When the .eh_frame section is placed at a non-zero offset within its output section, the relocation value within .eh_frame are computed incorrectly. We had similar issue in .ARM.exidx section and it has been fixed already in https://reviews.llvm.org/D148033. While applying the relocation using S+A-P, the value of P (the location of the relocation) is getting wrong. P is: P = SecAddr + rel.offset, But SecAddr points to the starting address of the outputsection rather than the starting address of the eh frame section within that output section. This issue affects all targets which generates .eh_frame section. Hence fixing in all the corresponding targets it affecting.
1086 lines
39 KiB
C++
1086 lines
39 KiB
C++
//===- AArch64.cpp --------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputFiles.h"
|
|
#include "OutputSections.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "llvm/BinaryFormat/ELF.h"
|
|
#include "llvm/Support/Endian.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
// Page(Expr) is the page address of the expression Expr, defined
|
|
// as (Expr & ~0xFFF). (This applies even if the machine page size
|
|
// supported by the platform has a different value.)
|
|
uint64_t elf::getAArch64Page(uint64_t expr) {
|
|
return expr & ~static_cast<uint64_t>(0xFFF);
|
|
}
|
|
|
|
namespace {
|
|
class AArch64 : public TargetInfo {
|
|
public:
|
|
AArch64();
|
|
RelExpr getRelExpr(RelType type, const Symbol &s,
|
|
const uint8_t *loc) const override;
|
|
RelType getDynRel(RelType type) const override;
|
|
int64_t getImplicitAddend(const uint8_t *buf, RelType type) const override;
|
|
void writeGotPlt(uint8_t *buf, const Symbol &s) const override;
|
|
void writeIgotPlt(uint8_t *buf, const Symbol &s) const override;
|
|
void writePltHeader(uint8_t *buf) const override;
|
|
void writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const override;
|
|
bool needsThunk(RelExpr expr, RelType type, const InputFile *file,
|
|
uint64_t branchAddr, const Symbol &s,
|
|
int64_t a) const override;
|
|
uint32_t getThunkSectionSpacing() const override;
|
|
bool inBranchRange(RelType type, uint64_t src, uint64_t dst) const override;
|
|
bool usesOnlyLowPageBits(RelType type) const override;
|
|
void relocate(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const override;
|
|
RelExpr adjustTlsExpr(RelType type, RelExpr expr) const override;
|
|
void relocateAlloc(InputSectionBase &sec, uint8_t *buf) const override;
|
|
|
|
private:
|
|
void relaxTlsGdToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
|
|
void relaxTlsGdToIe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
|
|
void relaxTlsIeToLe(uint8_t *loc, const Relocation &rel, uint64_t val) const;
|
|
};
|
|
|
|
struct AArch64Relaxer {
|
|
bool safeToRelaxAdrpLdr = false;
|
|
|
|
AArch64Relaxer(ArrayRef<Relocation> relocs);
|
|
bool tryRelaxAdrpAdd(const Relocation &adrpRel, const Relocation &addRel,
|
|
uint64_t secAddr, uint8_t *buf) const;
|
|
bool tryRelaxAdrpLdr(const Relocation &adrpRel, const Relocation &ldrRel,
|
|
uint64_t secAddr, uint8_t *buf) const;
|
|
};
|
|
} // namespace
|
|
|
|
AArch64::AArch64() {
|
|
copyRel = R_AARCH64_COPY;
|
|
relativeRel = R_AARCH64_RELATIVE;
|
|
iRelativeRel = R_AARCH64_IRELATIVE;
|
|
gotRel = R_AARCH64_GLOB_DAT;
|
|
pltRel = R_AARCH64_JUMP_SLOT;
|
|
symbolicRel = R_AARCH64_ABS64;
|
|
tlsDescRel = R_AARCH64_TLSDESC;
|
|
tlsGotRel = R_AARCH64_TLS_TPREL64;
|
|
pltHeaderSize = 32;
|
|
pltEntrySize = 16;
|
|
ipltEntrySize = 16;
|
|
defaultMaxPageSize = 65536;
|
|
|
|
// Align to the 2 MiB page size (known as a superpage or huge page).
|
|
// FreeBSD automatically promotes 2 MiB-aligned allocations.
|
|
defaultImageBase = 0x200000;
|
|
|
|
needsThunks = true;
|
|
}
|
|
|
|
RelExpr AArch64::getRelExpr(RelType type, const Symbol &s,
|
|
const uint8_t *loc) const {
|
|
switch (type) {
|
|
case R_AARCH64_ABS16:
|
|
case R_AARCH64_ABS32:
|
|
case R_AARCH64_ABS64:
|
|
case R_AARCH64_ADD_ABS_LO12_NC:
|
|
case R_AARCH64_LDST128_ABS_LO12_NC:
|
|
case R_AARCH64_LDST16_ABS_LO12_NC:
|
|
case R_AARCH64_LDST32_ABS_LO12_NC:
|
|
case R_AARCH64_LDST64_ABS_LO12_NC:
|
|
case R_AARCH64_LDST8_ABS_LO12_NC:
|
|
case R_AARCH64_MOVW_SABS_G0:
|
|
case R_AARCH64_MOVW_SABS_G1:
|
|
case R_AARCH64_MOVW_SABS_G2:
|
|
case R_AARCH64_MOVW_UABS_G0:
|
|
case R_AARCH64_MOVW_UABS_G0_NC:
|
|
case R_AARCH64_MOVW_UABS_G1:
|
|
case R_AARCH64_MOVW_UABS_G1_NC:
|
|
case R_AARCH64_MOVW_UABS_G2:
|
|
case R_AARCH64_MOVW_UABS_G2_NC:
|
|
case R_AARCH64_MOVW_UABS_G3:
|
|
return R_ABS;
|
|
case R_AARCH64_TLSDESC_ADR_PAGE21:
|
|
return R_AARCH64_TLSDESC_PAGE;
|
|
case R_AARCH64_TLSDESC_LD64_LO12:
|
|
case R_AARCH64_TLSDESC_ADD_LO12:
|
|
return R_TLSDESC;
|
|
case R_AARCH64_TLSDESC_CALL:
|
|
return R_TLSDESC_CALL;
|
|
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
|
|
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
|
|
case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
|
|
case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
|
|
case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
|
|
case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
|
|
case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
|
|
case R_AARCH64_TLSLE_MOVW_TPREL_G0:
|
|
case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
|
|
case R_AARCH64_TLSLE_MOVW_TPREL_G1:
|
|
case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
|
|
