Files
clang-p2996/clang/lib/CodeGen/TargetInfo.h
Saiyedul Islam f616c3eeb4 [OpenMP][DeviceRTL][AMDGPU] Support code object version 5
Update DeviceRTL and the AMDGPU plugin to support code
object version 5. Default is code object version 4.

CodeGen for __builtin_amdgpu_workgroup_size generates code
for cov4 as well as cov5 if -mcode-object-version=none
is specified. DeviceRTL compilation passes this argument
via Xclang option to generate abi-agnostic code.

Generated code for the above builtin uses a clang
control constant "llvm.amdgcn.abi.version" to branch on
the abi version, which is available during linking of
user's OpenMP code. Load of this constant gets eliminated
during linking.

AMDGPU plugin queries the ELF for code object version
and then prepares various implicitargs accordingly.

Differential Revision: https://reviews.llvm.org/D139730

Reviewed By: jhuber6, yaxunl
2023-08-29 06:35:44 -05:00

560 lines
22 KiB
C++

//===---- TargetInfo.h - Encapsulate target details -------------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// These classes wrap the information about a call or function
// definition used to handle ABI compliancy.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H
#define LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H
#include "CGBuilder.h"
#include "CodeGenModule.h"
#include "CGValue.h"
#include "clang/AST/Type.h"
#include "clang/Basic/LLVM.h"
#include "clang/Basic/SyncScope.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
namespace llvm {
class Constant;
class GlobalValue;
class Type;
class Value;
}
namespace clang {
class Decl;
namespace CodeGen {
class ABIInfo;
class CallArgList;
class CodeGenFunction;
class CGBlockInfo;
class SwiftABIInfo;
/// TargetCodeGenInfo - This class organizes various target-specific
/// codegeneration issues, like target-specific attributes, builtins and so
/// on.
class TargetCodeGenInfo {
std::unique_ptr<ABIInfo> Info;
protected:
// Target hooks supporting Swift calling conventions. The target must
// initialize this field if it claims to support these calling conventions
// by returning true from TargetInfo::checkCallingConvention for them.
std::unique_ptr<SwiftABIInfo> SwiftInfo;
// Returns ABI info helper for the target. This is for use by derived classes.
template <typename T> const T &getABIInfo() const {
return static_cast<const T &>(*Info);
}
public:
TargetCodeGenInfo(std::unique_ptr<ABIInfo> Info);
virtual ~TargetCodeGenInfo();
/// getABIInfo() - Returns ABI info helper for the target.
const ABIInfo &getABIInfo() const { return *Info; }
/// Returns Swift ABI info helper for the target.
const SwiftABIInfo &getSwiftABIInfo() const {
assert(SwiftInfo && "Swift ABI info has not been initialized");
return *SwiftInfo;
}
/// setTargetAttributes - Provides a convenient hook to handle extra
/// target-specific attributes for the given global.
virtual void setTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
CodeGen::CodeGenModule &M) const {}
/// emitTargetMetadata - Provides a convenient hook to handle extra
/// target-specific metadata for the given globals.
virtual void emitTargetMetadata(
CodeGen::CodeGenModule &CGM,
const llvm::MapVector<GlobalDecl, StringRef> &MangledDeclNames) const {}
/// Provides a convenient hook to handle extra target-specific globals.
virtual void emitTargetGlobals(CodeGen::CodeGenModule &CGM) const {}
/// Any further codegen related checks that need to be done on a function call
/// in a target specific manner.
