Files
clang-p2996/llvm/lib/Target/PowerPC/MCTargetDesc/PPCMCTargetDesc.cpp
Reid Kleckner cda23c0732 [PPC] Fix layering issues between MCTargetDesc and CodeGen
See issue #64166 for more information about the layering issue.

The PPCMCTargetDesc library was including CodeGen headers such as
PPCInstrInfo.h and calling inline functions in them. This doesn't work
in the Bazel build, and is error-prone. If the inline function moves to
a cpp file, it will result in linker errors.

To address the issue, I moved several inline functions to
PPCMCTargetDesc.cpp, and declared them in the PPC namespace in
PPCMCTargetDesc.h, which seemed like the most straightforward fix.

Differential Revision: https://reviews.llvm.org/D156488
2023-08-30 16:09:01 -07:00

530 lines
17 KiB
C++

//===-- PPCMCTargetDesc.cpp - PowerPC Target Descriptions -----------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file provides PowerPC specific target descriptions.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/PPCMCTargetDesc.h"
#include "MCTargetDesc/PPCInstPrinter.h"
#include "MCTargetDesc/PPCMCAsmInfo.h"
#include "PPCELFStreamer.h"
#include "PPCTargetStreamer.h"
#include "PPCXCOFFStreamer.h"
#include "TargetInfo/PowerPCTargetInfo.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAssembler.h"
#include "llvm/MC/MCCodeEmitter.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCObjectWriter.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSectionXCOFF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/MC/MCSymbolELF.h"
#include "llvm/MC/MCSymbolXCOFF.h"
#include "llvm/MC/TargetRegistry.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/TargetParser/Triple.h"
using namespace llvm;
#define GET_INSTRINFO_MC_DESC
#define ENABLE_INSTR_PREDICATE_VERIFIER
#include "PPCGenInstrInfo.inc"
#define GET_SUBTARGETINFO_MC_DESC
#include "PPCGenSubtargetInfo.inc"
#define GET_REGINFO_MC_DESC
#include "PPCGenRegisterInfo.inc"
/// stripRegisterPrefix - This method strips the character prefix from a
/// register name so that only the number is left. Used by for linux asm.
const char *PPC::stripRegisterPrefix(const char *RegName) {
switch (RegName[0]) {
case 'a':
if (RegName[1] == 'c' && RegName[2] == 'c')
return RegName + 3;
break;
case 'f':
if (RegName[1] == 'p')
return RegName + 2;
[[fallthrough]];
case 'r':
case 'v':
if (RegName[1] == 's') {
if (RegName[2] == 'p')
return RegName + 3;
return RegName + 2;
}
return RegName + 1;
case 'c':
if (RegName[1] == 'r')
return RegName + 2;
break;
case 'w':
// For wacc and wacc_hi
if (RegName[1] == 'a' && RegName[2] == 'c' && RegName[3] == 'c') {
if (RegName[4] == '_')
return RegName + 7;
else
return RegName + 4;
}
break;
case 'd':
// For dmr, dmrp, dmrrow, dmrrowp
if (RegName[1] == 'm' && RegName[2] == 'r') {
if (RegName[3] == 'r' && RegName[4] == 'o' && RegName[5] == 'w' &&
RegName[6] == 'p')
return RegName + 7;
else if (RegName[3] == 'r' && RegName[4] == 'o' && RegName[5] == 'w')
return RegName + 6;
else if (RegName[3] == 'p')
return RegName + 4;
else
return RegName + 3;
}
break;
}
return RegName;
}
/// getRegNumForOperand - some operands use different numbering schemes
/// for the same registers. For example, a VSX instruction may have any of
/// vs0-vs63 allocated whereas an Altivec instruction could only have
/// vs32-vs63 allocated (numbered as v0-v31). This function returns the actual
/// register number needed for the opcode/operand number combination.