case R_AARCH64_TLSLE_MOVW_TPREL_G2:
|
|
return R_TPREL;
|
|
case R_AARCH64_CALL26:
|
|
case R_AARCH64_CONDBR19:
|
|
case R_AARCH64_JUMP26:
|
|
case R_AARCH64_TSTBR14:
|
|
return R_PLT_PC;
|
|
case R_AARCH64_PLT32:
|
|
const_cast<Symbol &>(s).thunkAccessed = true;
|
|
return R_PLT_PC;
|
|
case R_AARCH64_PREL16:
|
|
case R_AARCH64_PREL32:
|
|
case R_AARCH64_PREL64:
|
|
case R_AARCH64_ADR_PREL_LO21:
|
|
case R_AARCH64_LD_PREL_LO19:
|
|
case R_AARCH64_MOVW_PREL_G0:
|
|
case R_AARCH64_MOVW_PREL_G0_NC:
|
|
case R_AARCH64_MOVW_PREL_G1:
|
|
case R_AARCH64_MOVW_PREL_G1_NC:
|
|
case R_AARCH64_MOVW_PREL_G2:
|
|
case R_AARCH64_MOVW_PREL_G2_NC:
|
|
case R_AARCH64_MOVW_PREL_G3:
|
|
return R_PC;
|
|
case R_AARCH64_ADR_PREL_PG_HI21:
|
|
case R_AARCH64_ADR_PREL_PG_HI21_NC:
|
|
return R_AARCH64_PAGE_PC;
|
|
case R_AARCH64_LD64_GOT_LO12_NC:
|
|
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
|
|
return R_GOT;
|
|
case R_AARCH64_LD64_GOTPAGE_LO15:
|
|
return R_AARCH64_GOT_PAGE;
|
|
case R_AARCH64_ADR_GOT_PAGE:
|
|
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
|
|
return R_AARCH64_GOT_PAGE_PC;
|
|
case R_AARCH64_NONE:
|
|
return R_NONE;
|
|
default:
|
|
error(getErrorLocation(loc) + "unknown relocation (" + Twine(type) +
|
|
") against symbol " + toString(s));
|
|
return R_NONE;
|
|
}
|
|
}
|
|
|
|
RelExpr AArch64::adjustTlsExpr(RelType type, RelExpr expr) const {
|
|
if (expr == R_RELAX_TLS_GD_TO_IE) {
|
|
if (type == R_AARCH64_TLSDESC_ADR_PAGE21)
|
|
return R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC;
|
|
return R_RELAX_TLS_GD_TO_IE_ABS;
|
|
}
|
|
return expr;
|
|
}
|
|
|
|
bool AArch64::usesOnlyLowPageBits(RelType type) const {
|
|
switch (type) {
|
|
default:
|
|
return false;
|
|
case R_AARCH64_ADD_ABS_LO12_NC:
|
|
case R_AARCH64_LD64_GOT_LO12_NC:
|
|
case R_AARCH64_LDST128_ABS_LO12_NC:
|
|
case R_AARCH64_LDST16_ABS_LO12_NC:
|
|
case R_AARCH64_LDST32_ABS_LO12_NC:
|
|
case R_AARCH64_LDST64_ABS_LO12_NC:
|
|
case R_AARCH64_LDST8_ABS_LO12_NC:
|
|
case R_AARCH64_TLSDESC_ADD_LO12:
|
|
case R_AARCH64_TLSDESC_LD64_LO12:
|
|
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
RelType AArch64::getDynRel(RelType type) const {
|
|
if (type == R_AARCH64_ABS64)
|
|
return type;
|
|
return R_AARCH64_NONE;
|
|
}
|
|
|
|
int64_t AArch64::getImplicitAddend(const uint8_t *buf, RelType type) const {
|
|
switch (type) {
|
|
case R_AARCH64_TLSDESC:
|
|
return read64(buf + 8);
|
|
case R_AARCH64_NONE:
|
|
case R_AARCH64_GLOB_DAT:
|
|
case R_AARCH64_JUMP_SLOT:
|
|
return 0;
|
|
case R_AARCH64_PREL32:
|
|
return SignExtend64<32>(read32(buf));
|
|
case R_AARCH64_ABS64:
|
|
case R_AARCH64_PREL64:
|
|
case R_AARCH64_RELATIVE:
|
|
case R_AARCH64_IRELATIVE:
|
|
case R_AARCH64_TLS_TPREL64:
|
|
return read64(buf);
|
|
default:
|
|
internalLinkerError(getErrorLocation(buf),
|
|
"cannot read addend for relocation " + toString(type));
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
void AArch64::writeGotPlt(uint8_t *buf, const Symbol &) const {
|
|
write64(buf, in.plt->getVA());
|
|
}
|
|
|
|
void AArch64::writeIgotPlt(uint8_t *buf, const Symbol &s) const {
|
|
if (config->writeAddends)
|
|
write64(buf, s.getVA());
|
|
}
|
|
|
|
void AArch64::writePltHeader(uint8_t *buf) const {
|
|
const uint8_t pltData[] = {
|
|
0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
|
|
0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2]))
|
|
0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))]
|
|
0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2]))
|
|
0x20, 0x02, 0x1f, 0xd6, // br x17
|
|
0x1f, 0x20, 0x03, 0xd5, // nop
|
|
0x1f, 0x20, 0x03, 0xd5, // nop
|
|
0x1f, 0x20, 0x03, 0xd5 // nop
|
|
};
|
|
memcpy(buf, pltData, sizeof(pltData));
|
|
|
|
uint64_t got = in.gotPlt->getVA();
|
|
uint64_t plt = in.plt->getVA();
|
|
relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
|
|
getAArch64Page(got + 16) - getAArch64Page(plt + 4));
|
|
relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
|
|
relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
|
|
}
|
|
|
|
void AArch64::writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const {
|
|
const uint8_t inst[] = {
|
|
0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n]))
|
|
0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))]
|
|
0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[n]))
|
|
0x20, 0x02, 0x1f, 0xd6 // br x17
|
|
};
|
|
memcpy(buf, inst, sizeof(inst));
|
|
|
|
uint64_t gotPltEntryAddr = sym.getGotPltVA();
|
|
relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
|
|
getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
|
|
relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
|
|
relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
|
|
}
|
|
|
|
bool AArch64::needsThunk(RelExpr expr, RelType type, const InputFile *file,
|
|
uint64_t branchAddr, const Symbol &s,
|
|
int64_t a) const {
|
|
// If s is an undefined weak symbol and does not have a PLT entry then it will
|
|
// be resolved as a branch to the next instruction. If it is hidden, its
|
|
// binding has been converted to local, so we just check isUndefined() here. A
|
|
// undefined non-weak symbol will have been errored.
|
|
if (s.isUndefined() && !s.isInPlt())
|
|
return false;
|
|
// ELF for the ARM 64-bit architecture, section Call and Jump relocations
|
|
// only permits range extension thunks for R_AARCH64_CALL26 and
|
|
// R_AARCH64_JUMP26 relocation types.
