C++20 comes with std::erase to erase a value from std::vector. This patch renames llvm::erase_value to llvm::erase for consistency with C++20. We could make llvm::erase more similar to std::erase by having it return the number of elements removed, but I'm not doing that for now because nobody seems to care about that in our code base. Since there are only 50 occurrences of erase_value in our code base, this patch replaces all of them with llvm::erase and deprecates llvm::erase_value.
613 lines
20 KiB
C++
613 lines
20 KiB
C++
//===- bolt/Passes/HFSortPlus.cpp - Order functions by hotness ------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// hfsort+ - layout of hot functions with i-TLB cache optimization.
|
|
//
|
|
// Given an ordering of hot functions (and hence, their assignment to the
|
|
// i-TLB pages), we can divide all functions calls Into two categories:
|
|
// - 'short' ones that have a caller-callee distance less than a page;
|
|
// - 'long' ones where the distance exceeds a page.
|
|
// The short calls are likely to result in a i-TLB cache hit. For the long ones,
|
|
// the hit/miss result depends on the 'hotness' of the page (i.e., how often
|
|
// the page is accessed). Assuming that functions are sent to the i-TLB cache
|
|
// in a random order, the probability that a page is present in the cache is
|
|
// proportional to the number of samples corresponding to the functions on the
|
|
// page. The following algorithm detects short and long calls, and optimizes
|
|
// the expected number of cache misses for the long ones.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "bolt/Passes/HFSort.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include <cmath>
|
|
#include <set>
|
|
#include <vector>
|
|
|
|
#define DEBUG_TYPE "hfsort"
|
|
|
|
using namespace llvm;
|
|
using namespace bolt;
|
|
|
|
namespace opts {
|
|
|
|
extern cl::OptionCategory BoltOptCategory;
|
|
|
|
cl::opt<unsigned> ITLBPageSize("itlb-page-size",
|
|
cl::desc("The size of i-tlb cache page"),
|
|
cl::init(4096), cl::ReallyHidden,
|
|
cl::cat(BoltOptCategory));
|
|
|
|
cl::opt<unsigned> ITLBEntries("itlb-entries",
|
|
cl::desc("The number of entries in i-tlb cache"),
|
|
cl::init(16), cl::ReallyHidden,
|
|
cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<unsigned> ITLBDensity("itlb-density",
|
|
cl::desc("The density of i-tlb cache"),
|
|
cl::init(4096), cl::ReallyHidden,
|
|
cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<double> MergeProbability(
|
|
"merge-probability",
|
|
cl::desc("The minimum probability of a call for merging two clusters"),
|
|
cl::init(0.9), cl::ReallyHidden, cl::cat(BoltOptCategory));
|
|
|
|
static cl::opt<double> ArcThreshold(
|
|
"arc-threshold",
|
|
cl::desc("The threshold for ignoring arcs with a small relative weight"),
|
|
cl::init(0.00000001), cl::ReallyHidden, cl::cat(BoltOptCategory));
|
|
|
|
} // namespace opts
|
|
|
|
namespace llvm {
|
|
namespace bolt {
|
|
|
|
