Example:
```
subroutine global_sub()
integer, dimension(4) :: iarr4=(/1,2,3,4/)
integer, dimension(4) :: jarr4
equivalence(iarr4,jarr4)
call sub1
print *, iarr4
contains
subroutine sub1
iarr4=jarr4((/4:1:-1/))
end subroutine sub1
end subroutine global_sub
```
`iarr4` and `jarr4` are equivalenced via a global aggregate storage,
but the references inside `sub1` are lowered differently.
`iarr4` is accessed via the global aggregate storage, while `jarr4`
is accessed via the argument tuple. This confuses the FIR alias
analysis,
that claims that a host associated entity cannot alias with a global
(if they have different source and do not have Target/Pointer
attributes deduced by the alias analysis).
I am not convinced that there is an issue in the alias analysis yet.
I think we'd better lower the accesses uniformly, i.e. if one variable
from an equivalence is lowered via the global aggregate storage, then
any other variable from this equivalence should be lowered the same way
(even if they are used via host association).
This patch makes sure that all symbols from an EQUIVALENCE get
and implicit SAVE attribute, if they do not have it already and
any symbol from the EQUIVALENCE is SAVEd (explicitly or implicitly).
This makes the further lowering consistent.
614 lines
28 KiB
C++
614 lines
28 KiB
C++
//===-- HostAssociations.cpp ----------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "flang/Lower/HostAssociations.h"
|
|
#include "flang/Evaluate/check-expression.h"
|
|
#include "flang/Lower/AbstractConverter.h"
|
|
#include "flang/Lower/Allocatable.h"
|
|
#include "flang/Lower/BoxAnalyzer.h"
|
|
#include "flang/Lower/CallInterface.h"
|
|
#include "flang/Lower/ConvertType.h"
|
|
#include "flang/Lower/ConvertVariable.h"
|
|
#include "flang/Lower/PFTBuilder.h"
|
|
#include "flang/Lower/SymbolMap.h"
|
|
#include "flang/Optimizer/Builder/Character.h"
|
|
#include "flang/Optimizer/Builder/FIRBuilder.h"
|
|
#include "flang/Optimizer/Builder/Todo.h"
|
|
#include "flang/Optimizer/Support/FatalError.h"
|
|
#include "flang/Semantics/tools.h"
|
|
#include "llvm/ADT/TypeSwitch.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <optional>
|
|
|
|
#define DEBUG_TYPE "flang-host-assoc"
|
|
|
|
// Host association inside internal procedures is implemented by allocating an
|
|
// mlir tuple (a struct) inside the host containing the addresses and properties
|
|
// of variables that are accessed by internal procedures. The address of this
|
|
// tuple is passed as an argument by the host when calling internal procedures.
|
|
// Internal procedures propagate a reference to this tuple when calling other
|
|
// internal procedures of the host.
|
|
//
|
|
// This file defines how the type of the host tuple is built, how the tuple
|
|
// value is created inside the host, and how the host associated variables are
|
|
// instantiated inside the internal procedures from the tuple value. The
|
|
// CapturedXXX classes define each of these three actions for a specific
|
|
// kind of variables by providing a `getType`, a `instantiateHostTuple`, and a
|
|
// `getFromTuple` method. These classes are structured as follow:
|
|
//
|
|
// class CapturedKindOfVar : public CapturedSymbols<CapturedKindOfVar> {
|
|
// // Return the type of the tuple element for a host associated
|
|
// // variable given its symbol inside the host. This is called when
|
|
// // building function interfaces.
|
|
// static mlir::Type getType();
|
|
// // Build the tuple element value for a host associated variable given its
|
|
// // value inside the host. This is called when lowering the host body.
|
|
// static void instantiateHostTuple();
|
|
// // Instantiate a host variable inside an internal procedure given its
|
|
// // tuple element value. This is called when lowering internal procedure
|
|
// // bodies.
|
|
// static void getFromTuple();
|
|
// };
|
|
//
|
|
// If a new kind of variable requires ad-hoc handling, a new CapturedXXX class
|
|
// should be added to handle it, and `walkCaptureCategories` should be updated
|
|
// to dispatch this new kind of variable to this new class.
|
|
|
|
/// Is \p sym a derived type entity with length parameters ?