|
|
if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
|
|
type != R_AARCH64_PLT32)
|
|
return false;
|
|
uint64_t dst = expr == R_PLT_PC ? s.getPltVA() : s.getVA(a);
|
|
return !inBranchRange(type, branchAddr, dst);
|
|
}
|
|
|
|
uint32_t AArch64::getThunkSectionSpacing() const {
|
|
// See comment in Arch/ARM.cpp for a more detailed explanation of
|
|
// getThunkSectionSpacing(). For AArch64 the only branches we are permitted to
|
|
// Thunk have a range of +/- 128 MiB
|
|
return (128 * 1024 * 1024) - 0x30000;
|
|
}
|
|
|
|
bool AArch64::inBranchRange(RelType type, uint64_t src, uint64_t dst) const {
|
|
if (type != R_AARCH64_CALL26 && type != R_AARCH64_JUMP26 &&
|
|
type != R_AARCH64_PLT32)
|
|
return true;
|
|
// The AArch64 call and unconditional branch instructions have a range of
|
|
// +/- 128 MiB. The PLT32 relocation supports a range up to +/- 2 GiB.
|
|
uint64_t range =
|
|
type == R_AARCH64_PLT32 ? (UINT64_C(1) << 31) : (128 * 1024 * 1024);
|
|
if (dst > src) {
|
|
// Immediate of branch is signed.
|
|
range -= 4;
|
|
return dst - src <= range;
|
|
}
|
|
return src - dst <= range;
|
|
}
|
|
|
|
static void write32AArch64Addr(uint8_t *l, uint64_t imm) {
|
|
uint32_t immLo = (imm & 0x3) << 29;
|
|
uint32_t immHi = (imm & 0x1FFFFC) << 3;
|
|
uint64_t mask = (0x3 << 29) | (0x1FFFFC << 3);
|
|
write32le(l, (read32le(l) & ~mask) | immLo | immHi);
|
|
}
|
|
|
|
// Return the bits [Start, End] from Val shifted Start bits.
|
|
// For instance, getBits(0xF0, 4, 8) returns 0xF.
|
|
static uint64_t getBits(uint64_t val, int start, int end) {
|
|
uint64_t mask = ((uint64_t)1 << (end + 1 - start)) - 1;
|
|
return (val >> start) & mask;
|
|
}
|
|
|
|
static void or32le(uint8_t *p, int32_t v) { write32le(p, read32le(p) | v); }
|
|
|
|
// Update the immediate field in a AARCH64 ldr, str, and add instruction.
|
|
static void or32AArch64Imm(uint8_t *l, uint64_t imm) {
|
|
or32le(l, (imm & 0xFFF) << 10);
|
|
}
|
|
|
|
// Update the immediate field in an AArch64 movk, movn or movz instruction
|
|
// for a signed relocation, and update the opcode of a movn or movz instruction
|
|
// to match the sign of the operand.
|
|
static void writeSMovWImm(uint8_t *loc, uint32_t imm) {
|
|
uint32_t inst = read32le(loc);
|
|
// Opcode field is bits 30, 29, with 10 = movz, 00 = movn and 11 = movk.
|
|
if (!(inst & (1 << 29))) {
|
|
// movn or movz.
|
|
if (imm & 0x10000) {
|
|
// Change opcode to movn, which takes an inverted operand.
|
|
imm ^= 0xFFFF;
|
|
inst &= ~(1 << 30);
|
|
} else {
|
|
// Change opcode to movz.
|
|
inst |= 1 << 30;
|
|
}
|
|
}
|
|
write32le(loc, inst | ((imm & 0xFFFF) << 5));
|
|
}
|
|
|
|
void AArch64::relocate(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const {
|
|
switch (rel.type) {
|
|
case R_AARCH64_ABS16:
|
|
case R_AARCH64_PREL16:
|
|
checkIntUInt(loc, val, 16, rel);
|
|
write16(loc, val);
|
|
break;
|
|
case R_AARCH64_ABS32:
|
|
case R_AARCH64_PREL32:
|
|
checkIntUInt(loc, val, 32, rel);
|
|
write32(loc, val);
|
|
break;
|
|
case R_AARCH64_PLT32:
|
|
checkInt(loc, val, 32, rel);
|
|
write32(loc, val);
|
|
break;
|
|
case R_AARCH64_ABS64:
|
|
// AArch64 relocations to tagged symbols have extended semantics, as
|
|
// described here:
|
|
// https://github.com/ARM-software/abi-aa/blob/main/memtagabielf64/memtagabielf64.rst#841extended-semantics-of-r_aarch64_relative.
|
|
// tl;dr: encode the symbol's special addend in the place, which is an
|
|
// offset to the point where the logical tag is derived from. Quick hack, if
|
|
// the addend is within the symbol's bounds, no need to encode the tag
|
|
// derivation offset.
|
|
if (rel.sym && rel.sym->isTagged() &&
|
|
(rel.addend < 0 ||
|
|
rel.addend >= static_cast<int64_t>(rel.sym->getSize())))
|
|
write64(loc, -rel.addend);
|
|
else
|
|
write64(loc, val);
|
|
break;
|
|
case R_AARCH64_PREL64:
|
|
write64(loc, val);
|
|
break;
|
|
case R_AARCH64_ADD_ABS_LO12_NC:
|
|
or32AArch64Imm(loc, val);
|
|
break;
|
|
case R_AARCH64_ADR_GOT_PAGE:
|
|
case R_AARCH64_ADR_PREL_PG_HI21:
|
|
case R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21:
|
|
case R_AARCH64_TLSDESC_ADR_PAGE21:
|
|
checkInt(loc, val, 33, rel);
|
|
[[fallthrough]];
|
|
case R_AARCH64_ADR_PREL_PG_HI21_NC:
|
|
write32AArch64Addr(loc, val >> 12);
|
|
break;
|
|
case R_AARCH64_ADR_PREL_LO21:
|
|
checkInt(loc, val, 21, rel);
|
|
write32AArch64Addr(loc, val);
|
|
break;
|
|
case R_AARCH64_JUMP26:
|
|
// Normally we would just write the bits of the immediate field, however
|
|
// when patching instructions for the cpu errata fix -fix-cortex-a53-843419
|
|
// we want to replace a non-branch instruction with a branch immediate
|
|
// instruction. By writing all the bits of the instruction including the
|
|
// opcode and the immediate (0 001 | 01 imm26) we can do this
|
|
// transformation by placing a R_AARCH64_JUMP26 relocation at the offset of
|
|
// the instruction we want to patch.
