Files
clang-p2996/llvm/lib/Target/PowerPC/PPCInstrInfo.h
Chen Zheng 4b932d84f4 [PowerPC] redesign the target flags (#69695)
12 bit is not enough for PPC's target specific flags. If 8 bit for the
bitmask flags, 4 bit for the direct mask, PPC can total have 16 direct
mask and 8 bitmask. Not enough for PPC, see this issue in
https://github.com/llvm/llvm-project/pull/66316

Redesign how PPC target set the target specific flags. With this patch,
all ppc target flags are direct flags. No bitmask flag in PPC anymore.

This patch aligns with some targets like X86 which also has many target
specific flags.

The patch also fixes a bug related to flag `MO_TLSGDM_FLAG` and `MO_LO`.
They are the same value and the test case changes in this PR shows the
bug.
2023-12-07 12:47:25 +08:00

667 lines
31 KiB
C++

//===-- PPCInstrInfo.h - PowerPC Instruction Information --------*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the PowerPC implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
#define LLVM_LIB_TARGET_POWERPC_PPCINSTRINFO_H
#include "MCTargetDesc/PPCMCTargetDesc.h"
#include "PPC.h"
#include "PPCRegisterInfo.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#define GET_INSTRINFO_HEADER
#include "PPCGenInstrInfo.inc"
namespace llvm {
// Instructions that have an immediate form might be convertible to that
// form if the correct input is a result of a load immediate. In order to
// know whether the transformation is special, we might need to know some
// of the details of the two forms.
struct ImmInstrInfo {
// Is the immediate field in the immediate form signed or unsigned?
uint64_t SignedImm : 1;
// Does the immediate need to be a multiple of some value?
uint64_t ImmMustBeMultipleOf : 5;
// Is R0/X0 treated specially by the original r+r instruction?
// If so, in which operand?
uint64_t ZeroIsSpecialOrig : 3;
// Is R0/X0 treated specially by the new r+i instruction?
// If so, in which operand?
uint64_t ZeroIsSpecialNew : 3;
// Is the operation commutative?
uint64_t IsCommutative : 1;
// The operand number to check for add-immediate def.
uint64_t OpNoForForwarding : 3;
// The operand number for the immediate.
uint64_t ImmOpNo : 3;
// The opcode of the new instruction.
uint64_t ImmOpcode : 16;
// The size of the immediate.
uint64_t ImmWidth : 5;
// The immediate should be truncated to N bits.
uint64_t TruncateImmTo : 5;
// Is the instruction summing the operand
uint64_t IsSummingOperands : 1;
};
// Information required to convert an instruction to just a materialized
// immediate.
struct LoadImmediateInfo {
unsigned Imm : 16;
unsigned Is64Bit : 1;
unsigned SetCR : 1;
};
// Index into the OpcodesForSpill array.
enum SpillOpcodeKey {
SOK_Int4Spill,
SOK_Int8Spill,
SOK_Float8Spill,
SOK_Float4Spill,
SOK_CRSpill,
SOK_CRBitSpill,
SOK_VRVectorSpill,
SOK_VSXVectorSpill,
SOK_VectorFloat8Spill,
SOK_VectorFloat4Spill,
SOK_SpillToVSR,
SOK_PairedVecSpill,
SOK_AccumulatorSpill,
SOK_UAccumulatorSpill,
SOK_WAccumulatorSpill,
SOK_SPESpill,
SOK_PairedG8Spill,
SOK_LastOpcodeSpill // This must be last on the enum.
};
// Define list of load and store spill opcodes.
