_basic_info.system_time.microseconds,
m_basic_info.cpu_usage,
m_basic_info.policy,
m_basic_info.run_state,
thread_run_state,
m_basic_info.flags,
m_basic_info.suspend_count, m_suspend_count,
m_basic_info.sleep_time);
//DumpRegisterState(0);
}
void
MachThread::ThreadWillResume(const DNBThreadResumeAction *thread_action, bool others_stopped)
{
if (thread_action->addr != INVALID_NUB_ADDRESS)
SetPC (thread_action->addr);
SetState (thread_action->state);
switch (thread_action->state)
{
case eStateStopped:
case eStateSuspended:
assert (others_stopped == false);
Suspend();
break;
case eStateRunning:
case eStateStepping:
Resume(others_stopped);
break;
default:
break;
}
m_arch_ap->ThreadWillResume();
m_stop_exception.Clear();
}
nub_break_t
MachThread::CurrentBreakpoint()
{
return m_process->Breakpoints().FindIDByAddress(GetPC());
}
bool
MachThread::ShouldStop(bool &step_more)
{
// See if this thread is at a breakpoint?
nub_break_t breakID = CurrentBreakpoint();
if (NUB_BREAK_ID_IS_VALID(breakID))
{
// This thread is sitting at a breakpoint, ask the breakpoint
// if we should be stopping here.
if (Process()->Breakpoints().ShouldStop(ProcessID(), ThreadID(), breakID))
return true;
else
{
// The breakpoint said we shouldn't stop, but we may have gotten
// a signal or the user may have requested to stop in some other
// way. Stop if we have a valid exception (this thread won't if
// another thread was the reason this process stopped) and that
// exception, is NOT a breakpoint exception (a common case would
// be a SIGINT signal).
if (GetStopException().IsValid() && !GetStopException().IsBreakpoint())
return true;
}
}
else
{
if (m_arch_ap->StepNotComplete())
{
step_more = true;
return false;
}
// The thread state is used to let us know what the thread was
// trying to do. MachThread::ThreadWillResume() will set the
// thread state to various values depending if the thread was
// the current thread and if it was to be single stepped, or
// resumed.
if (GetState() == eStateRunning)
{
// If our state is running, then we should continue as we are in
// the process of stepping over a breakpoint.
return false;
}
else
{
// Stop if we have any kind of valid exception for this
// thread.
if (GetStopException().IsValid())
return true;
}
}
return false;
}
bool
MachThread::IsStepping()
{
#if ENABLE_AUTO_STEPPING_OVER_BP
// Return true if this thread is currently being stepped.
// MachThread::ThreadWillResume currently determines this by looking if we
// have been asked to single step, or if we are at a breakpoint instruction
// and have been asked to resume. In the latter case we need to disable the
// breakpoint we are at, single step, re-enable and continue.
nub_state_t state = GetState();
return ((state == eStateStepping) ||
(state == eStateRunning && NUB_BREAK_ID_IS_VALID(CurrentBreakpoint())));
#else
return GetState() == eStateStepping;
#endif
}
bool
MachThread::ThreadDidStop()
{
// This thread has existed prior to resuming under debug nub control,
// and has just been stopped. Do any cleanup that needs to be done
// after running.
// The thread state and breakpoint will still have the same values
// as they had prior to resuming the thread, so it makes it easy to check
// if we were trying to step a thread, or we tried to resume while being
// at a breakpoint.
// When this method gets called, the process state is still in the
// state it was in while running so we can act accordingly.
m_arch_ap->ThreadDidStop();
// We may have suspended this thread so the primary thread could step
// without worrying about race conditions, so lets restore our suspend
// count.