|
|
write32le(loc, 0x14000000);
|
|
[[fallthrough]];
|
|
case R_AARCH64_CALL26:
|
|
checkInt(loc, val, 28, rel);
|
|
or32le(loc, (val & 0x0FFFFFFC) >> 2);
|
|
break;
|
|
case R_AARCH64_CONDBR19:
|
|
case R_AARCH64_LD_PREL_LO19:
|
|
checkAlignment(loc, val, 4, rel);
|
|
checkInt(loc, val, 21, rel);
|
|
or32le(loc, (val & 0x1FFFFC) << 3);
|
|
break;
|
|
case R_AARCH64_LDST8_ABS_LO12_NC:
|
|
case R_AARCH64_TLSLE_LDST8_TPREL_LO12_NC:
|
|
or32AArch64Imm(loc, getBits(val, 0, 11));
|
|
break;
|
|
case R_AARCH64_LDST16_ABS_LO12_NC:
|
|
case R_AARCH64_TLSLE_LDST16_TPREL_LO12_NC:
|
|
checkAlignment(loc, val, 2, rel);
|
|
or32AArch64Imm(loc, getBits(val, 1, 11));
|
|
break;
|
|
case R_AARCH64_LDST32_ABS_LO12_NC:
|
|
case R_AARCH64_TLSLE_LDST32_TPREL_LO12_NC:
|
|
checkAlignment(loc, val, 4, rel);
|
|
or32AArch64Imm(loc, getBits(val, 2, 11));
|
|
break;
|
|
case R_AARCH64_LDST64_ABS_LO12_NC:
|
|
case R_AARCH64_LD64_GOT_LO12_NC:
|
|
case R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC:
|
|
case R_AARCH64_TLSLE_LDST64_TPREL_LO12_NC:
|
|
case R_AARCH64_TLSDESC_LD64_LO12:
|
|
checkAlignment(loc, val, 8, rel);
|
|
or32AArch64Imm(loc, getBits(val, 3, 11));
|
|
break;
|
|
case R_AARCH64_LDST128_ABS_LO12_NC:
|
|
case R_AARCH64_TLSLE_LDST128_TPREL_LO12_NC:
|
|
checkAlignment(loc, val, 16, rel);
|
|
or32AArch64Imm(loc, getBits(val, 4, 11));
|
|
break;
|
|
case R_AARCH64_LD64_GOTPAGE_LO15:
|
|
checkAlignment(loc, val, 8, rel);
|
|
or32AArch64Imm(loc, getBits(val, 3, 14));
|
|
break;
|
|
case R_AARCH64_MOVW_UABS_G0:
|
|
checkUInt(loc, val, 16, rel);
|
|
[[fallthrough]];
|
|
case R_AARCH64_MOVW_UABS_G0_NC:
|
|
or32le(loc, (val & 0xFFFF) << 5);
|
|
break;
|
|
case R_AARCH64_MOVW_UABS_G1:
|
|
checkUInt(loc, val, 32, rel);
|
|
[[fallthrough]];
|
|
case R_AARCH64_MOVW_UABS_G1_NC:
|
|
or32le(loc, (val & 0xFFFF0000) >> 11);
|
|
break;
|
|
case R_AARCH64_MOVW_UABS_G2:
|
|
checkUInt(loc, val, 48, rel);
|
|
[[fallthrough]];
|
|
case R_AARCH64_MOVW_UABS_G2_NC:
|
|
or32le(loc, (val & 0xFFFF00000000) >> 27);
|
|
break;
|
|
case R_AARCH64_MOVW_UABS_G3:
|
|
or32le(loc, (val & 0xFFFF000000000000) >> 43);
|
|
break;
|
|
case R_AARCH64_MOVW_PREL_G0:
|
|
case R_AARCH64_MOVW_SABS_G0:
|
|
case R_AARCH64_TLSLE_MOVW_TPREL_G0:
|
|
checkInt(loc, val, 17, rel);
|
|
[[fallthrough]];
|
|
case R_AARCH64_MOVW_PREL_G0_NC:
|
|
case R_AARCH64_TLSLE_MOVW_TPREL_G0_NC:
|
|
writeSMovWImm(loc, val);
|
|
break;
|
|
case R_AARCH64_MOVW_PREL_G1:
|
|
case R_AARCH64_MOVW_SABS_G1:
|
|
case R_AARCH64_TLSLE_MOVW_TPREL_G1:
|
|
checkInt(loc, val, 33, rel);
|
|
[[fallthrough]];
|
|
case R_AARCH64_MOVW_PREL_G1_NC:
|
|
case R_AARCH64_TLSLE_MOVW_TPREL_G1_NC:
|
|
writeSMovWImm(loc, val >> 16);
|
|
break;
|
|
case R_AARCH64_MOVW_PREL_G2:
|
|
case R_AARCH64_MOVW_SABS_G2:
|
|
case R_AARCH64_TLSLE_MOVW_TPREL_G2:
|
|
checkInt(loc, val, 49, rel);
|
|
[[fallthrough]];
|
|
case R_AARCH64_MOVW_PREL_G2_NC:
|
|
writeSMovWImm(loc, val >> 32);
|
|
break;
|
|
case R_AARCH64_MOVW_PREL_G3:
|
|
writeSMovWImm(loc, val >> 48);
|
|
break;
|
|
case R_AARCH64_TSTBR14:
|
|
checkInt(loc, val, 16, rel);
|
|
or32le(loc, (val & 0xFFFC) << 3);
|
|
break;
|
|
case R_AARCH64_TLSLE_ADD_TPREL_HI12:
|
|
checkUInt(loc, val, 24, rel);
|
|
or32AArch64Imm(loc, val >> 12);
|
|
break;
|
|
case R_AARCH64_TLSLE_ADD_TPREL_LO12_NC:
|
|
case R_AARCH64_TLSDESC_ADD_LO12:
|
|
or32AArch64Imm(loc, val);
|
|
break;
|
|
case R_AARCH64_TLSDESC:
|
|
// For R_AARCH64_TLSDESC the addend is stored in the second 64-bit word.