#define NoInstr PPC::INSTRUCTION_LIST_END
#define Pwr8LoadOpcodes \
{ \
PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXVD2X, PPC::LXSDX, PPC::LXSSPX, \
PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, NoInstr, PPC::EVLDD, \
PPC::RESTORE_QUADWORD \
}
#define Pwr9LoadOpcodes \
{ \
PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
PPC::DFLOADf32, PPC::SPILLTOVSR_LD, NoInstr, NoInstr, NoInstr, \
NoInstr, NoInstr, PPC::RESTORE_QUADWORD \
}
#define Pwr10LoadOpcodes \
{ \
PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
PPC::DFLOADf32, PPC::SPILLTOVSR_LD, PPC::LXVP, PPC::RESTORE_ACC, \
PPC::RESTORE_UACC, NoInstr, NoInstr, PPC::RESTORE_QUADWORD \
}
#define FutureLoadOpcodes \
{ \
PPC::LWZ, PPC::LD, PPC::LFD, PPC::LFS, PPC::RESTORE_CR, \
PPC::RESTORE_CRBIT, PPC::LVX, PPC::LXV, PPC::DFLOADf64, \
PPC::DFLOADf32, PPC::SPILLTOVSR_LD, PPC::LXVP, PPC::RESTORE_ACC, \
PPC::RESTORE_UACC, PPC::RESTORE_WACC, NoInstr, PPC::RESTORE_QUADWORD \
}
#define Pwr8StoreOpcodes \
{ \
PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
PPC::STVX, PPC::STXVD2X, PPC::STXSDX, PPC::STXSSPX, \
PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, NoInstr, PPC::EVSTDD, \
PPC::SPILL_QUADWORD \
}
#define Pwr9StoreOpcodes \
{ \
PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
PPC::SPILLTOVSR_ST, NoInstr, NoInstr, NoInstr, NoInstr, NoInstr, \
PPC::SPILL_QUADWORD \
}
#define Pwr10StoreOpcodes \
{ \
PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
PPC::SPILLTOVSR_ST, PPC::STXVP, PPC::SPILL_ACC, PPC::SPILL_UACC, \
NoInstr, NoInstr, PPC::SPILL_QUADWORD \
}
#define FutureStoreOpcodes \
{ \
PPC::STW, PPC::STD, PPC::STFD, PPC::STFS, PPC::SPILL_CR, PPC::SPILL_CRBIT, \
PPC::STVX, PPC::STXV, PPC::DFSTOREf64, PPC::DFSTOREf32, \
PPC::SPILLTOVSR_ST, PPC::STXVP, PPC::SPILL_ACC, PPC::SPILL_UACC, \
PPC::SPILL_WACC, NoInstr, PPC::SPILL_QUADWORD \
}
// Initialize arrays for load and store spill opcodes on supported subtargets.
#define StoreOpcodesForSpill \
{ Pwr8StoreOpcodes, Pwr9StoreOpcodes, Pwr10StoreOpcodes, FutureStoreOpcodes }
#define LoadOpcodesForSpill \
{ Pwr8LoadOpcodes, Pwr9LoadOpcodes, Pwr10LoadOpcodes, FutureLoadOpcodes }
class PPCSubtarget;
class PPCInstrInfo : public PPCGenInstrInfo {
PPCSubtarget &Subtarget;
const PPCRegisterInfo RI;
const unsigned StoreSpillOpcodesArray[4][SOK_LastOpcodeSpill] =
StoreOpcodesForSpill;
const unsigned LoadSpillOpcodesArray[4][SOK_LastOpcodeSpill] =
LoadOpcodesForSpill;
void StoreRegToStackSlot(MachineFunction &MF, unsigned SrcReg, bool isKill,
int FrameIdx, const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr *> &NewMIs) const;
void LoadRegFromStackSlot(MachineFunction &MF, const DebugLoc &DL,
unsigned DestReg, int FrameIdx,
const TargetRegisterClass *RC,
SmallVectorImpl<MachineInstr *> &NewMIs) const;
// Replace the instruction with single LI if possible. \p DefMI must be LI or
// LI8.
bool simplifyToLI(MachineInstr &MI, MachineInstr &DefMI,
unsigned OpNoForForwarding, MachineInstr **KilledDef) const;
// If the inst is imm-form and its register operand is produced by a ADDI, put
// the imm into the inst directly and remove the ADDI if possible.
bool transformToNewImmFormFedByAdd(MachineInstr &MI, MachineInstr &DefMI,
unsigned OpNoForForwarding) const;
// If the inst is x-form and has imm-form and one of its operand is produced
// by a LI, put the imm into the inst directly and remove the LI if possible.