|
|
static bool isDerivedWithLenParameters(const Fortran::semantics::Symbol &sym) {
|
|
if (const auto *declTy = sym.GetType())
|
|
if (const auto *derived = declTy->AsDerived())
|
|
return Fortran::semantics::CountLenParameters(*derived) != 0;
|
|
return false;
|
|
}
|
|
|
|
/// Map the extracted fir::ExtendedValue for a host associated variable inside
|
|
/// and internal procedure to its symbol. Generates an hlfir.declare in HLFIR.
|
|
static void bindCapturedSymbol(const Fortran::semantics::Symbol &sym,
|
|
fir::ExtendedValue val,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap) {
|
|
if (converter.getLoweringOptions().getLowerToHighLevelFIR())
|
|
Fortran::lower::genDeclareSymbol(converter, symMap, sym, val,
|
|
fir::FortranVariableFlagsEnum::host_assoc);
|
|
else
|
|
symMap.addSymbol(sym, val);
|
|
}
|
|
|
|
namespace {
|
|
/// Struct to be used as argument in walkCaptureCategories when building the
|
|
/// tuple element type for a host associated variable.
|
|
struct GetTypeInTuple {
|
|
/// walkCaptureCategories must return a type.
|
|
using Result = mlir::Type;
|
|
};
|
|
|
|
/// Struct to be used as argument in walkCaptureCategories when building the
|
|
/// tuple element value for a host associated variable.
|
|
struct InstantiateHostTuple {
|
|
/// walkCaptureCategories returns nothing.
|
|
using Result = void;
|
|
/// Value of the variable inside the host procedure.
|
|
fir::ExtendedValue hostValue;
|
|
/// Address of the tuple element of the variable.
|
|
mlir::Value addrInTuple;
|
|
mlir::Location loc;
|
|
};
|
|
|
|
/// Struct to be used as argument in walkCaptureCategories when instantiating a
|
|
/// host associated variables from its tuple element value.
|
|
struct GetFromTuple {
|
|
/// walkCaptureCategories returns nothing.
|
|
using Result = void;
|
|
/// Symbol map inside the internal procedure.
|
|
Fortran::lower::SymMap &symMap;
|
|
/// Value of the tuple element for the host associated variable.
|
|
mlir::Value valueInTuple;
|
|
mlir::Location loc;
|
|
};
|
|
|
|
/// Base class that must be inherited with CRTP by classes defining
|
|
/// how host association is implemented for a type of symbol.
|
|
/// It simply dispatches visit() calls to the implementations according
|
|
/// to the argument type.
|
|
template <typename SymbolCategory>
|
|
class CapturedSymbols {
|
|
public:
|
|
template <typename T>
|
|
static void visit(const T &, Fortran::lower::AbstractConverter &,
|
|
const Fortran::semantics::Symbol &,
|
|
const Fortran::lower::BoxAnalyzer &) {
|
|
static_assert(!std::is_same_v<T, T> &&
|
|
"default visit must not be instantiated");
|
|
}
|
|
static mlir::Type visit(const GetTypeInTuple &,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym,
|
|
const Fortran::lower::BoxAnalyzer &) {
|
|
return SymbolCategory::getType(converter, sym);
|
|
}
|
|
static void visit(const InstantiateHostTuple &args,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym,
|
|
const Fortran::lower::BoxAnalyzer &) {
|
|
return SymbolCategory::instantiateHostTuple(args, converter, sym);
|
|
}
|
|
static void visit(const GetFromTuple &args,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym,
|
|
const Fortran::lower::BoxAnalyzer &ba) {
|
|
return SymbolCategory::getFromTuple(args, converter, sym, ba);
|
|
}
|
|
};
|
|
|
|
/// Class defining simple scalars are captured in internal procedures.
|
|
/// Simple scalars are non character intrinsic scalars. They are captured
|
|
/// as `!fir.ref<T>`, for example `!fir.ref<i32>` for `INTEGER*4`.
|
|
class CapturedSimpleScalars : public CapturedSymbols<CapturedSimpleScalars> {
|
|
public:
|
|
static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym) {
|
|
return fir::ReferenceType::get(converter.genType(sym));
|
|
}
|
|
|
|
static void instantiateHostTuple(const InstantiateHostTuple &args,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType());
|
|
assert(typeInTuple && "addrInTuple must be an address");
|
|
mlir::Value castBox = builder.createConvert(args.loc, typeInTuple,
|
|
fir::getBase(args.hostValue));
|
|
builder.create<fir::StoreOp>(args.loc, castBox, args.addrInTuple);
|
|
}
|
|
|
|
static void getFromTuple(const GetFromTuple &args,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym,
|
|
const Fortran::lower::BoxAnalyzer &) {
|
|
bindCapturedSymbol(sym, args.valueInTuple, converter, args.symMap);
|
|
}
|
|
};
|
|
|
|
/// Class defining how dummy procedures and procedure pointers
|
|
/// are captured in internal procedures.