/// The operand number argument will be useful when we need to extend this
/// to instructions that use both Altivec and VSX numbering (for different
/// operands).
unsigned PPC::getRegNumForOperand(const MCInstrDesc &Desc, unsigned Reg,
unsigned OpNo) {
int16_t regClass = Desc.operands()[OpNo].RegClass;
switch (regClass) {
// We store F0-F31, VF0-VF31 in MCOperand and it should be F0-F31,
// VSX32-VSX63 during encoding/disassembling
case PPC::VSSRCRegClassID:
case PPC::VSFRCRegClassID:
if (PPC::isVFRegister(Reg))
return PPC::VSX32 + (Reg - PPC::VF0);
break;
// We store VSL0-VSL31, V0-V31 in MCOperand and it should be VSL0-VSL31,
// VSX32-VSX63 during encoding/disassembling
case PPC::VSRCRegClassID:
if (PPC::isVRRegister(Reg))
return PPC::VSX32 + (Reg - PPC::V0);
break;
// Other RegClass doesn't need mapping
default:
break;
}
return Reg;
}
PPCTargetStreamer::PPCTargetStreamer(MCStreamer &S) : MCTargetStreamer(S) {}
// Pin the vtable to this file.
PPCTargetStreamer::~PPCTargetStreamer() = default;
static MCInstrInfo *createPPCMCInstrInfo() {
MCInstrInfo *X = new MCInstrInfo();
InitPPCMCInstrInfo(X);
return X;
}
static MCRegisterInfo *createPPCMCRegisterInfo(const Triple &TT) {
bool isPPC64 =
(TT.getArch() == Triple::ppc64 || TT.getArch() == Triple::ppc64le);
unsigned Flavour = isPPC64 ? 0 : 1;
unsigned RA = isPPC64 ? PPC::LR8 : PPC::LR;
MCRegisterInfo *X = new MCRegisterInfo();
InitPPCMCRegisterInfo(X, RA, Flavour, Flavour);
return X;
}
static MCSubtargetInfo *createPPCMCSubtargetInfo(const Triple &TT,
StringRef CPU, StringRef FS) {
// Set some default feature to MC layer.
std::string FullFS = std::string(FS);
if (TT.isOSAIX()) {
if (!FullFS.empty())
FullFS = "+aix," + FullFS;
else
FullFS = "+aix";
}
return createPPCMCSubtargetInfoImpl(TT, CPU, /*TuneCPU*/ CPU, FullFS);
}
static MCAsmInfo *createPPCMCAsmInfo(const MCRegisterInfo &MRI,
const Triple &TheTriple,
const MCTargetOptions &Options) {
bool isPPC64 = (TheTriple.getArch() == Triple::ppc64 ||
TheTriple.getArch() == Triple::ppc64le);
MCAsmInfo *MAI;
if (TheTriple.isOSBinFormatXCOFF())
MAI = new PPCXCOFFMCAsmInfo(isPPC64, TheTriple);
else
MAI = new PPCELFMCAsmInfo(isPPC64, TheTriple);
// Initial state of the frame pointer is R1.