|
|
write64(loc + 8, val);
|
|
break;
|
|
default:
|
|
llvm_unreachable("unknown relocation");
|
|
}
|
|
}
|
|
|
|
void AArch64::relaxTlsGdToLe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const {
|
|
// TLSDESC Global-Dynamic relocation are in the form:
|
|
// adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
|
|
// ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
|
|
// add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
|
|
// .tlsdesccall [R_AARCH64_TLSDESC_CALL]
|
|
// blr x1
|
|
// And it can optimized to:
|
|
// movz x0, #0x0, lsl #16
|
|
// movk x0, #0x10
|
|
// nop
|
|
// nop
|
|
checkUInt(loc, val, 32, rel);
|
|
|
|
switch (rel.type) {
|
|
case R_AARCH64_TLSDESC_ADD_LO12:
|
|
case R_AARCH64_TLSDESC_CALL:
|
|
write32le(loc, 0xd503201f); // nop
|
|
return;
|
|
case R_AARCH64_TLSDESC_ADR_PAGE21:
|
|
write32le(loc, 0xd2a00000 | (((val >> 16) & 0xffff) << 5)); // movz
|
|
return;
|
|
case R_AARCH64_TLSDESC_LD64_LO12:
|
|
write32le(loc, 0xf2800000 | ((val & 0xffff) << 5)); // movk
|
|
return;
|
|
default:
|
|
llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
|
|
}
|
|
}
|
|
|
|
void AArch64::relaxTlsGdToIe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const {
|
|
// TLSDESC Global-Dynamic relocation are in the form:
|
|
// adrp x0, :tlsdesc:v [R_AARCH64_TLSDESC_ADR_PAGE21]
|
|
// ldr x1, [x0, #:tlsdesc_lo12:v [R_AARCH64_TLSDESC_LD64_LO12]
|
|
// add x0, x0, :tlsdesc_los:v [R_AARCH64_TLSDESC_ADD_LO12]
|
|
// .tlsdesccall [R_AARCH64_TLSDESC_CALL]
|
|
// blr x1
|
|
// And it can optimized to:
|
|
// adrp x0, :gottprel:v
|
|
// ldr x0, [x0, :gottprel_lo12:v]
|
|
// nop
|
|
// nop
|
|
|
|
switch (rel.type) {
|
|
case R_AARCH64_TLSDESC_ADD_LO12:
|
|
case R_AARCH64_TLSDESC_CALL:
|
|
write32le(loc, 0xd503201f); // nop
|
|
break;
|
|
case R_AARCH64_TLSDESC_ADR_PAGE21:
|
|
write32le(loc, 0x90000000); // adrp
|
|
relocateNoSym(loc, R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21, val);
|
|
break;
|
|
case R_AARCH64_TLSDESC_LD64_LO12:
|
|
write32le(loc, 0xf9400000); // ldr
|
|
relocateNoSym(loc, R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC, val);
|
|
break;
|
|
default:
|
|
llvm_unreachable("unsupported relocation for TLS GD to LE relaxation");
|
|
}
|
|
}
|
|
|
|
void AArch64::relaxTlsIeToLe(uint8_t *loc, const Relocation &rel,
|
|
uint64_t val) const {
|
|
checkUInt(loc, val, 32, rel);
|
|
|
|
if (rel.type == R_AARCH64_TLSIE_ADR_GOTTPREL_PAGE21) {
|
|
// Generate MOVZ.
|
|
uint32_t regNo = read32le(loc) & 0x1f;
|
|
write32le(loc, (0xd2a00000 | regNo) | (((val >> 16) & 0xffff) << 5));
|
|
return;
|
|
}
|
|
if (rel.type == R_AARCH64_TLSIE_LD64_GOTTPREL_LO12_NC) {
|
|
// Generate MOVK.
|
|
uint32_t regNo = read32le(loc) & 0x1f;
|
|
write32le(loc, (0xf2800000 | regNo) | ((val & 0xffff) << 5));
|
|
return;
|
|
}
|
|
llvm_unreachable("invalid relocation for TLS IE to LE relaxation");
|
|
}
|
|
|
|
AArch64Relaxer::AArch64Relaxer(ArrayRef<Relocation> relocs) {
|
|
if (!config->relax)
|
|
return;
|
|
// Check if R_AARCH64_ADR_GOT_PAGE and R_AARCH64_LD64_GOT_LO12_NC
|
|
// always appear in pairs.
|
|
size_t i = 0;
|
|
const size_t size = relocs.size();
|
|
for (; i != size; ++i) {
|
|
if (relocs[i].type == R_AARCH64_ADR_GOT_PAGE) {
|
|
if (i + 1 < size && relocs[i + 1].type == R_AARCH64_LD64_GOT_LO12_NC) {
|
|
++i;
|
|
continue;
|
|
}
|
|
break;
|
|
} else if (relocs[i].type == R_AARCH64_LD64_GOT_LO12_NC) {
|
|
break;
|
|
}
|
|
}
|
|
safeToRelaxAdrpLdr = i == size;
|
|
}
|
|
|
|
bool AArch64Relaxer::tryRelaxAdrpAdd(const Relocation &adrpRel,
|
|
const Relocation &addRel, uint64_t secAddr,
|
|
uint8_t *buf) const {
|
|
// When the address of sym is within the range of ADR then
|
|
// we may relax
|
|
// ADRP xn, sym
|
|
// ADD xn, xn, :lo12: sym
|
|
// to
|
|
// NOP
|
|
// ADR xn, sym
|
|
if (!config->relax || adrpRel.type != R_AARCH64_ADR_PREL_PG_HI21 ||
|
|
addRel.type != R_AARCH64_ADD_ABS_LO12_NC)
|
|
return false;
|
|
// Check if the relocations apply to consecutive instructions.
|
|
if (adrpRel.offset + 4 != addRel.offset)
|
|
return false;
|
|
if (adrpRel.sym != addRel.sym)
|
|
return false;
|
|
if (adrpRel.addend != 0 || addRel.addend != 0)
|
|
return false;
|
|
|
|
uint32_t adrpInstr = read32le(buf + adrpRel.offset);
|
|
uint32_t addInstr = read32le(buf + addRel.offset);
|
|
// Check if the first instruction is ADRP and the second instruction is ADD.
|
|
if ((adrpInstr & 0x9f000000) != 0x90000000 ||
|
|
(addInstr & 0xffc00000) != 0x91000000)
|
|
return false;
|
|
uint32_t adrpDestReg = adrpInstr & 0x1f;
|
|
uint32_t addDestReg = addInstr & 0x1f;
|
|
uint32_t addSrcReg = (addInstr >> 5) & 0x1f;
|
|
if (adrpDestReg != addDestReg || adrpDestReg != addSrcReg)
|
|
return false;
|
|
|
|
Symbol &sym = *adrpRel.sym;
|
|
// Check if the address difference is within 1MiB range.
|
|
int64_t val = sym.getVA() - (secAddr + addRel.offset);
|
|
if (val < -1024 * 1024 || val >= 1024 * 1024)
|
|
return false;
|
|
|
|
Relocation adrRel = {R_ABS, R_AARCH64_ADR_PREL_LO21, addRel.offset,
|
|
/*addend=*/0, &sym};
|
|
// nop
|
|
write32le(buf + adrpRel.offset, 0xd503201f);
|
|
// adr x_<dest_reg>
|
|
write32le(buf + adrRel.offset, 0x10000000 | adrpDestReg);
|
|
target->relocate(buf + adrRel.offset, adrRel, val);
|
|
return true;
|
|
}
|
|
|
|
bool AArch64Relaxer::tryRelaxAdrpLdr(const Relocation &adrpRel,
|
|
const Relocation &ldrRel, uint64_t secAddr,
|
|
uint8_t *buf) const {
|
|
if (!safeToRelaxAdrpLdr)
|
|
return false;
|
|
|
|
// When the definition of sym is not preemptible then we may
|
|
// be able to relax
|
|
// ADRP xn, :got: sym
|
|
// LDR xn, [ xn :got_lo12: sym]
|
|
// to
|
|
// ADRP xn, sym
|
|
// ADD xn, xn, :lo_12: sym
|
|
|
|
if (adrpRel.type != R_AARCH64_ADR_GOT_PAGE ||
|
|
ldrRel.type != R_AARCH64_LD64_GOT_LO12_NC)
|
|
return false;
|
|
// Check if the relocations apply to consecutive instructions.