using NodeId = CallGraph::NodeId;
|
|
using Arc = CallGraph::Arc;
|
|
|
|
namespace {
|
|
|
|
class Edge;
|
|
using ArcList = std::vector<const Arc *>;
|
|
|
|
// A chain (ordered sequence) of nodes (functions) in the call graph
|
|
class Chain {
|
|
public:
|
|
Chain(const Chain &) = delete;
|
|
Chain(Chain &&) = default;
|
|
Chain &operator=(const Chain &) = delete;
|
|
Chain &operator=(Chain &&) = default;
|
|
|
|
explicit Chain(size_t Id_, NodeId Node, size_t Samples_, size_t Size_)
|
|
: Id(Id_), Samples(Samples_), Size(Size_), Nodes(1, Node) {}
|
|
|
|
double density() const { return static_cast<double>(Samples) / Size; }
|
|
|
|
Edge *getEdge(Chain *Other) const {
|
|
for (std::pair<Chain *, Edge *> It : Edges)
|
|
if (It.first == Other)
|
|
return It.second;
|
|
return nullptr;
|
|
}
|
|
|
|
void removeEdge(Chain *Other) {
|
|
auto It = Edges.begin();
|
|
while (It != Edges.end()) {
|
|
if (It->first == Other) {
|
|
Edges.erase(It);
|
|
return;
|
|
}
|
|
It++;
|
|
}
|
|
}
|
|
|
|
void addEdge(Chain *Other, Edge *Edge) { Edges.emplace_back(Other, Edge); }
|
|
|
|
void merge(Chain *Other) {
|
|
Nodes.insert(Nodes.end(), Other->Nodes.begin(), Other->Nodes.end());
|
|
Samples += Other->Samples;
|
|
Size += Other->Size;
|
|
}
|
|
|
|
void mergeEdges(Chain *Other);
|
|
|
|
void clear() {
|
|
Nodes.clear();
|
|
Edges.clear();
|
|
}
|
|
|
|
public:
|
|
size_t Id;
|
|
uint64_t Samples;
|
|
uint64_t Size;
|
|
// Cached score for the chain
|
|
double Score{0};
|
|
// Cached short-calls for the chain
|
|
double ShortCalls{0};
|
|
// Nodes in the chain
|
|
std::vector<NodeId> Nodes;
|
|
// Adjacent chains and corresponding edges (lists of arcs)
|
|
std::vector<std::pair<Chain *, Edge *>> Edges;
|
|
};
|
|
|
|
// An edge in the call graph representing Arcs between two Chains.
|
|
// When functions are merged Into chains, the edges are combined too so that
|
|
// there is always at most one edge between a pair of chains
|
|
class Edge {
|
|
public:
|
|
Edge(const Edge &) = delete;
|
|
Edge(Edge &&) = default;
|
|
Edge &operator=(const Edge &) = delete;
|
|
Edge &operator=(Edge &&) = default;
|
|
|
|
explicit Edge(Chain *SrcChain_, Chain *DstChain_, const Arc *A)
|
|
: SrcChain(SrcChain_), DstChain(DstChain_), Arcs(1, A) {}
|
|
|
|
void changeEndpoint(Chain *From, Chain *To) {
|
|
if (From == SrcChain)
|
|
SrcChain = To;
|
|
if (From == DstChain)
|
|
DstChain = To;
|
|
}
|
|
|
|
void moveArcs(Edge *Other) {
|
|
Arcs.insert(Arcs.end(), Other->Arcs.begin(), Other->Arcs.end());
|
|
Other->Arcs.clear();
|
|
}
|
|
|
|
void setMergeGain(Chain *PredChain, double ForwardGain, double BackwardGain) {
|
|
// When forward and backward gains are the same, prioritize merging that
|
|
// preserves the original order of the functions in the binary
|
|
if (std::abs(ForwardGain - BackwardGain) < 1e-8) {
|
|
if (SrcChain->Id < DstChain->Id) {
|
|
IsGainForward = true;
|
|
CachedGain = PredChain == SrcChain ? ForwardGain : BackwardGain;
|
|