bool transformToImmFormFedByLI(MachineInstr &MI, const ImmInstrInfo &III,
unsigned ConstantOpNo,
MachineInstr &DefMI) const;
// If the inst is x-form and has imm-form and one of its operand is produced
// by an add-immediate, try to transform it when possible.
bool transformToImmFormFedByAdd(MachineInstr &MI, const ImmInstrInfo &III,
unsigned ConstantOpNo, MachineInstr &DefMI,
bool KillDefMI) const;
// Try to find that, if the instruction 'MI' contains any operand that
// could be forwarded from some inst that feeds it. If yes, return the
// Def of that operand. And OpNoForForwarding is the operand index in
// the 'MI' for that 'Def'. If we see another use of this Def between
// the Def and the MI, SeenIntermediateUse becomes 'true'.
MachineInstr *getForwardingDefMI(MachineInstr &MI,
unsigned &OpNoForForwarding,
bool &SeenIntermediateUse) const;
// Can the user MI have it's source at index \p OpNoForForwarding
// forwarded from an add-immediate that feeds it?
bool isUseMIElgibleForForwarding(MachineInstr &MI, const ImmInstrInfo &III,
unsigned OpNoForForwarding) const;
bool isDefMIElgibleForForwarding(MachineInstr &DefMI,
const ImmInstrInfo &III,
MachineOperand *&ImmMO,
MachineOperand *&RegMO) const;
bool isImmElgibleForForwarding(const MachineOperand &ImmMO,
const MachineInstr &DefMI,
const ImmInstrInfo &III,
int64_t &Imm,
int64_t BaseImm = 0) const;
bool isRegElgibleForForwarding(const MachineOperand &RegMO,
const MachineInstr &DefMI,
const MachineInstr &MI, bool KillDefMI,
bool &IsFwdFeederRegKilled,
bool &SeenIntermediateUse) const;
unsigned getSpillTarget() const;
ArrayRef<unsigned> getStoreOpcodesForSpillArray() const;
ArrayRef<unsigned> getLoadOpcodesForSpillArray() const;
unsigned getSpillIndex(const TargetRegisterClass *RC) const;
int16_t getFMAOpIdxInfo(unsigned Opcode) const;
void reassociateFMA(MachineInstr &Root, MachineCombinerPattern Pattern,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const;
Register
generateLoadForNewConst(unsigned Idx, MachineInstr *MI, Type *Ty,
SmallVectorImpl<MachineInstr *> &InsInstrs) const;
virtual void anchor();
protected:
/// Commutes the operands in the given instruction.
/// The commutable operands are specified by their indices OpIdx1 and OpIdx2.
///
/// Do not call this method for a non-commutable instruction or for
/// non-commutable pair of operand indices OpIdx1 and OpIdx2.
/// Even though the instruction is commutable, the method may still
/// fail to commute the operands, null pointer is returned in such cases.
///
/// For example, we can commute rlwimi instructions, but only if the
/// rotate amt is zero. We also have to munge the immediates a bit.
MachineInstr *commuteInstructionImpl(MachineInstr &MI, bool NewMI,
unsigned OpIdx1,
unsigned OpIdx2) const override;
public:
explicit PPCInstrInfo(PPCSubtarget &STI);
bool isLoadFromConstantPool(MachineInstr *I) const;
const Constant *getConstantFromConstantPool(MachineInstr *I) const;
/// getRegisterInfo - TargetInstrInfo is a superset of MRegister info. As
/// such, whenever a client has an instance of instruction info, it should
/// always be able to get register info as well (through this method).