|
|
if (adrpRel.offset + 4 != ldrRel.offset)
|
|
return false;
|
|
// Check if the relocations reference the same symbol and
|
|
// skip undefined, preemptible and STT_GNU_IFUNC symbols.
|
|
if (!adrpRel.sym || adrpRel.sym != ldrRel.sym || !adrpRel.sym->isDefined() ||
|
|
adrpRel.sym->isPreemptible || adrpRel.sym->isGnuIFunc())
|
|
return false;
|
|
// Check if the addends of the both relocations are zero.
|
|
if (adrpRel.addend != 0 || ldrRel.addend != 0)
|
|
return false;
|
|
uint32_t adrpInstr = read32le(buf + adrpRel.offset);
|
|
uint32_t ldrInstr = read32le(buf + ldrRel.offset);
|
|
// Check if the first instruction is ADRP and the second instruction is LDR.
|
|
if ((adrpInstr & 0x9f000000) != 0x90000000 ||
|
|
(ldrInstr & 0x3b000000) != 0x39000000)
|
|
return false;
|
|
// Check the value of the sf bit.
|
|
if (!(ldrInstr >> 31))
|
|
return false;
|
|
uint32_t adrpDestReg = adrpInstr & 0x1f;
|
|
uint32_t ldrDestReg = ldrInstr & 0x1f;
|
|
uint32_t ldrSrcReg = (ldrInstr >> 5) & 0x1f;
|
|
// Check if ADPR and LDR use the same register.
|
|
if (adrpDestReg != ldrDestReg || adrpDestReg != ldrSrcReg)
|
|
return false;
|
|
|
|
Symbol &sym = *adrpRel.sym;
|
|
// GOT references to absolute symbols can't be relaxed to use ADRP/ADD in
|
|
// position-independent code because these instructions produce a relative
|
|
// address.
|
|
if (config->isPic && !cast<Defined>(sym).section)
|
|
return false;
|
|
// Check if the address difference is within 4GB range.
|
|
int64_t val =
|
|
getAArch64Page(sym.getVA()) - getAArch64Page(secAddr + adrpRel.offset);
|
|
if (val != llvm::SignExtend64(val, 33))
|
|
return false;
|
|
|
|
Relocation adrpSymRel = {R_AARCH64_PAGE_PC, R_AARCH64_ADR_PREL_PG_HI21,
|
|
adrpRel.offset, /*addend=*/0, &sym};
|
|
Relocation addRel = {R_ABS, R_AARCH64_ADD_ABS_LO12_NC, ldrRel.offset,
|
|
/*addend=*/0, &sym};
|
|
|
|
// adrp x_<dest_reg>
|
|
write32le(buf + adrpSymRel.offset, 0x90000000 | adrpDestReg);
|
|
// add x_<dest reg>, x_<dest reg>
|
|
write32le(buf + addRel.offset, 0x91000000 | adrpDestReg | (adrpDestReg << 5));
|
|
|
|
target->relocate(buf + adrpSymRel.offset, adrpSymRel,
|
|
SignExtend64(getAArch64Page(sym.getVA()) -
|
|
getAArch64Page(secAddr + adrpSymRel.offset),
|
|
64));
|
|
target->relocate(buf + addRel.offset, addRel, SignExtend64(sym.getVA(), 64));
|
|
tryRelaxAdrpAdd(adrpSymRel, addRel, secAddr, buf);
|
|
return true;
|
|
}
|
|
|
|
// Tagged symbols have upper address bits that are added by the dynamic loader,
|
|
// and thus need the full 64-bit GOT entry. Do not relax such symbols.
|
|
static bool needsGotForMemtag(const Relocation &rel) {
|
|
return rel.sym->isTagged() && needsGot(rel.expr);
|
|
}
|
|
|
|
void AArch64::relocateAlloc(InputSectionBase &sec, uint8_t *buf) const {
|
|
uint64_t secAddr = sec.getOutputSection()->addr;
|
|
if (auto *s = dyn_cast<InputSection>(&sec))
|
|
secAddr += s->outSecOff;
|
|
else if (auto *ehIn = dyn_cast<EhInputSection>(&sec))
|
|
secAddr += ehIn->getParent()->outSecOff;
|
|
AArch64Relaxer relaxer(sec.relocs());
|
|
for (size_t i = 0, size = sec.relocs().size(); i != size; ++i) {
|
|
const Relocation &rel = sec.relocs()[i];
|
|
uint8_t *loc = buf + rel.offset;
|
|
const uint64_t val =
|
|
sec.getRelocTargetVA(sec.file, rel.type, rel.addend,
|
|
secAddr + rel.offset, *rel.sym, rel.expr);
|
|
|
|
if (needsGotForMemtag(rel)) {
|
|
relocate(loc, rel, val);
|
|
continue;
|
|
}
|
|
|
|
switch (rel.expr) {
|
|
case R_AARCH64_GOT_PAGE_PC:
|
|
if (i + 1 < size &&
|
|
relaxer.tryRelaxAdrpLdr(rel, sec.relocs()[i + 1], secAddr, buf)) {
|
|
++i;
|
|
continue;
|
|
}
|
|
break;
|
|
case R_AARCH64_PAGE_PC:
|
|
if (i + 1 < size &&
|
|
relaxer.tryRelaxAdrpAdd(rel, sec.relocs()[i + 1], secAddr, buf)) {
|
|
++i;
|
|
continue;
|
|
}
|
|
break;
|
|
case R_AARCH64_RELAX_TLS_GD_TO_IE_PAGE_PC:
|
|
case R_RELAX_TLS_GD_TO_IE_ABS:
|
|
relaxTlsGdToIe(loc, rel, val);
|
|
continue;
|
|
case R_RELAX_TLS_GD_TO_LE:
|
|
relaxTlsGdToLe(loc, rel, val);
|
|
continue;
|
|
case R_RELAX_TLS_IE_TO_LE:
|
|
relaxTlsIeToLe(loc, rel, val);
|
|
continue;
|
|
default:
|
|
break;
|
|
}
|
|
relocate(loc, rel, val);
|
|
}
|
|
}
|
|
|
|
// AArch64 may use security features in variant PLT sequences. These are:
|
|
// Pointer Authentication (PAC), introduced in armv8.3-a and Branch Target
|
|
// Indicator (BTI) introduced in armv8.5-a. The additional instructions used
|
|
// in the variant Plt sequences are encoded in the Hint space so they can be
|
|
// deployed on older architectures, which treat the instructions as a nop.