} else {
|
|
IsGainForward = false;
|
|
CachedGain = PredChain == SrcChain ? BackwardGain : ForwardGain;
|
|
}
|
|
} else if (ForwardGain > BackwardGain) {
|
|
IsGainForward = PredChain == SrcChain;
|
|
CachedGain = ForwardGain;
|
|
} else {
|
|
IsGainForward = PredChain != SrcChain;
|
|
CachedGain = BackwardGain;
|
|
}
|
|
}
|
|
|
|
double gain() const { return CachedGain; }
|
|
|
|
Chain *predChain() const { return IsGainForward ? SrcChain : DstChain; }
|
|
|
|
Chain *succChain() const { return IsGainForward ? DstChain : SrcChain; }
|
|
|
|
private:
|
|
Chain *SrcChain{nullptr};
|
|
Chain *DstChain{nullptr};
|
|
|
|
public:
|
|
// Original arcs in the binary with corresponding execution counts
|
|
ArcList Arcs;
|
|
// Cached gain of merging the pair of chains
|
|
double CachedGain{-1.0};
|
|
// Since the gain of merging (Src, Dst) and (Dst, Src) might be different,
|
|
// we store a flag indicating which of the options results in a higher gain
|
|
bool IsGainForward;
|
|
};
|
|
|
|
void Chain::mergeEdges(Chain *Other) {
|
|
// Update edges adjacent to chain other
|
|
for (auto EdgeIt : Other->Edges) {
|
|
Chain *const DstChain = EdgeIt.first;
|
|
Edge *const DstEdge = EdgeIt.second;
|
|
Chain *const TargetChain = DstChain == Other ? this : DstChain;
|
|
|
|
// Find the corresponding edge in the current chain
|
|
Edge *CurEdge = getEdge(TargetChain);
|
|
if (CurEdge == nullptr) {
|
|
DstEdge->changeEndpoint(Other, this);
|
|
this->addEdge(TargetChain, DstEdge);
|
|
if (DstChain != this && DstChain != Other)
|
|
DstChain->addEdge(this, DstEdge);
|
|
} else {
|
|
CurEdge->moveArcs(DstEdge);
|
|
}
|
|
// Cleanup leftover edge
|
|
if (DstChain != Other)
|
|
DstChain->removeEdge(Other);
|
|
}
|
|
}
|
|
|
|
class HFSortPlus {
|
|
public:
|
|
explicit HFSortPlus(const CallGraph &Cg) : Cg(Cg) { initialize(); }
|
|
|
|
/// Run the algorithm and return ordered set of function clusters.
|
|
std::vector<Cluster> run() {
|
|
// Pass 1
|
|
runPassOne();
|
|
|
|
// Pass 2
|
|
runPassTwo();
|
|
|
|
outs() << "BOLT-INFO: hfsort+ reduced the number of chains from "
|
|
<< Cg.numNodes() << " to " << HotChains.size() << "\n";
|
|
|
|
// Sorting chains by density in decreasing order
|
|
auto DensityComparator = [](const Chain *L, const Chain *R) {
|
|
if (L->density() != R->density())
|
|
return L->density() > R->density();
|
|
// Making sure the comparison is deterministic
|
|
return L->Id < R->Id;
|
|
};
|
|
llvm::stable_sort(HotChains, DensityComparator);
|
|
|
|
// Return the set of clusters that are left, which are the ones that
|
|
// didn't get merged (so their first func is its original func)
|
|
std::vector<Cluster> Clusters;
|
|
Clusters.reserve(HotChains.size());
|
|
for (Chain *Chain : HotChains)
|
|
Clusters.emplace_back(Cluster(Chain->Nodes, Cg));
|
|
return Clusters;
|
|
}
|
|
|
|
private:
|
|
/// Initialize the set of active chains, function id to chain mapping,
|
|
/// total number of samples and function addresses.