unsigned Reg = isPPC64 ? PPC::X1 : PPC::R1;
MCCFIInstruction Inst =
MCCFIInstruction::cfiDefCfa(nullptr, MRI.getDwarfRegNum(Reg, true), 0);
MAI->addInitialFrameState(Inst);
return MAI;
}
static MCStreamer *
createPPCELFStreamer(const Triple &T, MCContext &Context,
std::unique_ptr<MCAsmBackend> &&MAB,
std::unique_ptr<MCObjectWriter> &&OW,
std::unique_ptr<MCCodeEmitter> &&Emitter, bool RelaxAll) {
return createPPCELFStreamer(Context, std::move(MAB), std::move(OW),
std::move(Emitter));
}
static MCStreamer *createPPCXCOFFStreamer(
const Triple &T, MCContext &Context, std::unique_ptr<MCAsmBackend> &&MAB,
std::unique_ptr<MCObjectWriter> &&OW,
std::unique_ptr<MCCodeEmitter> &&Emitter, bool RelaxAll) {
return createPPCXCOFFStreamer(Context, std::move(MAB), std::move(OW),
std::move(Emitter));
}
namespace {
class PPCTargetAsmStreamer : public PPCTargetStreamer {
formatted_raw_ostream &OS;
public:
PPCTargetAsmStreamer(MCStreamer &S, formatted_raw_ostream &OS)
: PPCTargetStreamer(S), OS(OS) {}
void emitTCEntry(const MCSymbol &S,
MCSymbolRefExpr::VariantKind Kind) override {
if (const MCSymbolXCOFF *XSym = dyn_cast<MCSymbolXCOFF>(&S)) {
MCSymbolXCOFF *TCSym =
cast<MCSectionXCOFF>(Streamer.getCurrentSectionOnly())
->getQualNameSymbol();
// On AIX, we have a region handle (symbol@m) and the variable offset
// (symbol@{gd|ie|le}) for TLS variables, depending on the TLS model.
if (Kind == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGD ||
Kind == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSGDM ||
Kind == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSIE ||
Kind == MCSymbolRefExpr::VariantKind::VK_PPC_AIX_TLSLE)
OS << "\t.tc " << TCSym->getName() << "," << XSym->getName() << "@"
<< MCSymbolRefExpr::getVariantKindName(Kind) << '\n';
else
OS << "\t.tc " << TCSym->getName() << "," << XSym->getName() << '\n';
if (TCSym->hasRename())
Streamer.emitXCOFFRenameDirective(TCSym, TCSym->getSymbolTableName());
return;
}
OS << "\t.tc " << S.getName() << "[TC]," << S.getName() << '\n';
}
void emitMachine(StringRef CPU) override {
OS << "\t.machine " << CPU << '\n';
}
void emitAbiVersion(int AbiVersion) override {
OS << "\t.abiversion " << AbiVersion << '\n';
}
void emitLocalEntry(MCSymbolELF *S, const MCExpr *LocalOffset) override {
const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo();
OS << "\t.localentry\t";
S->print(OS, MAI);
OS << ", ";
LocalOffset->print(OS, MAI);
OS << '\n';
}
};
class PPCTargetELFStreamer : public PPCTargetStreamer {
public:
PPCTargetELFStreamer(MCStreamer &S) : PPCTargetStreamer(S) {}
MCELFStreamer &getStreamer() {
return static_cast<MCELFStreamer &>(Streamer);
}
void emitTCEntry(const MCSymbol &S,
MCSymbolRefExpr::VariantKind Kind) override {
// Creates a R_PPC64_TOC relocation
Streamer.emitValueToAlignment(Align(8));
Streamer.emitSymbolValue(&S, 8);
}
void emitMachine(StringRef CPU) override {
// FIXME: Is there anything to do in here or does this directive only
// limit the parser?
}
void emitAbiVersion(int AbiVersion) override {
MCAssembler &MCA = getStreamer().getAssembler();
unsigned Flags = MCA.getELFHeaderEFlags();
Flags &= ~ELF::EF_PPC64_ABI;
Flags |= (AbiVersion & ELF::EF_PPC64_ABI);
MCA.setELFHeaderEFlags(Flags);
}
void emitLocalEntry(MCSymbolELF *S, const MCExpr *LocalOffset) override {
MCAssembler &MCA = getStreamer().getAssembler();
// encodePPC64LocalEntryOffset will report an error if it cannot
// encode LocalOffset.
unsigned Encoded = encodePPC64LocalEntryOffset(LocalOffset);
unsigned Other = S->getOther();
Other &= ~ELF::STO_PPC64_LOCAL_MASK;
Other |= Encoded;
S->setOther(Other);
// For GAS compatibility, unless we already saw a .abiversion directive,
// set e_flags to indicate ELFv2 ABI.