///
const PPCRegisterInfo &getRegisterInfo() const { return RI; }
bool isXFormMemOp(unsigned Opcode) const {
return get(Opcode).TSFlags & PPCII::XFormMemOp;
}
bool isPrefixed(unsigned Opcode) const {
return get(Opcode).TSFlags & PPCII::Prefixed;
}
bool isSExt32To64(unsigned Opcode) const {
return get(Opcode).TSFlags & PPCII::SExt32To64;
}
bool isZExt32To64(unsigned Opcode) const {
return get(Opcode).TSFlags & PPCII::ZExt32To64;
}
static bool isSameClassPhysRegCopy(unsigned Opcode) {
unsigned CopyOpcodes[] = {PPC::OR, PPC::OR8, PPC::FMR,
PPC::VOR, PPC::XXLOR, PPC::XXLORf,
PPC::XSCPSGNDP, PPC::MCRF, PPC::CROR,
PPC::EVOR, -1U};
for (int i = 0; CopyOpcodes[i] != -1U; i++)
if (Opcode == CopyOpcodes[i])
return true;
return false;
}
static bool hasPCRelFlag(unsigned TF) {
return TF == PPCII::MO_PCREL_FLAG || TF == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
TF == PPCII::MO_GOT_TLSLD_PCREL_FLAG ||
TF == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
TF == PPCII::MO_TPREL_PCREL_FLAG || TF == PPCII::MO_TLS_PCREL_FLAG ||
TF == PPCII::MO_GOT_PCREL_FLAG;
}
static bool hasGOTFlag(unsigned TF) {
return TF == PPCII::MO_GOT_FLAG || TF == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
TF == PPCII::MO_GOT_TLSLD_PCREL_FLAG ||
TF == PPCII::MO_GOT_TPREL_PCREL_FLAG ||
TF == PPCII::MO_GOT_PCREL_FLAG;
}
static bool hasTLSFlag(unsigned TF) {
return TF == PPCII::MO_TLSGD_FLAG || TF == PPCII::MO_TPREL_FLAG ||
TF == PPCII::MO_TLSLD_FLAG || TF == PPCII::MO_TLSGDM_FLAG ||
TF == PPCII::MO_GOT_TLSGD_PCREL_FLAG ||
TF == PPCII::MO_GOT_TLSLD_PCREL_FLAG ||
TF == PPCII::MO_GOT_TPREL_PCREL_FLAG || TF == PPCII::MO_TPREL_LO ||
TF == PPCII::MO_TPREL_HA || TF == PPCII::MO_DTPREL_LO ||
TF == PPCII::MO_TLSLD_LO || TF == PPCII::MO_TLS ||
TF == PPCII::MO_TPREL_PCREL_FLAG || TF == PPCII::MO_TLS_PCREL_FLAG;
}
ScheduleHazardRecognizer *
CreateTargetHazardRecognizer(const TargetSubtargetInfo *STI,
const ScheduleDAG *DAG) const override;
ScheduleHazardRecognizer *
CreateTargetPostRAHazardRecognizer(const InstrItineraryData *II,
const ScheduleDAG *DAG) const override;
unsigned getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr &MI,
unsigned *PredCost = nullptr) const override;
std::optional<unsigned> getOperandLatency(const InstrItineraryData *ItinData,
const MachineInstr &DefMI,
unsigned DefIdx,
const MachineInstr &UseMI,
unsigned UseIdx) const override;
std::optional<unsigned> getOperandLatency(const InstrItineraryData *ItinData,
SDNode *DefNode, unsigned DefIdx,
SDNode *UseNode,
unsigned UseIdx) const override {
return PPCGenInstrInfo::getOperandLatency(ItinData, DefNode, DefIdx,
UseNode, UseIdx);
}
bool hasLowDefLatency(const TargetSchedModel &SchedModel,
const MachineInstr &DefMI,
unsigned DefIdx) const override {
// Machine LICM should hoist all instructions in low-register-pressure
// situations; none are sufficiently free to justify leaving in a loop
// body.
return false;
}
bool useMachineCombiner() const override {
return true;
}
/// When getMachineCombinerPatterns() finds patterns, this function generates
/// the instructions that could replace the original code sequence
void genAlternativeCodeSequence(
MachineInstr &Root, MachineCombinerPattern Pattern,
SmallVectorImpl<MachineInstr *> &InsInstrs,
SmallVectorImpl<MachineInstr *> &DelInstrs,
DenseMap<unsigned, unsigned> &InstrIdxForVirtReg) const override;
/// Return true when there is potentially a faster code sequence for a fma
/// chain ending in \p Root. All potential patterns are output in the \p
/// P array.