|
|
class CapturedProcedure : public CapturedSymbols<CapturedProcedure> {
|
|
public:
|
|
static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym) {
|
|
if (Fortran::semantics::IsPointer(sym))
|
|
TODO(converter.getCurrentLocation(),
|
|
"capture procedure pointer in internal procedure");
|
|
return Fortran::lower::getDummyProcedureType(sym, converter);
|
|
}
|
|
|
|
static void instantiateHostTuple(const InstantiateHostTuple &args,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType());
|
|
assert(typeInTuple && "addrInTuple must be an address");
|
|
mlir::Value castBox = builder.createConvert(args.loc, typeInTuple,
|
|
fir::getBase(args.hostValue));
|
|
builder.create<fir::StoreOp>(args.loc, castBox, args.addrInTuple);
|
|
}
|
|
|
|
static void getFromTuple(const GetFromTuple &args,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym,
|
|
const Fortran::lower::BoxAnalyzer &) {
|
|
bindCapturedSymbol(sym, args.valueInTuple, converter, args.symMap);
|
|
}
|
|
};
|
|
|
|
/// Class defining how character scalars are captured in internal procedures.
|
|
/// Character scalars are passed as !fir.boxchar<kind> in the tuple.
|
|
class CapturedCharacterScalars
|
|
: public CapturedSymbols<CapturedCharacterScalars> {
|
|
public:
|
|
// Note: so far, do not specialize constant length characters. They can be
|
|
// implemented by only passing the address. This could be done later in
|
|
// lowering or a CapturedStaticLenCharacterScalars class could be added here.
|
|
|
|
static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym) {
|
|
fir::KindTy kind =
|
|
converter.genType(sym).cast<fir::CharacterType>().getFKind();
|
|
return fir::BoxCharType::get(&converter.getMLIRContext(), kind);
|
|
}
|
|
|
|
static void instantiateHostTuple(const InstantiateHostTuple &args,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &) {
|
|
const fir::CharBoxValue *charBox = args.hostValue.getCharBox();
|
|
assert(charBox && "host value must be a fir::CharBoxValue");
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Value boxchar = fir::factory::CharacterExprHelper(builder, args.loc)
|
|
.createEmbox(*charBox);
|
|
builder.create<fir::StoreOp>(args.loc, boxchar, args.addrInTuple);
|
|
}
|
|
|
|
static void getFromTuple(const GetFromTuple &args,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym,
|
|
const Fortran::lower::BoxAnalyzer &) {
|
|
fir::factory::CharacterExprHelper charHelp(converter.getFirOpBuilder(),
|
|
args.loc);
|
|
std::pair<mlir::Value, mlir::Value> unboxchar =
|
|
charHelp.createUnboxChar(args.valueInTuple);
|
|
bindCapturedSymbol(sym,
|
|
fir::CharBoxValue{unboxchar.first, unboxchar.second},
|
|
converter, args.symMap);
|
|
}
|
|
};
|
|
|
|
/// Class defining how polymorphic entities are captured in internal procedures.
|
|
/// Polymorphic entities are always boxed as a fir.class box.
|
|
class CapturedPolymorphic : public CapturedSymbols<CapturedPolymorphic> {
|
|
public:
|
|
static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym) {
|
|
return converter.genType(sym);
|
|
}
|
|
static void instantiateHostTuple(const InstantiateHostTuple &args,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType());
|
|
assert(typeInTuple && "addrInTuple must be an address");
|
|
mlir::Value castBox = builder.createConvert(args.loc, typeInTuple,
|
|
fir::getBase(args.hostValue));
|
|
builder.create<fir::StoreOp>(args.loc, castBox, args.addrInTuple);
|
|
}
|
|
static void getFromTuple(const GetFromTuple &args,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym,
|
|
const Fortran::lower::BoxAnalyzer &ba) {
|
|
bindCapturedSymbol(sym, args.valueInTuple, converter, args.symMap);
|
|
}
|
|
};
|
|
|
|
/// Class defining how allocatable and pointers entities are captured in
|
|
/// internal procedures. Allocatable and pointers are simply captured by placing
|
|
/// their !fir.ref<fir.box<>> address in the host tuple.