|
|
// PAC and BTI can be combined leading to the following combinations:
|
|
// writePltHeader
|
|
// writePltHeaderBti (no PAC Header needed)
|
|
// writePlt
|
|
// writePltBti (BTI only)
|
|
// writePltPac (PAC only)
|
|
// writePltBtiPac (BTI and PAC)
|
|
//
|
|
// When PAC is enabled the dynamic loader encrypts the address that it places
|
|
// in the .got.plt using the pacia1716 instruction which encrypts the value in
|
|
// x17 using the modifier in x16. The static linker places autia1716 before the
|
|
// indirect branch to x17 to authenticate the address in x17 with the modifier
|
|
// in x16. This makes it more difficult for an attacker to modify the value in
|
|
// the .got.plt.
|
|
//
|
|
// When BTI is enabled all indirect branches must land on a bti instruction.
|
|
// The static linker must place a bti instruction at the start of any PLT entry
|
|
// that may be the target of an indirect branch. As the PLT entries call the
|
|
// lazy resolver indirectly this must have a bti instruction at start. In
|
|
// general a bti instruction is not needed for a PLT entry as indirect calls
|
|
// are resolved to the function address and not the PLT entry for the function.
|
|
// There are a small number of cases where the PLT address can escape, such as
|
|
// taking the address of a function or ifunc via a non got-generating
|
|
// relocation, and a shared library refers to that symbol.
|
|
//
|
|
// We use the bti c variant of the instruction which permits indirect branches
|
|
// (br) via x16/x17 and indirect function calls (blr) via any register. The ABI
|
|
// guarantees that all indirect branches from code requiring BTI protection
|
|
// will go via x16/x17
|
|
|
|
namespace {
|
|
class AArch64BtiPac final : public AArch64 {
|
|
public:
|
|
AArch64BtiPac();
|
|
void writePltHeader(uint8_t *buf) const override;
|
|
void writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const override;
|
|
|
|
private:
|
|
bool btiHeader; // bti instruction needed in PLT Header and Entry
|
|
bool pacEntry; // autia1716 instruction needed in PLT Entry
|
|
};
|
|
} // namespace
|
|
|
|
AArch64BtiPac::AArch64BtiPac() {
|
|
btiHeader = (config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI);
|
|
// A BTI (Branch Target Indicator) Plt Entry is only required if the
|
|
// address of the PLT entry can be taken by the program, which permits an
|
|
// indirect jump to the PLT entry. This can happen when the address
|
|
// of the PLT entry for a function is canonicalised due to the address of
|
|
// the function in an executable being taken by a shared library, or
|
|
// non-preemptible ifunc referenced by non-GOT-generating, non-PLT-generating
|
|
// relocations.
|
|
// The PAC PLT entries require dynamic loader support and this isn't known
|
|
// from properties in the objects, so we use the command line flag.
|
|
pacEntry = config->zPacPlt;
|
|
|
|
if (btiHeader || pacEntry) {
|
|
pltEntrySize = 24;
|
|
ipltEntrySize = 24;
|
|
}
|
|
}
|
|
|
|
void AArch64BtiPac::writePltHeader(uint8_t *buf) const {
|
|
const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
|
|
const uint8_t pltData[] = {
|
|
0xf0, 0x7b, 0xbf, 0xa9, // stp x16, x30, [sp,#-16]!
|
|
0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[2]))
|
|
0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[2]))]
|
|
0x10, 0x02, 0x00, 0x91, // add x16, x16, Offset(&(.got.plt[2]))
|
|
0x20, 0x02, 0x1f, 0xd6, // br x17
|
|
0x1f, 0x20, 0x03, 0xd5, // nop
|
|
0x1f, 0x20, 0x03, 0xd5 // nop
|
|
};
|
|
const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
|
|
|
|
uint64_t got = in.gotPlt->getVA();
|
|
uint64_t plt = in.plt->getVA();
|
|
|
|
if (btiHeader) {
|
|
// PltHeader is called indirectly by plt[N]. Prefix pltData with a BTI C
|
|
// instruction.
|
|
memcpy(buf, btiData, sizeof(btiData));
|
|
buf += sizeof(btiData);
|
|
plt += sizeof(btiData);
|
|
}
|
|
memcpy(buf, pltData, sizeof(pltData));
|
|
|
|
relocateNoSym(buf + 4, R_AARCH64_ADR_PREL_PG_HI21,
|
|
getAArch64Page(got + 16) - getAArch64Page(plt + 8));
|
|
relocateNoSym(buf + 8, R_AARCH64_LDST64_ABS_LO12_NC, got + 16);
|
|
relocateNoSym(buf + 12, R_AARCH64_ADD_ABS_LO12_NC, got + 16);
|
|
if (!btiHeader)
|
|
// We didn't add the BTI c instruction so round out size with NOP.
|
|
memcpy(buf + sizeof(pltData), nopData, sizeof(nopData));
|
|
}
|
|
|
|
void AArch64BtiPac::writePlt(uint8_t *buf, const Symbol &sym,
|
|
uint64_t pltEntryAddr) const {
|
|
// The PLT entry is of the form:
|
|
// [btiData] addrInst (pacBr | stdBr) [nopData]
|
|
const uint8_t btiData[] = { 0x5f, 0x24, 0x03, 0xd5 }; // bti c
|
|
const uint8_t addrInst[] = {
|
|
0x10, 0x00, 0x00, 0x90, // adrp x16, Page(&(.got.plt[n]))
|
|
0x11, 0x02, 0x40, 0xf9, // ldr x17, [x16, Offset(&(.got.plt[n]))]
|
|
0x10, 0x02, 0x00, 0x91 // add x16, x16, Offset(&(.got.plt[n]))
|
|
};
|
|
const uint8_t pacBr[] = {
|
|
0x9f, 0x21, 0x03, 0xd5, // autia1716
|
|
0x20, 0x02, 0x1f, 0xd6 // br x17
|
|
};
|
|
const uint8_t stdBr[] = {
|
|
0x20, 0x02, 0x1f, 0xd6, // br x17
|
|
0x1f, 0x20, 0x03, 0xd5 // nop
|
|
};
|
|
const uint8_t nopData[] = { 0x1f, 0x20, 0x03, 0xd5 }; // nop
|
|
|
|
// NEEDS_COPY indicates a non-ifunc canonical PLT entry whose address may
|
|
// escape to shared objects. isInIplt indicates a non-preemptible ifunc. Its
|
|
// address may escape if referenced by a direct relocation. If relative
|
|
// vtables are used then if the vtable is in a shared object the offsets will
|
|
// be to the PLT entry. The condition is conservative.