virtual void checkFunctionCallABI(CodeGenModule &CGM, SourceLocation CallLoc,
const FunctionDecl *Caller,
const FunctionDecl *Callee,
const CallArgList &Args) const {}
/// Determines the size of struct _Unwind_Exception on this platform,
/// in 8-bit units. The Itanium ABI defines this as:
/// struct _Unwind_Exception {
/// uint64 exception_class;
/// _Unwind_Exception_Cleanup_Fn exception_cleanup;
/// uint64 private_1;
/// uint64 private_2;
/// };
virtual unsigned getSizeOfUnwindException() const;
/// Controls whether __builtin_extend_pointer should sign-extend
/// pointers to uint64_t or zero-extend them (the default). Has
/// no effect for targets:
/// - that have 64-bit pointers, or
/// - that cannot address through registers larger than pointers, or
/// - that implicitly ignore/truncate the top bits when addressing
/// through such registers.
virtual bool extendPointerWithSExt() const { return false; }
/// Determines the DWARF register number for the stack pointer, for
/// exception-handling purposes. Implements __builtin_dwarf_sp_column.
///
/// Returns -1 if the operation is unsupported by this target.
virtual int getDwarfEHStackPointer(CodeGen::CodeGenModule &M) const {
return -1;
}
/// Initializes the given DWARF EH register-size table, a char*.
/// Implements __builtin_init_dwarf_reg_size_table.
///
/// Returns true if the operation is unsupported by this target.
virtual bool initDwarfEHRegSizeTable(CodeGen::CodeGenFunction &CGF,
llvm::Value *Address) const {
return true;
}
/// Performs the code-generation required to convert a return
/// address as stored by the system into the actual address of the
/// next instruction that will be executed.
///
/// Used by __builtin_extract_return_addr().
virtual llvm::Value *decodeReturnAddress(CodeGen::CodeGenFunction &CGF,
llvm::Value *Address) const {
return Address;
}
/// Performs the code-generation required to convert the address
/// of an instruction into a return address suitable for storage
/// by the system in a return slot.
///
/// Used by __builtin_frob_return_addr().
virtual llvm::Value *encodeReturnAddress(CodeGen::CodeGenFunction &CGF,
llvm::Value *Address) const {
return Address;
}
/// Performs a target specific test of a floating point value for things
/// like IsNaN, Infinity, ... Nullptr is returned if no implementation
/// exists.
virtual llvm::Value *
testFPKind(llvm::Value *V, unsigned BuiltinID, CGBuilderTy &Builder,
CodeGenModule &CGM) const {
assert(V->getType()->isFloatingPointTy() && "V should have an FP type.");
return nullptr;
}
/// Corrects the low-level LLVM type for a given constraint and "usual"
/// type.
///
/// \returns A pointer to a new LLVM type, possibly the same as the original
/// on success; 0 on failure.
virtual llvm::Type *adjustInlineAsmType(CodeGen::CodeGenFunction &CGF,
StringRef Constraint,
llvm::Type *Ty) const {
return Ty;
}
/// Target hook to decide whether an inline asm operand can be passed
/// by value.
virtual bool isScalarizableAsmOperand(CodeGen::CodeGenFunction &CGF,
llvm::Type *Ty) const {
return false;
}
/// Adds constraints and types for result registers.
virtual void addReturnRegisterOutputs(
CodeGen::CodeGenFunction &CGF, CodeGen::LValue ReturnValue,
std::string &Constraints, std::vector<llvm::Type *> &ResultRegTypes,
std::vector<llvm::Type *> &ResultTruncRegTypes,
std::vector<CodeGen::LValue> &ResultRegDests, std::string &AsmString,
unsigned NumOutputs) const {}
/// doesReturnSlotInterfereWithArgs - Return true if the target uses an
/// argument slot for an 'sret' type.
virtual bool doesReturnSlotInterfereWithArgs() const { return true; }
/// Retrieve the address of a function to call immediately before
/// calling objc_retainAutoreleasedReturnValue. The
/// implementation of objc_autoreleaseReturnValue sniffs the
/// instruction stream following its return address to decide
/// whether it's a call to objc_retainAutoreleasedReturnValue.