|
|
class CapturedAllocatableAndPointer
|
|
: public CapturedSymbols<CapturedAllocatableAndPointer> {
|
|
public:
|
|
static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym) {
|
|
return fir::ReferenceType::get(converter.genType(sym));
|
|
}
|
|
static void instantiateHostTuple(const InstantiateHostTuple &args,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &) {
|
|
assert(args.hostValue.getBoxOf<fir::MutableBoxValue>() &&
|
|
"host value must be a fir::MutableBoxValue");
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Type typeInTuple = fir::dyn_cast_ptrEleTy(args.addrInTuple.getType());
|
|
assert(typeInTuple && "addrInTuple must be an address");
|
|
mlir::Value castBox = builder.createConvert(args.loc, typeInTuple,
|
|
fir::getBase(args.hostValue));
|
|
builder.create<fir::StoreOp>(args.loc, castBox, args.addrInTuple);
|
|
}
|
|
static void getFromTuple(const GetFromTuple &args,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym,
|
|
const Fortran::lower::BoxAnalyzer &ba) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Location loc = args.loc;
|
|
// Non deferred type parameters impact the semantics of some statements
|
|
// where allocatables/pointer can appear. For instance, assignment to a
|
|
// scalar character allocatable with has a different semantics in F2003 and
|
|
// later if the length is non deferred vs when it is deferred. So it is
|
|
// important to keep track of the non deferred parameters here.
|
|
llvm::SmallVector<mlir::Value> nonDeferredLenParams;
|
|
if (ba.isChar()) {
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
if (std::optional<int64_t> len = ba.getCharLenConst()) {
|
|
nonDeferredLenParams.push_back(
|
|
builder.createIntegerConstant(loc, idxTy, *len));
|
|
} else if (Fortran::semantics::IsAssumedLengthCharacter(sym) ||
|
|
ba.getCharLenExpr()) {
|
|
nonDeferredLenParams.push_back(
|
|
Fortran::lower::getAssumedCharAllocatableOrPointerLen(
|
|
builder, loc, sym, args.valueInTuple));
|
|
}
|
|
} else if (isDerivedWithLenParameters(sym)) {
|
|
TODO(loc, "host associated derived type allocatable or pointer with "
|
|
"length parameters");
|
|
}
|
|
bindCapturedSymbol(
|
|
sym, fir::MutableBoxValue(args.valueInTuple, nonDeferredLenParams, {}),
|
|
converter, args.symMap);
|
|
}
|
|
};
|
|
|
|
/// Class defining how arrays are captured inside internal procedures.
|
|
/// Array are captured via a `fir.box<fir.array<T>>` descriptor that belongs to
|
|
/// the host tuple. This allows capturing lower bounds, which can be done by
|
|
/// providing a ShapeShiftOp argument to the EmboxOp.
|
|
class CapturedArrays : public CapturedSymbols<CapturedArrays> {
|
|
|
|
// Note: Constant shape arrays are not specialized (their base address would
|
|
// be sufficient information inside the tuple). They could be specialized in
|
|
// a later FIR pass, or a CapturedStaticShapeArrays could be added to deal
|
|
// with them here.
|
|
public:
|
|
static mlir::Type getType(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym) {
|
|
mlir::Type type = converter.genType(sym);
|
|
assert(type.isa<fir::SequenceType>() && "must be a sequence type");
|
|
return fir::BoxType::get(type);
|
|
}
|
|
|
|
static void instantiateHostTuple(const InstantiateHostTuple &args,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Location loc = args.loc;
|
|
fir::MutableBoxValue boxInTuple(args.addrInTuple, {}, {});
|
|
if (args.hostValue.getBoxOf<fir::BoxValue>() &&
|
|
Fortran::semantics::IsOptional(sym)) {
|
|
// The assumed shape optional case need some care because it is illegal to
|
|
// read the incoming box if it is absent (this would cause segfaults).
|
|
// Pointer association requires reading the target box, so it can only be
|
|
// done on present optional. For absent optionals, simply create a
|
|
// disassociated pointer (it is illegal to inquire about lower bounds or
|
|
// lengths of optional according to 15.5.2.12 3 (9) and 10.1.11 2 (7)b).