RestoreSuspendCountAfterStop();
// Update the basic information for a thread
MachThread::GetBasicInfo(m_mach_port_number, &m_basic_info);
#if ENABLE_AUTO_STEPPING_OVER_BP
// See if we were at a breakpoint when we last resumed that we disabled,
// re-enable it.
nub_break_t breakID = CurrentBreakpoint();
if (NUB_BREAK_ID_IS_VALID(breakID))
{
m_process->EnableBreakpoint(breakID);
if (m_basic_info.suspend_count > 0)
{
SetState(eStateSuspended);
}
else
{
// If we last were at a breakpoint and we single stepped, our state
// will be "running" to indicate we need to continue after stepping
// over the breakpoint instruction. If we step over a breakpoint
// instruction, we need to stop.
if (GetState() == eStateRunning)
{
// Leave state set to running so we will continue automatically
// from this breakpoint
}
else
{
SetState(eStateStopped);
}
}
}
else
{
if (m_basic_info.suspend_count > 0)
{
SetState(eStateSuspended);
}
else
{
SetState(eStateStopped);
}
}
#else
if (m_basic_info.suspend_count > 0)
SetState(eStateSuspended);
else
SetState(eStateStopped);
#endif
return true;
}
bool
MachThread::NotifyException(MachException::Data& exc)
{
// Allow the arch specific protocol to process (MachException::Data &)exc
// first before possible reassignment of m_stop_exception with exc.
// See also MachThread::GetStopException().
bool handled = m_arch_ap->NotifyException(exc);
if (m_stop_exception.IsValid())
{
// We may have more than one exception for a thread, but we need to
// only remember the one that we will say is the reason we stopped.
// We may have been single stepping and also gotten a signal exception,
// so just remember the most pertinent one.
if (m_stop_exception.IsBreakpoint())
m_stop_exception = exc;
}
else
{
m_stop_exception = exc;
}
return handled;
}
nub_state_t
MachThread::GetState()
{
// If any other threads access this we will need a mutex for it
PTHREAD_MUTEX_LOCKER (locker, m_state_mutex);
return m_state;
}
void
MachThread::SetState(nub_state_t state)
{
PTHREAD_MUTEX_LOCKER (locker, m_state_mutex);
m_state = state;
DNBLogThreadedIf(LOG_THREAD, "MachThread::SetState ( %s ) for tid = 0x%8.8" PRIx64 "", DNBStateAsString(state), m_unique_id);
}
uint32_t
MachThread::GetNumRegistersInSet(int regSet) const
{
if (regSet < m_num_reg_sets)
return m_reg_sets[regSet].num_registers;
return 0;
}
const char *
MachThread::GetRegisterSetName(int regSet) const
{
if (regSet < m_num_reg_sets)
return m_reg_sets[regSet].name;
return NULL;
}
const DNBRegisterInfo *
MachThread::GetRegisterInfo(int regSet, int regIndex) const
{
if (regSet < m_num_reg_sets)
if (regIndex < m_reg_sets[regSet].num_registers)
return &m_reg_sets[regSet].registers[regIndex];
return NULL;
}
void
MachThread::DumpRegisterState(int regSet)
{
if (regSet == REGISTER_SET_ALL)
{
for (regSet = 1; regSet < m_num_reg_sets; regSet++)
DumpRegisterState(regSet);
}
else
{
if (m_arch_ap->RegisterSetStateIsValid(regSet))
{
const size_t numRegisters = GetNumRegistersInSet(regSet);
size_t regIndex = 0;
DNBRegisterValueClass reg;
for (regIndex = 0; regIndex < numRegisters; ++regIndex)
{
if (m_arch_ap->GetRegisterValue(regSet, regIndex, &reg))
{
reg.Dump(NULL, NULL);
}
}
}
else
{
DNBLog("%s: registers are not currently valid.", GetRegisterSetName(regSet));