unsigned Flags = MCA.getELFHeaderEFlags();
if ((Flags & ELF::EF_PPC64_ABI) == 0)
MCA.setELFHeaderEFlags(Flags | 2);
}
void emitAssignment(MCSymbol *S, const MCExpr *Value) override {
auto *Symbol = cast<MCSymbolELF>(S);
// When encoding an assignment to set symbol A to symbol B, also copy
// the st_other bits encoding the local entry point offset.
if (copyLocalEntry(Symbol, Value))
UpdateOther.insert(Symbol);
else
UpdateOther.erase(Symbol);
}
void finish() override {
for (auto *Sym : UpdateOther)
if (Sym->isVariable())
copyLocalEntry(Sym, Sym->getVariableValue());
// Clear the set of symbols that needs to be updated so the streamer can
// be reused without issues.
UpdateOther.clear();
}
private:
SmallPtrSet<MCSymbolELF *, 32> UpdateOther;
bool copyLocalEntry(MCSymbolELF *D, const MCExpr *S) {
auto *Ref = dyn_cast<const MCSymbolRefExpr>(S);
if (!Ref)
return false;
const auto &RhsSym = cast<MCSymbolELF>(Ref->getSymbol());
unsigned Other = D->getOther();
Other &= ~ELF::STO_PPC64_LOCAL_MASK;
Other |= RhsSym.getOther() & ELF::STO_PPC64_LOCAL_MASK;
D->setOther(Other);
return true;
}
unsigned encodePPC64LocalEntryOffset(const MCExpr *LocalOffset) {
MCAssembler &MCA = getStreamer().getAssembler();
int64_t Offset;
if (!LocalOffset->evaluateAsAbsolute(Offset, MCA))
MCA.getContext().reportError(LocalOffset->getLoc(),
".localentry expression must be absolute");
switch (Offset) {
default:
MCA.getContext().reportError(
LocalOffset->getLoc(), ".localentry expression must be a power of 2");
return 0;
case 0:
return 0;
case 1:
return 1 << ELF::STO_PPC64_LOCAL_BIT;
case 4:
case 8:
case 16:
case 32:
case 64:
return Log2_32(Offset) << ELF::STO_PPC64_LOCAL_BIT;
}
}
};
class PPCTargetMachOStreamer : public PPCTargetStreamer {
public:
PPCTargetMachOStreamer(MCStreamer &S) : PPCTargetStreamer(S) {}
void emitTCEntry(const MCSymbol &S,
MCSymbolRefExpr::VariantKind Kind) override {
llvm_unreachable("Unknown pseudo-op: .tc");
}
void emitMachine(StringRef CPU) override {
// FIXME: We should update the CPUType, CPUSubType in the Object file if
// the new values are different from the defaults.
}
void emitAbiVersion(int AbiVersion) override {
llvm_unreachable("Unknown pseudo-op: .abiversion");
}
void emitLocalEntry(MCSymbolELF *S, const MCExpr *LocalOffset) override {
llvm_unreachable("Unknown pseudo-op: .localentry");
}
};
class PPCTargetXCOFFStreamer : public PPCTargetStreamer {
public:
PPCTargetXCOFFStreamer(MCStreamer &S) : PPCTargetStreamer(S) {}
void emitTCEntry(const MCSymbol &S,
MCSymbolRefExpr::VariantKind Kind) override {
const MCAsmInfo *MAI = Streamer.getContext().getAsmInfo();
const unsigned PointerSize = MAI->getCodePointerSize();
Streamer.emitValueToAlignment(Align(PointerSize));
Streamer.emitValue(MCSymbolRefExpr::create(&S, Kind, Streamer.getContext()),
PointerSize);
}
void emitMachine(StringRef CPU) override {
llvm_unreachable("Machine pseudo-ops are invalid for XCOFF.");
}
void emitAbiVersion(int AbiVersion) override {
llvm_unreachable("ABI-version pseudo-ops are invalid for XCOFF.");
}