|
|
auto isPresent = builder.create<fir::IsPresentOp>(
|
|
loc, builder.getI1Type(), fir::getBase(args.hostValue));
|
|
builder.genIfThenElse(loc, isPresent)
|
|
.genThen([&]() {
|
|
fir::factory::associateMutableBox(builder, loc, boxInTuple,
|
|
args.hostValue,
|
|
/*lbounds=*/std::nullopt);
|
|
})
|
|
.genElse([&]() {
|
|
fir::factory::disassociateMutableBox(builder, loc, boxInTuple);
|
|
})
|
|
.end();
|
|
} else {
|
|
fir::factory::associateMutableBox(
|
|
builder, loc, boxInTuple, args.hostValue, /*lbounds=*/std::nullopt);
|
|
}
|
|
}
|
|
|
|
static void getFromTuple(const GetFromTuple &args,
|
|
Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym,
|
|
const Fortran::lower::BoxAnalyzer &ba) {
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Location loc = args.loc;
|
|
mlir::Value box = args.valueInTuple;
|
|
mlir::IndexType idxTy = builder.getIndexType();
|
|
llvm::SmallVector<mlir::Value> lbounds;
|
|
if (!ba.lboundIsAllOnes()) {
|
|
if (ba.isStaticArray()) {
|
|
for (std::int64_t lb : ba.staticLBound())
|
|
lbounds.emplace_back(builder.createIntegerConstant(loc, idxTy, lb));
|
|
} else {
|
|
// Cannot re-evaluate specification expressions here.
|
|
// Operands values may have changed. Get value from fir.box
|
|
const unsigned rank = sym.Rank();
|
|
for (unsigned dim = 0; dim < rank; ++dim) {
|
|
mlir::Value dimVal = builder.createIntegerConstant(loc, idxTy, dim);
|
|
auto dims = builder.create<fir::BoxDimsOp>(loc, idxTy, idxTy, idxTy,
|
|
box, dimVal);
|
|
lbounds.emplace_back(dims.getResult(0));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (canReadCapturedBoxValue(converter, sym)) {
|
|
fir::BoxValue boxValue(box, lbounds, /*explicitParams=*/std::nullopt);
|
|
bindCapturedSymbol(sym,
|
|
fir::factory::readBoxValue(builder, loc, boxValue),
|
|
converter, args.symMap);
|
|
} else {
|
|
// Keep variable as a fir.box.
|
|
// If this is an optional that is absent, the fir.box needs to be an
|
|
// AbsentOp result, otherwise it will not work properly with IsPresentOp
|
|
// (absent boxes are null descriptor addresses, not descriptors containing
|
|
// a null base address).
|
|
if (Fortran::semantics::IsOptional(sym)) {
|
|
auto boxTy = box.getType().cast<fir::BoxType>();
|
|
auto eleTy = boxTy.getEleTy();
|
|
if (!fir::isa_ref_type(eleTy))
|
|
eleTy = builder.getRefType(eleTy);
|
|
auto addr = builder.create<fir::BoxAddrOp>(loc, eleTy, box);
|
|
mlir::Value isPresent = builder.genIsNotNullAddr(loc, addr);
|
|
auto absentBox = builder.create<fir::AbsentOp>(loc, boxTy);
|
|
box = builder.create<mlir::arith::SelectOp>(loc, isPresent, box,
|
|
absentBox);
|
|
}
|
|
fir::BoxValue boxValue(box, lbounds, /*explicitParams=*/std::nullopt);
|
|
bindCapturedSymbol(sym, boxValue, converter, args.symMap);
|
|
}
|
|
}
|
|
|
|
private:
|
|
/// Can the fir.box from the host link be read into simpler values ?
|
|
/// Later, without the symbol information, it might not be possible
|
|
/// to tell if the fir::BoxValue from the host link is contiguous.
|
|
static bool
|
|
canReadCapturedBoxValue(Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym) {
|
|
bool isScalarOrContiguous =
|
|
sym.Rank() == 0 || Fortran::evaluate::IsSimplyContiguous(
|
|
Fortran::evaluate::AsGenericExpr(sym).value(),
|
|
converter.getFoldingContext());
|
|
const Fortran::semantics::DeclTypeSpec *type = sym.GetType();
|
|
bool isPolymorphic = type && type->IsPolymorphic();
|
|
return isScalarOrContiguous && !isPolymorphic &&
|
|
!isDerivedWithLenParameters(sym);
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/// Dispatch \p visitor to the CapturedSymbols which is handling how host
|
|
/// association is implemented for this kind of symbols. This ensures the same
|
|
/// dispatch decision is taken when building the tuple type, when creating the
|
|
/// tuple, and when instantiating host associated variables from it.