/// This can be prohibitively expensive, depending on the
/// relocation model, and so on some targets it instead sniffs for
/// a particular instruction sequence. This functions returns
/// that instruction sequence in inline assembly, which will be
/// empty if none is required.
virtual StringRef getARCRetainAutoreleasedReturnValueMarker() const {
return "";
}
/// Determine whether a call to objc_retainAutoreleasedReturnValue or
/// objc_unsafeClaimAutoreleasedReturnValue should be marked as 'notail'.
virtual bool markARCOptimizedReturnCallsAsNoTail() const { return false; }
/// Return a constant used by UBSan as a signature to identify functions
/// possessing type information, or 0 if the platform is unsupported.
/// This magic number is invalid instruction encoding in many targets.
virtual llvm::Constant *
getUBSanFunctionSignature(CodeGen::CodeGenModule &CGM) const {
return llvm::ConstantInt::get(CGM.Int32Ty, 0xc105cafe);
}
/// Determine whether a call to an unprototyped functions under
/// the given calling convention should use the variadic
/// convention or the non-variadic convention.
///
/// There's a good reason to make a platform's variadic calling
/// convention be different from its non-variadic calling
/// convention: the non-variadic arguments can be passed in
/// registers (better for performance), and the variadic arguments
/// can be passed on the stack (also better for performance). If
/// this is done, however, unprototyped functions *must* use the
/// non-variadic convention, because C99 states that a call
/// through an unprototyped function type must succeed if the
/// function was defined with a non-variadic prototype with
/// compatible parameters. Therefore, splitting the conventions
/// makes it impossible to call a variadic function through an
/// unprototyped type. Since function prototypes came out in the
/// late 1970s, this is probably an acceptable trade-off.
/// Nonetheless, not all platforms are willing to make it, and in
/// particularly x86-64 bends over backwards to make the
/// conventions compatible.
///
/// The default is false. This is correct whenever:
/// - the conventions are exactly the same, because it does not
/// matter and the resulting IR will be somewhat prettier in
/// certain cases; or
/// - the conventions are substantively different in how they pass
/// arguments, because in this case using the variadic convention
/// will lead to C99 violations.
///
/// However, some platforms make the conventions identical except
/// for passing additional out-of-band information to a variadic
/// function: for example, x86-64 passes the number of SSE
/// arguments in %al. On these platforms, it is desirable to
/// call unprototyped functions using the variadic convention so
/// that unprototyped calls to varargs functions still succeed.
///
/// Relatedly, platforms which pass the fixed arguments to this:
/// A foo(B, C, D);
/// differently than they would pass them to this:
/// A foo(B, C, D, ...);
/// may need to adjust the debugger-support code in Sema to do the
/// right thing when calling a function with no know signature.
virtual bool isNoProtoCallVariadic(const CodeGen::CallArgList &args,
const FunctionNoProtoType *fnType) const;
/// Gets the linker options necessary to link a dependent library on this
/// platform.
virtual void getDependentLibraryOption(llvm::StringRef Lib,
llvm::SmallString<24> &Opt) const;
/// Gets the linker options necessary to detect object file mismatches on
/// this platform.
virtual void getDetectMismatchOption(llvm::StringRef Name,
llvm::StringRef Value,
llvm::SmallString<32> &Opt) const {}
/// Get LLVM calling convention for OpenCL kernel.
virtual unsigned getOpenCLKernelCallingConv() const;
/// Get target specific null pointer.
/// \param T is the LLVM type of the null pointer.
/// \param QT is the clang QualType of the null pointer.
/// \return ConstantPointerNull with the given type \p T.
/// Each target can override it to return its own desired constant value.
virtual llvm::Constant *getNullPointer(const CodeGen::CodeGenModule &CGM,
llvm::PointerType *T, QualType QT) const;
/// Get target favored AST address space of a global variable for languages
/// other than OpenCL and CUDA.