}
}
}
const DNBRegisterSetInfo *
MachThread::GetRegisterSetInfo(nub_size_t *num_reg_sets ) const
{
*num_reg_sets = m_num_reg_sets;
return &m_reg_sets[0];
}
bool
MachThread::GetRegisterValue ( uint32_t set, uint32_t reg, DNBRegisterValue *value )
{
return m_arch_ap->GetRegisterValue(set, reg, value);
}
bool
MachThread::SetRegisterValue ( uint32_t set, uint32_t reg, const DNBRegisterValue *value )
{
return m_arch_ap->SetRegisterValue(set, reg, value);
}
nub_size_t
MachThread::GetRegisterContext (void *buf, nub_size_t buf_len)
{
return m_arch_ap->GetRegisterContext(buf, buf_len);
}
nub_size_t
MachThread::SetRegisterContext (const void *buf, nub_size_t buf_len)
{
return m_arch_ap->SetRegisterContext(buf, buf_len);
}
uint32_t
MachThread::EnableHardwareBreakpoint (const DNBBreakpoint *bp)
{
if (bp != NULL && bp->IsBreakpoint())
return m_arch_ap->EnableHardwareBreakpoint(bp->Address(), bp->ByteSize());
return INVALID_NUB_HW_INDEX;
}
uint32_t
MachThread::EnableHardwareWatchpoint (const DNBBreakpoint *wp)
{
if (wp != NULL && wp->IsWatchpoint())
return m_arch_ap->EnableHardwareWatchpoint(wp->Address(), wp->ByteSize(), wp->WatchpointRead(), wp->WatchpointWrite());
return INVALID_NUB_HW_INDEX;
}
// Provide a chance to update the global view of the hardware watchpoint state.
void
MachThread::HardwareWatchpointStateChanged ()
{
m_arch_ap->HardwareWatchpointStateChanged();
}
bool
MachThread::RollbackTransForHWP()
{
return m_arch_ap->RollbackTransForHWP();
}
bool
MachThread::FinishTransForHWP()
{
return m_arch_ap->FinishTransForHWP();
}
bool
MachThread::DisableHardwareBreakpoint (const DNBBreakpoint *bp)
{
if (bp != NULL && bp->IsHardware())
return m_arch_ap->DisableHardwareBreakpoint(bp->GetHardwareIndex());
return false;
}
bool
MachThread::DisableHardwareWatchpoint (const DNBBreakpoint *wp)
{
if (wp != NULL && wp->IsHardware())
return m_arch_ap->DisableHardwareWatchpoint(wp->GetHardwareIndex());
return false;
}
uint32_t
MachThread::NumSupportedHardwareWatchpoints () const
{
return m_arch_ap->NumSupportedHardwareWatchpoints();
}
bool
MachThread::GetIdentifierInfo ()
{
// Don't try to get the thread info once and cache it for the life of the thread. It changes over time, for instance
// if the thread name changes, then the thread_handle also changes... So you have to refetch it every time.
mach_msg_type_number_t count = THREAD_IDENTIFIER_INFO_COUNT;
kern_return_t kret = ::thread_info (m_mach_port_number, THREAD_IDENTIFIER_INFO, (thread_info_t) &m_ident_info, &count);
return kret == KERN_SUCCESS;
return false;
}
const char *
MachThread::GetName ()
{
if (GetIdentifierInfo ())
{
int len = ::proc_pidinfo (m_process->ProcessID(), PROC_PIDTHREADINFO, m_ident_info.thread_handle, &m_proc_threadinfo, sizeof (m_proc_threadinfo));
if (len && m_proc_threadinfo.pth_name[0])
return m_proc_threadinfo.pth_name;
}
return NULL;
}
uint64_t
MachThread::GetGloballyUniqueThreadIDForMachPortID (thread_t mach_port_id)
{
kern_return_t kr;
thread_identifier_info_data_t tident;
mach_msg_type_number_t tident_count = THREAD_IDENTIFIER_INFO_COUNT;
kr = thread_info (mach_port_id, THREAD_IDENTIFIER_INFO,
(thread_info_t) &tident, &tident_count);
if (kr != KERN_SUCCESS)
{
return mach_port_id;
}
return tident.thread_id;
}