|
|
void initialize() {
|
|
OutWeight.resize(Cg.numNodes(), 0);
|
|
InWeight.resize(Cg.numNodes(), 0);
|
|
AllChains.reserve(Cg.numNodes());
|
|
HotChains.reserve(Cg.numNodes());
|
|
NodeChain.resize(Cg.numNodes(), nullptr);
|
|
Addr.resize(Cg.numNodes(), 0);
|
|
|
|
// Initialize chains
|
|
for (NodeId F = 0; F < Cg.numNodes(); ++F) {
|
|
AllChains.emplace_back(F, F, Cg.samples(F), Cg.size(F));
|
|
HotChains.push_back(&AllChains.back());
|
|
NodeChain[F] = &AllChains.back();
|
|
TotalSamples += Cg.samples(F);
|
|
for (NodeId Succ : Cg.successors(F)) {
|
|
if (F == Succ)
|
|
continue;
|
|
const Arc &Arc = *Cg.findArc(F, Succ);
|
|
OutWeight[F] += Arc.weight();
|
|
InWeight[Succ] += Arc.weight();
|
|
}
|
|
}
|
|
|
|
AllEdges.reserve(Cg.numArcs());
|
|
for (NodeId F = 0; F < Cg.numNodes(); ++F) {
|
|
for (NodeId Succ : Cg.successors(F)) {
|
|
if (F == Succ)
|
|
continue;
|
|
const Arc &Arc = *Cg.findArc(F, Succ);
|
|
if (Arc.weight() == 0.0 ||
|
|
Arc.weight() / TotalSamples < opts::ArcThreshold) {
|
|
continue;
|
|
}
|
|
|
|
Edge *CurEdge = NodeChain[F]->getEdge(NodeChain[Succ]);
|
|
if (CurEdge != nullptr) {
|
|
// This edge is already present in the graph
|
|
assert(NodeChain[Succ]->getEdge(NodeChain[F]) != nullptr);
|
|
CurEdge->Arcs.push_back(&Arc);
|
|
} else {
|
|
// This is a new edge
|
|
AllEdges.emplace_back(NodeChain[F], NodeChain[Succ], &Arc);
|
|
NodeChain[F]->addEdge(NodeChain[Succ], &AllEdges.back());
|
|
NodeChain[Succ]->addEdge(NodeChain[F], &AllEdges.back());
|
|
}
|
|
}
|
|
}
|
|
|
|
for (Chain *&Chain : HotChains) {
|
|
Chain->ShortCalls = shortCalls(Chain);
|
|
Chain->Score = score(Chain);
|
|
}
|
|
}
|
|
|
|
/// The probability that a page with a given density is not in the cache.
|
|
///
|
|
/// Assume that the hot functions are called in a random order; then the
|
|
/// probability of an i-TLB page being accessed after a function call is
|
|
/// p = pageSamples / TotalSamples. The probability that the page is not
|
|
/// accessed is (1 - p), and the probability that it is not in the cache
|
|
/// (i.e. not accessed during the last kCacheEntries function calls)
|
|
/// is (1 - p)^kCacheEntries
|
|
double missProbability(double ChainDensity) const {
|
|
double PageSamples = ChainDensity * opts::ITLBDensity;
|
|
|
|
if (PageSamples >= TotalSamples)
|
|
return 0;
|
|
|
|
double P = PageSamples / TotalSamples;
|
|
return pow(1.0 - P, double(opts::ITLBEntries));
|
|
}
|
|
|
|
/// The expected number of calls on different i-TLB pages for an arc of the
|
|
/// call graph with a specified weight
|
|
double expectedCalls(uint64_t SrcAddr, uint64_t DstAddr,
|
|
double Weight) const {
|
|
uint64_t Dist = SrcAddr >= DstAddr ? SrcAddr - DstAddr : DstAddr - SrcAddr;
|
|
if (Dist >= opts::ITLBPageSize)
|
|
return 0;
|
|
|
|
double D = double(Dist) / double(opts::ITLBPageSize);
|
|
// Increasing the importance of shorter calls
|
|
return (1.0 - D * D) * Weight;
|
|
}
|
|
|
|