bool getFMAPatterns(MachineInstr &Root,
SmallVectorImpl<MachineCombinerPattern> &P,
bool DoRegPressureReduce) const;
/// Return true when there is potentially a faster code sequence
/// for an instruction chain ending in <Root>. All potential patterns are
/// output in the <Pattern> array.
bool getMachineCombinerPatterns(MachineInstr &Root,
SmallVectorImpl<MachineCombinerPattern> &P,
bool DoRegPressureReduce) const override;
/// On PowerPC, we leverage machine combiner pass to reduce register pressure
/// when the register pressure is high for one BB.
/// Return true if register pressure for \p MBB is high and ABI is supported
/// to reduce register pressure. Otherwise return false.
bool shouldReduceRegisterPressure(
const MachineBasicBlock *MBB,
const RegisterClassInfo *RegClassInfo) const override;
/// Fixup the placeholders we put in genAlternativeCodeSequence() for
/// MachineCombiner.
void
finalizeInsInstrs(MachineInstr &Root, MachineCombinerPattern &P,
SmallVectorImpl<MachineInstr *> &InsInstrs) const override;
bool isAssociativeAndCommutative(const MachineInstr &Inst,
bool Invert) const override;
/// On PowerPC, we try to reassociate FMA chain which will increase
/// instruction size. Set extension resource length limit to 1 for edge case.
/// Resource Length is calculated by scaled resource usage in getCycles().
/// Because of the division in getCycles(), it returns different cycles due to
/// legacy scaled resource usage. So new resource length may be same with
/// legacy or 1 bigger than legacy.
/// We need to execlude the 1 bigger case even the resource length is not
/// perserved for more FMA chain reassociations on PowerPC.
int getExtendResourceLenLimit() const override { return 1; }
// PowerPC specific version of setSpecialOperandAttr that copies Flags to MI
// and clears nuw, nsw, and exact flags.
using TargetInstrInfo::setSpecialOperandAttr;
void setSpecialOperandAttr(MachineInstr &MI, uint32_t Flags) const;
bool isCoalescableExtInstr(const MachineInstr &MI,
Register &SrcReg, Register &DstReg,
unsigned &SubIdx) const override;
unsigned isLoadFromStackSlot(const MachineInstr &MI,
int &FrameIndex) const override;
bool isReallyTriviallyReMaterializable(const MachineInstr &MI) const override;
unsigned isStoreToStackSlot(const MachineInstr &MI,
int &FrameIndex) const override;
bool findCommutedOpIndices(const MachineInstr &MI, unsigned &SrcOpIdx1,
unsigned &SrcOpIdx2) const override;
void insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const override;
// Branch analysis.
bool analyzeBranch(MachineBasicBlock &MBB, MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const override;
unsigned removeBranch(MachineBasicBlock &MBB,
int *BytesRemoved = nullptr) const override;
unsigned insertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB, ArrayRef<MachineOperand> Cond,
const DebugLoc &DL,
int *BytesAdded = nullptr) const override;
// Select analysis.
bool canInsertSelect(const MachineBasicBlock &, ArrayRef<MachineOperand> Cond,
Register, Register, Register, int &, int &,
int &) const override;
void insertSelect(MachineBasicBlock &MBB, MachineBasicBlock::iterator MI,
const DebugLoc &DL, Register DstReg,
ArrayRef<MachineOperand> Cond, Register TrueReg,
Register FalseReg) const override;
void copyPhysReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
const DebugLoc &DL, MCRegister DestReg, MCRegister SrcReg,
bool KillSrc) const override;
void storeRegToStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, Register SrcReg,
bool isKill, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI,
Register VReg) const override;
// Emits a register spill without updating the register class for vector
// registers. This ensures that when we spill a vector register the
// element order in the register is the same as it was in memory.
void storeRegToStackSlotNoUpd(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned SrcReg, bool isKill, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const;
void loadRegFromStackSlot(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, Register DestReg,
int FrameIndex, const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI,
Register VReg) const override;
// Emits a register reload without updating the register class for vector
// registers. This ensures that when we reload a vector register the
// element order in the register is the same as it was in memory.