|
|
template <typename T>
|
|
static typename T::Result
|
|
walkCaptureCategories(T visitor, Fortran::lower::AbstractConverter &converter,
|
|
const Fortran::semantics::Symbol &sym) {
|
|
if (isDerivedWithLenParameters(sym))
|
|
// Should be boxed.
|
|
TODO(converter.genLocation(sym.name()),
|
|
"host associated derived type with length parameters");
|
|
Fortran::lower::BoxAnalyzer ba;
|
|
// Do not analyze procedures, they may be subroutines with no types that would
|
|
// crash the analysis.
|
|
if (Fortran::semantics::IsProcedure(sym))
|
|
return CapturedProcedure::visit(visitor, converter, sym, ba);
|
|
ba.analyze(sym);
|
|
if (Fortran::semantics::IsAllocatableOrPointer(sym))
|
|
return CapturedAllocatableAndPointer::visit(visitor, converter, sym, ba);
|
|
if (Fortran::semantics::IsPolymorphic(sym)) {
|
|
if (ba.isArray() && !ba.lboundIsAllOnes())
|
|
TODO(converter.genLocation(sym.name()),
|
|
"polymorphic array with non default lower bound");
|
|
return CapturedPolymorphic::visit(visitor, converter, sym, ba);
|
|
}
|
|
if (ba.isArray())
|
|
return CapturedArrays::visit(visitor, converter, sym, ba);
|
|
if (ba.isChar())
|
|
return CapturedCharacterScalars::visit(visitor, converter, sym, ba);
|
|
assert(ba.isTrivial() && "must be trivial scalar");
|
|
return CapturedSimpleScalars::visit(visitor, converter, sym, ba);
|
|
}
|
|
|
|
// `t` should be the result of getArgumentType, which has a type of
|
|
// `!fir.ref<tuple<...>>`.
|
|
static mlir::TupleType unwrapTupleTy(mlir::Type t) {
|
|
return fir::dyn_cast_ptrEleTy(t).cast<mlir::TupleType>();
|
|
}
|
|
|
|
static mlir::Value genTupleCoor(fir::FirOpBuilder &builder, mlir::Location loc,
|
|
mlir::Type varTy, mlir::Value tupleArg,
|
|
mlir::Value offset) {
|
|
// fir.ref<fir.ref> and fir.ptr<fir.ref> are forbidden. Use
|
|
// fir.llvm_ptr if needed.
|
|
auto ty = varTy.isa<fir::ReferenceType>()
|
|
? mlir::Type(fir::LLVMPointerType::get(varTy))
|
|
: mlir::Type(builder.getRefType(varTy));
|
|
return builder.create<fir::CoordinateOp>(loc, ty, tupleArg, offset);
|
|
}
|
|
|
|
void Fortran::lower::HostAssociations::addSymbolsToBind(
|
|
const llvm::SetVector<const Fortran::semantics::Symbol *> &symbols,
|
|
const Fortran::semantics::Scope &hostScope) {
|
|
assert(tupleSymbols.empty() && globalSymbols.empty() &&
|
|
"must be initially empty");
|
|
this->hostScope = &hostScope;
|
|
for (const auto *s : symbols)
|
|
if (Fortran::lower::symbolIsGlobal(*s)) {
|
|
// The ultimate symbol is stored here so that global symbols from the
|
|
// host scope can later be searched in this set.
|
|
globalSymbols.insert(&s->GetUltimate());
|
|
} else {
|
|
tupleSymbols.insert(s);
|
|
}
|
|
}
|
|
|
|
void Fortran::lower::HostAssociations::hostProcedureBindings(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap) {
|
|
if (tupleSymbols.empty())
|
|
return;
|
|
|
|
// Create the tuple variable.
|
|
mlir::TupleType tupTy = unwrapTupleTy(getArgumentType(converter));
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
auto hostTuple = builder.create<fir::AllocaOp>(loc, tupTy);
|
|
mlir::IntegerType offTy = builder.getIntegerType(32);
|
|
|
|
// Walk the list of tupleSymbols and update the pointers in the tuple.