/// The expected number of calls within a given chain with both endpoints on
|
|
/// the same cache page
|
|
double shortCalls(Chain *Chain) const {
|
|
Edge *Edge = Chain->getEdge(Chain);
|
|
if (Edge == nullptr)
|
|
return 0;
|
|
|
|
double Calls = 0;
|
|
for (const Arc *Arc : Edge->Arcs) {
|
|
uint64_t SrcAddr = Addr[Arc->src()] + uint64_t(Arc->avgCallOffset());
|
|
uint64_t DstAddr = Addr[Arc->dst()];
|
|
Calls += expectedCalls(SrcAddr, DstAddr, Arc->weight());
|
|
}
|
|
return Calls;
|
|
}
|
|
|
|
/// The number of calls between the two chains with both endpoints on
|
|
/// the same i-TLB page, assuming that a given pair of chains gets merged
|
|
double shortCalls(Chain *ChainPred, Chain *ChainSucc, Edge *Edge) const {
|
|
double Calls = 0;
|
|
for (const Arc *Arc : Edge->Arcs) {
|
|
Chain *SrcChain = NodeChain[Arc->src()];
|
|
uint64_t SrcAddr;
|
|
uint64_t DstAddr;
|
|
if (SrcChain == ChainPred) {
|
|
SrcAddr = Addr[Arc->src()] + uint64_t(Arc->avgCallOffset());
|
|
DstAddr = Addr[Arc->dst()] + ChainPred->Size;
|
|
} else {
|
|
SrcAddr =
|
|
Addr[Arc->src()] + uint64_t(Arc->avgCallOffset()) + ChainPred->Size;
|
|
DstAddr = Addr[Arc->dst()];
|
|
}
|
|
Calls += expectedCalls(SrcAddr, DstAddr, Arc->weight());
|
|
}
|
|
|
|
Calls += ChainPred->ShortCalls;
|
|
Calls += ChainSucc->ShortCalls;
|
|
|
|
return Calls;
|
|
}
|
|
|
|
double score(Chain *Chain) const {
|
|
double LongCalls = Chain->Samples - Chain->ShortCalls;
|
|
return LongCalls * missProbability(Chain->density());
|
|
}
|
|
|
|
/// The gain of merging two chains.
|
|
///
|
|
/// We assume that the final chains are sorted by their density, and hence
|
|
/// every chain is likely to be adjacent with chains of the same density.
|
|
/// Thus, the 'hotness' of every chain can be estimated by density*pageSize,
|
|
/// which is used to compute the probability of cache misses for long calls
|
|
/// of a given chain.
|
|
/// The result is also scaled by the size of the resulting chain in order to
|
|
/// increase the chance of merging short chains, which is helpful for
|
|
/// the i-cache performance.
|
|
double mergeGain(Chain *ChainPred, Chain *ChainSucc, Edge *Edge) const {
|
|
// Cache misses on the chains before merging
|
|
double CurScore = ChainPred->Score + ChainSucc->Score;
|
|
|
|
// Cache misses on the merged chain
|
|
double LongCalls = ChainPred->Samples + ChainSucc->Samples -
|
|
shortCalls(ChainPred, ChainSucc, Edge);
|
|
const double MergedSamples = ChainPred->Samples + ChainSucc->Samples;
|
|
const double MergedSize = ChainPred->Size + ChainSucc->Size;
|
|
double NewScore = LongCalls * missProbability(MergedSamples / MergedSize);
|
|
|
|
double Gain = CurScore - NewScore;
|
|
// Scale the result to increase the importance of merging short chains
|
|
Gain /= std::min(ChainPred->Size, ChainSucc->Size);
|
|
|
|
return Gain;
|
|
}
|
|
|
|
/// Run the first optimization pass of the algorithm:
|
|
/// Merge chains that call each other with a high probability.