void loadRegFromStackSlotNoUpd(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned DestReg, int FrameIndex,
const TargetRegisterClass *RC,
const TargetRegisterInfo *TRI) const;
unsigned getStoreOpcodeForSpill(const TargetRegisterClass *RC) const;
unsigned getLoadOpcodeForSpill(const TargetRegisterClass *RC) const;
bool
reverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const override;
bool FoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI, Register Reg,
MachineRegisterInfo *MRI) const override;
bool onlyFoldImmediate(MachineInstr &UseMI, MachineInstr &DefMI,
Register Reg) const;
// If conversion by predication (only supported by some branch instructions).
// All of the profitability checks always return true; it is always
// profitable to use the predicated branches.
bool isProfitableToIfCvt(MachineBasicBlock &MBB,
unsigned NumCycles, unsigned ExtraPredCycles,
BranchProbability Probability) const override {
return true;
}
bool isProfitableToIfCvt(MachineBasicBlock &TMBB,
unsigned NumT, unsigned ExtraT,
MachineBasicBlock &FMBB,
unsigned NumF, unsigned ExtraF,
BranchProbability Probability) const override;
bool isProfitableToDupForIfCvt(MachineBasicBlock &MBB, unsigned NumCycles,
BranchProbability Probability) const override {
return true;
}
bool isProfitableToUnpredicate(MachineBasicBlock &TMBB,
MachineBasicBlock &FMBB) const override {
return false;
}
// Predication support.
bool isPredicated(const MachineInstr &MI) const override;
bool isSchedulingBoundary(const MachineInstr &MI,
const MachineBasicBlock *MBB,
const MachineFunction &MF) const override;
bool PredicateInstruction(MachineInstr &MI,
ArrayRef<MachineOperand> Pred) const override;
bool SubsumesPredicate(ArrayRef<MachineOperand> Pred1,
ArrayRef<MachineOperand> Pred2) const override;
bool ClobbersPredicate(MachineInstr &MI, std::vector<MachineOperand> &Pred,
bool SkipDead) const override;
// Comparison optimization.
bool analyzeCompare(const MachineInstr &MI, Register &SrcReg,
Register &SrcReg2, int64_t &Mask,
int64_t &Value) const override;
bool optimizeCompareInstr(MachineInstr &CmpInstr, Register SrcReg,
Register SrcReg2, int64_t Mask, int64_t Value,
const MachineRegisterInfo *MRI) const override;
/// Return true if get the base operand, byte offset of an instruction and
/// the memory width. Width is the size of memory that is being
/// loaded/stored (e.g. 1, 2, 4, 8).
bool getMemOperandWithOffsetWidth(const MachineInstr &LdSt,
const MachineOperand *&BaseOp,
int64_t &Offset, unsigned &Width,
const TargetRegisterInfo *TRI) const;
bool optimizeCmpPostRA(MachineInstr &MI) const;
/// Get the base operand and byte offset of an instruction that reads/writes
/// memory.
bool getMemOperandsWithOffsetWidth(
const MachineInstr &LdSt,
SmallVectorImpl<const MachineOperand *> &BaseOps, int64_t &Offset,
bool &OffsetIsScalable, unsigned &Width,
const TargetRegisterInfo *TRI) const override;
/// Returns true if the two given memory operations should be scheduled
/// adjacent.
bool shouldClusterMemOps(ArrayRef<const MachineOperand *> BaseOps1,
int64_t Offset1, bool OffsetIsScalable1,
ArrayRef<const MachineOperand *> BaseOps2,
int64_t Offset2, bool OffsetIsScalable2,
unsigned ClusterSize,
unsigned NumBytes) const override;
/// Return true if two MIs access different memory addresses and false
/// otherwise
bool
areMemAccessesTriviallyDisjoint(const MachineInstr &MIa,
const MachineInstr &MIb) const override;
/// GetInstSize - Return the number of bytes of code the specified
/// instruction may be. This returns the maximum number of bytes.