/// If \p D is nullptr, returns the default target favored address space
/// for global variable.
virtual LangAS getGlobalVarAddressSpace(CodeGenModule &CGM,
const VarDecl *D) const;
/// Get the AST address space for alloca.
virtual LangAS getASTAllocaAddressSpace() const { return LangAS::Default; }
/// Perform address space cast of an expression of pointer type.
/// \param V is the LLVM value to be casted to another address space.
/// \param SrcAddr is the language address space of \p V.
/// \param DestAddr is the targeted language address space.
/// \param DestTy is the destination LLVM pointer type.
/// \param IsNonNull is the flag indicating \p V is known to be non null.
virtual llvm::Value *performAddrSpaceCast(CodeGen::CodeGenFunction &CGF,
llvm::Value *V, LangAS SrcAddr,
LangAS DestAddr, llvm::Type *DestTy,
bool IsNonNull = false) const;
/// Perform address space cast of a constant expression of pointer type.
/// \param V is the LLVM constant to be casted to another address space.
/// \param SrcAddr is the language address space of \p V.
/// \param DestAddr is the targeted language address space.
/// \param DestTy is the destination LLVM pointer type.
virtual llvm::Constant *performAddrSpaceCast(CodeGenModule &CGM,
llvm::Constant *V,
LangAS SrcAddr, LangAS DestAddr,
llvm::Type *DestTy) const;
/// Get address space of pointer parameter for __cxa_atexit.
virtual LangAS getAddrSpaceOfCxaAtexitPtrParam() const {
return LangAS::Default;
}
/// Get the syncscope used in LLVM IR.
virtual llvm::SyncScope::ID getLLVMSyncScopeID(const LangOptions &LangOpts,
SyncScope Scope,
llvm::AtomicOrdering Ordering,
llvm::LLVMContext &Ctx) const;
/// Interface class for filling custom fields of a block literal for OpenCL.
class TargetOpenCLBlockHelper {
public:
typedef std::pair<llvm::Value *, StringRef> ValueTy;
TargetOpenCLBlockHelper() {}
virtual ~TargetOpenCLBlockHelper() {}
/// Get the custom field types for OpenCL blocks.
virtual llvm::SmallVector<llvm::Type *, 1> getCustomFieldTypes() = 0;
/// Get the custom field values for OpenCL blocks.
virtual llvm::SmallVector<ValueTy, 1>
getCustomFieldValues(CodeGenFunction &CGF, const CGBlockInfo &Info) = 0;
virtual bool areAllCustomFieldValuesConstant(const CGBlockInfo &Info) = 0;
/// Get the custom field values for OpenCL blocks if all values are LLVM
/// constants.
virtual llvm::SmallVector<llvm::Constant *, 1>
getCustomFieldValues(CodeGenModule &CGM, const CGBlockInfo &Info) = 0;
};
virtual TargetOpenCLBlockHelper *getTargetOpenCLBlockHelper() const {
return nullptr;
}
/// Create an OpenCL kernel for an enqueued block. The kernel function is
/// a wrapper for the block invoke function with target-specific calling
/// convention and ABI as an OpenCL kernel. The wrapper function accepts
/// block context and block arguments in target-specific way and calls
/// the original block invoke function.
virtual llvm::Value *
createEnqueuedBlockKernel(CodeGenFunction &CGF,
llvm::Function *BlockInvokeFunc,
llvm::Type *BlockTy) const;
/// \return true if the target supports alias from the unmangled name to the
/// mangled name of functions declared within an extern "C" region and marked
/// as 'used', and having internal linkage.
virtual bool shouldEmitStaticExternCAliases() const { return true; }
/// \return true if annonymous zero-sized bitfields should be emitted to
/// correctly distinguish between struct types whose memory layout is the
/// same, but whose layout may differ when used as argument passed by value
virtual bool shouldEmitDWARFBitFieldSeparators() const { return false; }
virtual void setCUDAKernelCallingConvention(const FunctionType *&FT) const {}
/// Return the device-side type for the CUDA device builtin surface type.