|
|
bool hasBti = btiHeader &&
|
|
(sym.hasFlag(NEEDS_COPY) || sym.isInIplt || sym.thunkAccessed);
|
|
if (hasBti) {
|
|
memcpy(buf, btiData, sizeof(btiData));
|
|
buf += sizeof(btiData);
|
|
pltEntryAddr += sizeof(btiData);
|
|
}
|
|
|
|
uint64_t gotPltEntryAddr = sym.getGotPltVA();
|
|
memcpy(buf, addrInst, sizeof(addrInst));
|
|
relocateNoSym(buf, R_AARCH64_ADR_PREL_PG_HI21,
|
|
getAArch64Page(gotPltEntryAddr) - getAArch64Page(pltEntryAddr));
|
|
relocateNoSym(buf + 4, R_AARCH64_LDST64_ABS_LO12_NC, gotPltEntryAddr);
|
|
relocateNoSym(buf + 8, R_AARCH64_ADD_ABS_LO12_NC, gotPltEntryAddr);
|
|
|
|
if (pacEntry)
|
|
memcpy(buf + sizeof(addrInst), pacBr, sizeof(pacBr));
|
|
else
|
|
memcpy(buf + sizeof(addrInst), stdBr, sizeof(stdBr));
|
|
if (!hasBti)
|
|
// We didn't add the BTI c instruction so round out size with NOP.
|
|
memcpy(buf + sizeof(addrInst) + sizeof(stdBr), nopData, sizeof(nopData));
|
|
}
|
|
|
|
static TargetInfo *getTargetInfo() {
|
|
if ((config->andFeatures & GNU_PROPERTY_AARCH64_FEATURE_1_BTI) ||
|
|
config->zPacPlt) {
|
|
static AArch64BtiPac t;
|
|
return &t;
|
|
}
|
|
static AArch64 t;
|
|
return &t;
|
|
}
|
|
|
|
TargetInfo *elf::getAArch64TargetInfo() { return getTargetInfo(); }
|
|
|
|
template <class ELFT>
|
|
static void
|
|
addTaggedSymbolReferences(InputSectionBase &sec,
|
|
DenseMap<Symbol *, unsigned> &referenceCount) {
|
|
assert(sec.type == SHT_AARCH64_MEMTAG_GLOBALS_STATIC);
|
|
|
|
const RelsOrRelas<ELFT> rels = sec.relsOrRelas<ELFT>();
|
|
if (rels.areRelocsRel())
|
|
error("non-RELA relocations are not allowed with memtag globals");
|
|
|
|
for (const typename ELFT::Rela &rel : rels.relas) {
|
|
Symbol &sym = sec.getFile<ELFT>()->getRelocTargetSym(rel);
|
|
// Linker-synthesized symbols such as __executable_start may be referenced
|
|
// as tagged in input objfiles, and we don't want them to be tagged. A
|
|
// cheap way to exclude them is the type check, but their type is
|
|
// STT_NOTYPE. In addition, this save us from checking untaggable symbols,
|
|
// like functions or TLS symbols.
|
|
if (sym.type != STT_OBJECT)
|
|
continue;
|
|
// STB_LOCAL symbols can't be referenced from outside the object file, and
|
|
// thus don't need to be checked for references from other object files.
|
|
if (sym.binding == STB_LOCAL) {
|
|
sym.setIsTagged(true);
|
|
continue;
|
|
}
|
|
++referenceCount[&sym];
|
|
}
|
|
sec.markDead();
|
|
}
|
|
|
|
// A tagged symbol must be denoted as being tagged by all references and the
|
|
// chosen definition. For simplicity, here, it must also be denoted as tagged
|
|
// for all definitions. Otherwise:
|
|
//
|
|
// 1. A tagged definition can be used by an untagged declaration, in which case
|
|
// the untagged access may be PC-relative, causing a tag mismatch at
|
|
// runtime.
|
|
// 2. An untagged definition can be used by a tagged declaration, where the
|
|
// compiler has taken advantage of the increased alignment of the tagged
|
|
// declaration, but the alignment at runtime is wrong, causing a fault.
|
|
//
|
|
// Ideally, this isn't a problem, as any TU that imports or exports tagged
|
|
// symbols should also be built with tagging. But, to handle these cases, we
|
|
// demote the symbol to be untagged.
|
|
void lld::elf::createTaggedSymbols(const SmallVector<ELFFileBase *, 0> &files) {
|
|
assert(config->emachine == EM_AARCH64 &&
|
|
config->androidMemtagMode != ELF::NT_MEMTAG_LEVEL_NONE);
|
|
|
|
// First, collect all symbols that are marked as tagged, and count how many
|
|
// times they're marked as tagged.
|
|
DenseMap<Symbol *, unsigned> taggedSymbolReferenceCount;
|
|
for (InputFile* file : files) {
|
|
if (file->kind() != InputFile::ObjKind)
|
|
continue;
|
|
for (InputSectionBase *section : file->getSections()) {
|
|
if (!section || section->type != SHT_AARCH64_MEMTAG_GLOBALS_STATIC ||
|
|
section == &InputSection::discarded)
|
|
continue;
|
|
invokeELFT(addTaggedSymbolReferences, *section,
|
|
taggedSymbolReferenceCount);
|
|
}
|
|
}
|
|
|
|
// Now, go through all the symbols. If the number of declarations +
|
|
// definitions to a symbol exceeds the amount of times they're marked as
|
|
// tagged, it means we have an objfile that uses the untagged variant of the
|
|
// symbol.
|
|
for (InputFile *file : files) {
|
|
if (file->kind() != InputFile::BinaryKind &&
|
|
file->kind() != InputFile::ObjKind)
|
|
continue;
|
|
|
|
for (Symbol *symbol : file->getSymbols()) {
|
|
// See `addTaggedSymbolReferences` for more details.
|
|
if (symbol->type != STT_OBJECT ||
|
|
symbol->binding == STB_LOCAL)
|
|
continue;
|
|
auto it = taggedSymbolReferenceCount.find(symbol);
|
|
if (it == taggedSymbolReferenceCount.end()) continue;
|
|
unsigned &remainingAllowedTaggedRefs = it->second;
|
|
if (remainingAllowedTaggedRefs == 0) {
|
|
taggedSymbolReferenceCount.erase(it);
|
|
continue;
|
|
}
|
|
--remainingAllowedTaggedRefs;
|
|
}
|
|
}
|
|
|
|
// `addTaggedSymbolReferences` has already checked that we have RELA
|
|
// relocations, the only other way to get written addends is with
|
|
// --apply-dynamic-relocs.
|
|
if (!taggedSymbolReferenceCount.empty() && config->writeAddends)
|
|
error("--apply-dynamic-relocs cannot be used with MTE globals");
|
|
|
|
// Now, `taggedSymbolReferenceCount` should only contain symbols that are
|
|
// defined as tagged exactly the same amount as it's referenced, meaning all
|
|
// uses are tagged.
|
|
for (auto &[symbol, remainingTaggedRefs] : taggedSymbolReferenceCount) {
|
|
assert(remainingTaggedRefs == 0 &&
|
|
"Symbol is defined as tagged more times than it's used");
|
|
symbol->setIsTagged(true);
|
|
}
|
|
}
|