|
|
void runPassOne() {
|
|
// Find candidate pairs of chains for merging
|
|
std::vector<const Arc *> ArcsToMerge;
|
|
for (Chain *ChainPred : HotChains) {
|
|
NodeId F = ChainPred->Nodes.back();
|
|
for (NodeId Succ : Cg.successors(F)) {
|
|
if (F == Succ)
|
|
continue;
|
|
|
|
const Arc &Arc = *Cg.findArc(F, Succ);
|
|
if (Arc.weight() == 0.0 ||
|
|
Arc.weight() / TotalSamples < opts::ArcThreshold)
|
|
continue;
|
|
|
|
const double CallsFromPred = OutWeight[F];
|
|
const double CallsToSucc = InWeight[Succ];
|
|
const double CallsPredSucc = Arc.weight();
|
|
|
|
// Probability that the first chain is calling the second one
|
|
const double ProbOut =
|
|
CallsFromPred > 0 ? CallsPredSucc / CallsFromPred : 0;
|
|
assert(0.0 <= ProbOut && ProbOut <= 1.0 && "incorrect out-probability");
|
|
|
|
// Probability that the second chain is called From the first one
|
|
const double ProbIn = CallsToSucc > 0 ? CallsPredSucc / CallsToSucc : 0;
|
|
assert(0.0 <= ProbIn && ProbIn <= 1.0 && "incorrect in-probability");
|
|
|
|
if (std::min(ProbOut, ProbIn) >= opts::MergeProbability)
|
|
ArcsToMerge.push_back(&Arc);
|
|
}
|
|
}
|
|
|
|
// Sort the pairs by the weight in reverse order
|
|
llvm::sort(ArcsToMerge, [](const Arc *L, const Arc *R) {
|
|
return L->weight() > R->weight();
|
|
});
|
|
|
|
// Merge the pairs of chains
|
|
for (const Arc *Arc : ArcsToMerge) {
|
|
Chain *ChainPred = NodeChain[Arc->src()];
|
|
Chain *ChainSucc = NodeChain[Arc->dst()];
|
|
if (ChainPred == ChainSucc)
|
|
continue;
|
|
if (ChainPred->Nodes.back() == Arc->src() &&
|
|
ChainSucc->Nodes.front() == Arc->dst())
|
|
mergeChains(ChainPred, ChainSucc);
|
|
}
|
|
}
|
|
|
|
/// Run the second optimization pass of the hfsort+ algorithm:
|
|
/// Merge pairs of chains while there is an improvement in the
|
|
/// expected cache miss ratio.
|
|
void runPassTwo() {
|
|
// Creating a priority queue containing all edges ordered by the merge gain
|
|
auto GainComparator = [](Edge *L, Edge *R) {
|
|
if (std::abs(L->gain() - R->gain()) > 1e-8)
|
|
return L->gain() > R->gain();
|
|
|
|
// Making sure the comparison is deterministic
|
|
if (L->predChain()->Id != R->predChain()->Id)
|
|
return L->predChain()->Id < R->predChain()->Id;
|
|
|
|
return L->succChain()->Id < R->succChain()->Id;
|
|
};
|
|
std::set<Edge *, decltype(GainComparator)> Queue(GainComparator);
|
|
|
|
// Inserting the edges Into the queue
|
|
for (Chain *ChainPred : HotChains) {
|
|
for (auto EdgeIt : ChainPred->Edges) {
|
|
Chain *ChainSucc = EdgeIt.first;
|
|
Edge *ChainEdge = EdgeIt.second;
|
|
// Ignore loop edges
|
|
if (ChainPred == ChainSucc)
|
|
continue;
|
|
// Ignore already processed edges
|
|
if (ChainEdge->gain() != -1.0)
|
|
continue;
|
|
|
|
// Compute the gain of merging the two chains
|
|
auto ForwardGain = mergeGain(ChainPred, ChainSucc, ChainEdge);
|
|
auto BackwardGain = mergeGain(ChainSucc, ChainPred, ChainEdge);
|
|
ChainEdge->setMergeGain(ChainPred, ForwardGain, BackwardGain);
|
|
if (ChainEdge->gain() > 0.0)
|
|
Queue.insert(ChainEdge);
|
|
}
|
|
}
|
|
|
|
// Merge the chains while the gain of merging is positive
|
|
while (!Queue.empty()) {
|
|