///
unsigned getInstSizeInBytes(const MachineInstr &MI) const override;
MCInst getNop() const override;
std::pair<unsigned, unsigned>
decomposeMachineOperandsTargetFlags(unsigned TF) const override;
ArrayRef<std::pair<unsigned, const char *>>
getSerializableDirectMachineOperandTargetFlags() const override;
// Expand VSX Memory Pseudo instruction to either a VSX or a FP instruction.
bool expandVSXMemPseudo(MachineInstr &MI) const;
// Lower pseudo instructions after register allocation.
bool expandPostRAPseudo(MachineInstr &MI) const override;
const TargetRegisterClass *updatedRC(const TargetRegisterClass *RC) const;
static int getRecordFormOpcode(unsigned Opcode);
bool isTOCSaveMI(const MachineInstr &MI) const;
std::pair<bool, bool>
isSignOrZeroExtended(const unsigned Reg, const unsigned BinOpDepth,
const MachineRegisterInfo *MRI) const;
// Return true if the register is sign-extended from 32 to 64 bits.
bool isSignExtended(const unsigned Reg,
const MachineRegisterInfo *MRI) const {
return isSignOrZeroExtended(Reg, 0, MRI).first;
}
// Return true if the register is zero-extended from 32 to 64 bits.
bool isZeroExtended(const unsigned Reg,
const MachineRegisterInfo *MRI) const {
return isSignOrZeroExtended(Reg, 0, MRI).second;
}
bool convertToImmediateForm(MachineInstr &MI,
SmallSet<Register, 4> &RegsToUpdate,
MachineInstr **KilledDef = nullptr) const;
bool foldFrameOffset(MachineInstr &MI) const;
bool combineRLWINM(MachineInstr &MI, MachineInstr **ToErase = nullptr) const;
bool isADDIInstrEligibleForFolding(MachineInstr &ADDIMI, int64_t &Imm) const;
bool isADDInstrEligibleForFolding(MachineInstr &ADDMI) const;
bool isImmInstrEligibleForFolding(MachineInstr &MI, unsigned &BaseReg,
unsigned &XFormOpcode,
int64_t &OffsetOfImmInstr,
ImmInstrInfo &III) const;
bool isValidToBeChangedReg(MachineInstr *ADDMI, unsigned Index,
MachineInstr *&ADDIMI, int64_t &OffsetAddi,
int64_t OffsetImm) const;
void replaceInstrWithLI(MachineInstr &MI, const LoadImmediateInfo &LII) const;
void replaceInstrOperandWithImm(MachineInstr &MI, unsigned OpNo,
int64_t Imm) const;
bool instrHasImmForm(unsigned Opc, bool IsVFReg, ImmInstrInfo &III,
bool PostRA) const;
// In PostRA phase, try to find instruction defines \p Reg before \p MI.
// \p SeenIntermediate is set to true if uses between DefMI and \p MI exist.
MachineInstr *getDefMIPostRA(unsigned Reg, MachineInstr &MI,
bool &SeenIntermediateUse) const;
// Materialize immediate after RA.
void materializeImmPostRA(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, Register Reg,
int64_t Imm) const;
/// Check \p Opcode is BDNZ (Decrement CTR and branch if it is still nonzero).
bool isBDNZ(unsigned Opcode) const;
/// Find the hardware loop instruction used to set-up the specified loop.
/// On PPC, we have two instructions used to set-up the hardware loop
/// (MTCTRloop, MTCTR8loop) with corresponding endloop (BDNZ, BDNZ8)
/// instructions to indicate the end of a loop.
MachineInstr *
findLoopInstr(MachineBasicBlock &PreHeader,
SmallPtrSet<MachineBasicBlock *, 8> &Visited) const;
/// Analyze loop L, which must be a single-basic-block loop, and if the
/// conditions can be understood enough produce a PipelinerLoopInfo object.
std::unique_ptr<TargetInstrInfo::PipelinerLoopInfo>
analyzeLoopForPipelining(MachineBasicBlock *LoopBB) const override;
};
}
#endif