virtual llvm::Type *getCUDADeviceBuiltinSurfaceDeviceType() const {
// By default, no change from the original one.
return nullptr;
}
/// Return the device-side type for the CUDA device builtin texture type.
virtual llvm::Type *getCUDADeviceBuiltinTextureDeviceType() const {
// By default, no change from the original one.
return nullptr;
}
/// Return the WebAssembly externref reference type.
virtual llvm::Type *getWasmExternrefReferenceType() const { return nullptr; }
/// Return the WebAssembly funcref reference type.
virtual llvm::Type *getWasmFuncrefReferenceType() const { return nullptr; }
/// Emit the device-side copy of the builtin surface type.
virtual bool emitCUDADeviceBuiltinSurfaceDeviceCopy(CodeGenFunction &CGF,
LValue Dst,
LValue Src) const {
// DO NOTHING by default.
return false;
}
/// Emit the device-side copy of the builtin texture type.
virtual bool emitCUDADeviceBuiltinTextureDeviceCopy(CodeGenFunction &CGF,
LValue Dst,
LValue Src) const {
// DO NOTHING by default.
return false;
}
/// Return an LLVM type that corresponds to an OpenCL type.
virtual llvm::Type *getOpenCLType(CodeGenModule &CGM, const Type *T) const {
return nullptr;
}
protected:
static std::string qualifyWindowsLibrary(StringRef Lib);
void addStackProbeTargetAttributes(const Decl *D, llvm::GlobalValue *GV,
CodeGen::CodeGenModule &CGM) const;
};
std::unique_ptr<TargetCodeGenInfo>
createDefaultTargetCodeGenInfo(CodeGenModule &CGM);
enum class AArch64ABIKind {
AAPCS = 0,
DarwinPCS,
Win64,
};
std::unique_ptr<TargetCodeGenInfo>
createAArch64TargetCodeGenInfo(CodeGenModule &CGM, AArch64ABIKind Kind);
std::unique_ptr<TargetCodeGenInfo>
createWindowsAArch64TargetCodeGenInfo(CodeGenModule &CGM, AArch64ABIKind K);
std::unique_ptr<TargetCodeGenInfo>
createAMDGPUTargetCodeGenInfo(CodeGenModule &CGM);
std::unique_ptr<TargetCodeGenInfo>
createARCTargetCodeGenInfo(CodeGenModule &CGM);
enum class ARMABIKind {
APCS = 0,
AAPCS = 1,
AAPCS_VFP = 2,
AAPCS16_VFP = 3,
};
std::unique_ptr<TargetCodeGenInfo>
createARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind Kind);
std::unique_ptr<TargetCodeGenInfo>
createWindowsARMTargetCodeGenInfo(CodeGenModule &CGM, ARMABIKind K);
std::unique_ptr<TargetCodeGenInfo>
createAVRTargetCodeGenInfo(CodeGenModule &CGM, unsigned NPR, unsigned NRR);
std::unique_ptr<TargetCodeGenInfo>
createBPFTargetCodeGenInfo(CodeGenModule &CGM);
std::unique_ptr<TargetCodeGenInfo>
createCSKYTargetCodeGenInfo(CodeGenModule &CGM, unsigned FLen);
std::unique_ptr<TargetCodeGenInfo>
createHexagonTargetCodeGenInfo(CodeGenModule &CGM);
std::unique_ptr<TargetCodeGenInfo>
createLanaiTargetCodeGenInfo(CodeGenModule &CGM);
std::unique_ptr<TargetCodeGenInfo>
createLoongArchTargetCodeGenInfo(CodeGenModule &CGM, unsigned GRLen,