// Extract the best (top) edge for merging
|
|
Edge *It = *Queue.begin();
|
|
Queue.erase(Queue.begin());
|
|
Edge *BestEdge = It;
|
|
Chain *BestChainPred = BestEdge->predChain();
|
|
Chain *BestChainSucc = BestEdge->succChain();
|
|
if (BestChainPred == BestChainSucc || BestEdge->gain() <= 0.0)
|
|
continue;
|
|
|
|
// Remove outdated edges
|
|
for (std::pair<Chain *, Edge *> EdgeIt : BestChainPred->Edges)
|
|
Queue.erase(EdgeIt.second);
|
|
for (std::pair<Chain *, Edge *> EdgeIt : BestChainSucc->Edges)
|
|
Queue.erase(EdgeIt.second);
|
|
|
|
// Merge the best pair of chains
|
|
mergeChains(BestChainPred, BestChainSucc);
|
|
|
|
// Insert newly created edges Into the queue
|
|
for (auto EdgeIt : BestChainPred->Edges) {
|
|
Chain *ChainSucc = EdgeIt.first;
|
|
Edge *ChainEdge = EdgeIt.second;
|
|
// Ignore loop edges
|
|
if (BestChainPred == ChainSucc)
|
|
continue;
|
|
|
|
// Compute the gain of merging the two chains
|
|
auto ForwardGain = mergeGain(BestChainPred, ChainSucc, ChainEdge);
|
|
auto BackwardGain = mergeGain(ChainSucc, BestChainPred, ChainEdge);
|
|
ChainEdge->setMergeGain(BestChainPred, ForwardGain, BackwardGain);
|
|
if (ChainEdge->gain() > 0.0)
|
|
Queue.insert(ChainEdge);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Merge chain From into chain Into and update the list of active chains.
|
|
void mergeChains(Chain *Into, Chain *From) {
|
|
assert(Into != From && "cannot merge a chain with itself");
|
|
Into->merge(From);
|
|
|
|
// Update the chains and addresses for functions merged from From
|
|
size_t CurAddr = 0;
|
|
for (NodeId F : Into->Nodes) {
|
|
NodeChain[F] = Into;
|
|
Addr[F] = CurAddr;
|
|
CurAddr += Cg.size(F);
|
|
}
|
|
|
|
// Merge edges
|
|
Into->mergeEdges(From);
|
|
From->clear();
|
|
|
|
// Update cached scores for the new chain
|
|
Into->ShortCalls = shortCalls(Into);
|
|
Into->Score = score(Into);
|
|
|
|
// Remove chain From From the list of active chains
|
|
llvm::erase(HotChains, From);
|
|
}
|
|
|
|
private:
|
|
// The call graph
|
|
const CallGraph &Cg;
|
|
|
|
// All chains of functions
|
|
std::vector<Chain> AllChains;
|
|
|
|
// Active chains. The vector gets updated at runtime when chains are merged
|
|
std::vector<Chain *> HotChains;
|
|
|
|
// All edges between chains
|
|
std::vector<Edge> AllEdges;
|
|
|
|
// Node_id => chain
|
|
std::vector<Chain *> NodeChain;
|
|
|
|
// Current address of the function From the beginning of its chain
|
|
std::vector<uint64_t> Addr;
|
|
|
|
// Total weight of outgoing arcs for each function
|
|
std::vector<double> OutWeight;
|
|
|
|
// Total weight of incoming arcs for each function
|
|
std::vector<double> InWeight;
|
|
// The total number of samples in the graph
|
|
double TotalSamples{0};
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
std::vector<Cluster> hfsortPlus(CallGraph &Cg) {
|
|
// It is required that the sum of incoming arc weights is not greater
|
|
// than the number of samples for every function.
|
|
// Ensuring the call graph obeys the property before running the algorithm.
|
|
Cg.adjustArcWeights();
|
|
return HFSortPlus(Cg).run();
|
|
}
|
|
|
|
} // namespace bolt
|
|
} // namespace llvm
|