|
|
for (auto s : llvm::enumerate(tupleSymbols)) {
|
|
auto indexInTuple = s.index();
|
|
mlir::Value off = builder.createIntegerConstant(loc, offTy, indexInTuple);
|
|
mlir::Type varTy = tupTy.getType(indexInTuple);
|
|
mlir::Value eleOff = genTupleCoor(builder, loc, varTy, hostTuple, off);
|
|
InstantiateHostTuple instantiateHostTuple{
|
|
converter.getSymbolExtendedValue(*s.value(), &symMap), eleOff, loc};
|
|
walkCaptureCategories(instantiateHostTuple, converter, *s.value());
|
|
}
|
|
|
|
converter.bindHostAssocTuple(hostTuple);
|
|
}
|
|
|
|
void Fortran::lower::HostAssociations::internalProcedureBindings(
|
|
Fortran::lower::AbstractConverter &converter,
|
|
Fortran::lower::SymMap &symMap) {
|
|
if (!globalSymbols.empty()) {
|
|
assert(hostScope && "host scope must have been set");
|
|
Fortran::lower::AggregateStoreMap storeMap;
|
|
// The host scope variable list is required to deal with host variables
|
|
// that are equivalenced and requires instantiating the right global
|
|
// AggregateStore.
|
|
for (auto &hostVariable : pft::getScopeVariableList(*hostScope))
|
|
if ((hostVariable.isAggregateStore() && hostVariable.isGlobal()) ||
|
|
(hostVariable.hasSymbol() &&
|
|
globalSymbols.contains(&hostVariable.getSymbol().GetUltimate())))
|
|
Fortran::lower::instantiateVariable(converter, hostVariable, symMap,
|
|
storeMap);
|
|
}
|
|
if (tupleSymbols.empty())
|
|
return;
|
|
|
|
// Find the argument with the tuple type. The argument ought to be appended.
|
|
fir::FirOpBuilder &builder = converter.getFirOpBuilder();
|
|
mlir::Type argTy = getArgumentType(converter);
|
|
mlir::TupleType tupTy = unwrapTupleTy(argTy);
|
|
mlir::Location loc = converter.getCurrentLocation();
|
|
mlir::func::FuncOp func = builder.getFunction();
|
|
mlir::Value tupleArg;
|
|
for (auto [ty, arg] : llvm::reverse(llvm::zip(
|
|
func.getFunctionType().getInputs(), func.front().getArguments())))
|
|
if (ty == argTy) {
|
|
tupleArg = arg;
|
|
break;
|
|
}
|
|
if (!tupleArg)
|
|
fir::emitFatalError(loc, "no host association argument found");
|
|
|
|
converter.bindHostAssocTuple(tupleArg);
|
|
|
|
mlir::IntegerType offTy = builder.getIntegerType(32);
|
|
|
|
// Walk the list and add the bindings to the symbol table.
|
|
for (auto s : llvm::enumerate(tupleSymbols)) {
|
|
mlir::Value off = builder.createIntegerConstant(loc, offTy, s.index());
|
|
mlir::Type varTy = tupTy.getType(s.index());
|
|
mlir::Value eleOff = genTupleCoor(builder, loc, varTy, tupleArg, off);
|
|
mlir::Value valueInTuple = builder.create<fir::LoadOp>(loc, eleOff);
|
|
GetFromTuple getFromTuple{symMap, valueInTuple, loc};
|
|
walkCaptureCategories(getFromTuple, converter, *s.value());
|
|
}
|
|
}
|
|
|
|
mlir::Type Fortran::lower::HostAssociations::getArgumentType(
|
|
Fortran::lower::AbstractConverter &converter) {
|
|
if (tupleSymbols.empty())
|
|
return {};
|
|
if (argType)
|
|
return argType;
|
|
|
|
// Walk the list of Symbols and create their types. Wrap them in a reference
|
|
// to a tuple.
|
|
mlir::MLIRContext *ctxt = &converter.getMLIRContext();
|
|
llvm::SmallVector<mlir::Type> tupleTys;
|
|
for (const Fortran::semantics::Symbol *sym : tupleSymbols)
|
|
tupleTys.emplace_back(
|
|
walkCaptureCategories(GetTypeInTuple{}, converter, *sym));
|
|
argType = fir::ReferenceType::get(mlir::TupleType::get(ctxt, tupleTys));
|
|
return argType;
|
|
}
|