void emitLocalEntry(MCSymbolELF *S, const MCExpr *LocalOffset) override {
llvm_unreachable("Local-entry pseudo-ops are invalid for XCOFF.");
}
};
} // end anonymous namespace
static MCTargetStreamer *createAsmTargetStreamer(MCStreamer &S,
formatted_raw_ostream &OS,
MCInstPrinter *InstPrint,
bool isVerboseAsm) {
return new PPCTargetAsmStreamer(S, OS);
}
static MCTargetStreamer *createNullTargetStreamer(MCStreamer &S) {
return new PPCTargetStreamer(S);
}
static MCTargetStreamer *
createObjectTargetStreamer(MCStreamer &S, const MCSubtargetInfo &STI) {
const Triple &TT = STI.getTargetTriple();
if (TT.isOSBinFormatELF())
return new PPCTargetELFStreamer(S);
if (TT.isOSBinFormatXCOFF())
return new PPCTargetXCOFFStreamer(S);
return new PPCTargetMachOStreamer(S);
}
static MCInstPrinter *createPPCMCInstPrinter(const Triple &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
const MCRegisterInfo &MRI) {
return new PPCInstPrinter(MAI, MII, MRI, T);
}
namespace {
class PPCMCInstrAnalysis : public MCInstrAnalysis {
public:
explicit PPCMCInstrAnalysis(const MCInstrInfo *Info)
: MCInstrAnalysis(Info) {}
bool evaluateBranch(const MCInst &Inst, uint64_t Addr, uint64_t Size,
uint64_t &Target) const override {
unsigned NumOps = Inst.getNumOperands();
if (NumOps == 0 ||
Info->get(Inst.getOpcode()).operands()[NumOps - 1].OperandType !=
MCOI::OPERAND_PCREL)
return false;
Target = Addr + Inst.getOperand(NumOps - 1).getImm() * Size;
return true;
}
};
} // end anonymous namespace
static MCInstrAnalysis *createPPCMCInstrAnalysis(const MCInstrInfo *Info) {
return new PPCMCInstrAnalysis(Info);
}
extern "C" LLVM_EXTERNAL_VISIBILITY void LLVMInitializePowerPCTargetMC() {
for (Target *T : {&getThePPC32Target(), &getThePPC32LETarget(),
&getThePPC64Target(), &getThePPC64LETarget()}) {
// Register the MC asm info.
RegisterMCAsmInfoFn C(*T, createPPCMCAsmInfo);
// Register the MC instruction info.
TargetRegistry::RegisterMCInstrInfo(*T, createPPCMCInstrInfo);
// Register the MC register info.
TargetRegistry::RegisterMCRegInfo(*T, createPPCMCRegisterInfo);
// Register the MC subtarget info.
TargetRegistry::RegisterMCSubtargetInfo(*T, createPPCMCSubtargetInfo);
// Register the MC instruction analyzer.
TargetRegistry::RegisterMCInstrAnalysis(*T, createPPCMCInstrAnalysis);
// Register the MC Code Emitter
TargetRegistry::RegisterMCCodeEmitter(*T, createPPCMCCodeEmitter);
// Register the asm backend.
TargetRegistry::RegisterMCAsmBackend(*T, createPPCAsmBackend);
// Register the elf streamer.
TargetRegistry::RegisterELFStreamer(*T, createPPCELFStreamer);
// Register the XCOFF streamer.
TargetRegistry::RegisterXCOFFStreamer(*T, createPPCXCOFFStreamer);
// Register the object target streamer.
TargetRegistry::RegisterObjectTargetStreamer(*T,
createObjectTargetStreamer);
// Register the asm target streamer.
TargetRegistry::RegisterAsmTargetStreamer(*T, createAsmTargetStreamer);
// Register the null target streamer.
TargetRegistry::RegisterNullTargetStreamer(*T, createNullTargetStreamer);
// Register the MCInstPrinter.
TargetRegistry::RegisterMCInstPrinter(*T, createPPCMCInstPrinter);
}
}