unsigned FLen);
std::unique_ptr<TargetCodeGenInfo>
createM68kTargetCodeGenInfo(CodeGenModule &CGM);
std::unique_ptr<TargetCodeGenInfo>
createMIPSTargetCodeGenInfo(CodeGenModule &CGM, bool IsOS32);
std::unique_ptr<TargetCodeGenInfo>
createMSP430TargetCodeGenInfo(CodeGenModule &CGM);
std::unique_ptr<TargetCodeGenInfo>
createNVPTXTargetCodeGenInfo(CodeGenModule &CGM);
std::unique_ptr<TargetCodeGenInfo>
createPNaClTargetCodeGenInfo(CodeGenModule &CGM);
enum class PPC64_SVR4_ABIKind {
ELFv1 = 0,
ELFv2,
};
std::unique_ptr<TargetCodeGenInfo>
createAIXTargetCodeGenInfo(CodeGenModule &CGM, bool Is64Bit);
std::unique_ptr<TargetCodeGenInfo>
createPPC32TargetCodeGenInfo(CodeGenModule &CGM, bool SoftFloatABI);
std::unique_ptr<TargetCodeGenInfo>
createPPC64TargetCodeGenInfo(CodeGenModule &CGM);
std::unique_ptr<TargetCodeGenInfo>
createPPC64_SVR4_TargetCodeGenInfo(CodeGenModule &CGM, PPC64_SVR4_ABIKind Kind,
bool SoftFloatABI);
std::unique_ptr<TargetCodeGenInfo>
createRISCVTargetCodeGenInfo(CodeGenModule &CGM, unsigned XLen, unsigned FLen);
std::unique_ptr<TargetCodeGenInfo>
createCommonSPIRTargetCodeGenInfo(CodeGenModule &CGM);
std::unique_ptr<TargetCodeGenInfo>
createSPIRVTargetCodeGenInfo(CodeGenModule &CGM);
std::unique_ptr<TargetCodeGenInfo>
createSparcV8TargetCodeGenInfo(CodeGenModule &CGM);
std::unique_ptr<TargetCodeGenInfo>
createSparcV9TargetCodeGenInfo(CodeGenModule &CGM);
std::unique_ptr<TargetCodeGenInfo>
createSystemZTargetCodeGenInfo(CodeGenModule &CGM, bool HasVector,
bool SoftFloatABI);
std::unique_ptr<TargetCodeGenInfo>
createTCETargetCodeGenInfo(CodeGenModule &CGM);
std::unique_ptr<TargetCodeGenInfo>
createVETargetCodeGenInfo(CodeGenModule &CGM);
enum class WebAssemblyABIKind {
MVP = 0,
ExperimentalMV = 1,
};
std::unique_ptr<TargetCodeGenInfo>
createWebAssemblyTargetCodeGenInfo(CodeGenModule &CGM, WebAssemblyABIKind K);
/// The AVX ABI level for X86 targets.
enum class X86AVXABILevel {
None,
AVX,
AVX512,
};
std::unique_ptr<TargetCodeGenInfo> createX86_32TargetCodeGenInfo(
CodeGenModule &CGM, bool DarwinVectorABI, bool Win32StructABI,
unsigned NumRegisterParameters, bool SoftFloatABI);
std::unique_ptr<TargetCodeGenInfo>
createWinX86_32TargetCodeGenInfo(CodeGenModule &CGM, bool DarwinVectorABI,
bool Win32StructABI,
unsigned NumRegisterParameters);
std::unique_ptr<TargetCodeGenInfo>
createX86_64TargetCodeGenInfo(CodeGenModule &CGM, X86AVXABILevel AVXLevel);
std::unique_ptr<TargetCodeGenInfo>
createWinX86_64TargetCodeGenInfo(CodeGenModule &CGM, X86AVXABILevel AVXLevel);
std::unique_ptr<TargetCodeGenInfo>
createXCoreTargetCodeGenInfo(CodeGenModule &CGM);
} // namespace CodeGen
} // namespace clang
#endif // LLVM_CLANG_LIB_CODEGEN_TARGETINFO_H